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transformations of the Schrödinger flows and the extended Harry-Dym flows. Finally, we investigate
some geometric properties of Hasimoto surfaces which wiped out by the Schrödinger flows.

Keywords: Hasimoto surface; Schrödinger flow; extended Harry-Dym flow; isotropic space
Mathematics Subject Classification: 53B30, 53C40, 53Z05

1. Introduction

It is well known that many nonlinear phenomena in physics, chemistry and biology are described
by dynamics of shapes, such as curves and surfaces, and the time evolution of a curve and a surface has
significations in computer vision and image processing. The time evolution of a curve and a surface is
described by flows, in particular inextensible flows of a curve and a surface. Physically, inextensible
flows give rise to motion which no strain energy is induced. The swinging motion of a cord of fixed
length or of a piece of paper carried by the wind, can be described by inextensible flows of a curve
and a surface. Also, the flows arise in the context of many problems in computer visions and computer
animations [2, 7]

In [5], Hasimoto studied the relation between integrable systems and geometric curve flows and he
showed that the non linear Schrödinger equation is equivalent to the binormal notion flow of space
curves by using a transformation relating the wave function of the Schrödinger equation to the
curvature and torsion of curves (so-called Hasimoto transformation). In particular, Lamb [8] proved
that the mKdV equation and the sine-Gordon equation arise from the invariant curve flows by using
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the Hasimoto transformation. After, Mohamed [9] investigated the general description of the
binormal motion of a spacelike and a timelike curve in a 3-dimensional de-Sitter space and gave some
explicit examples of a binormal motion of the curves. Schief and Rogers [11] investigated binormal
motions of inextensible curves with a constant curvature or a constant torsion, and introduced two
new examples of integrable equations which are derived from the binormal motion of curves and
established the Bäcklund transformation and matrix Darboux transformations of the extended Dym
equation and the mKdV equation. In [1] the authors studied curve motions by the binormal flow with
the curvature and the torsion depending velocity and sweeping out immersed surfaces and obtained
filaments evolving with a constant torsion which arise from extremal curves of curvature energy
functionals. Curve flows have been studied by many experts and geometers [4, 6, 13].

The outline of the paper is organized as follows: In Section 2, we give some geometric concepts
of curves and surfaces in an isotropic 3-space. In Section 3, we study inextensible flows of a space
curve and give time evolutions of the Frenet frame, the curvature and the torsion of the curve. In the
last section, we construct the Bäcklund transformations of the Schrödinger flows and the extended
Harry-Dym flows as the binormal flows and give a nonexistence of bi-harmonic Hasimoto surfaces in
an isotropic 3-space.

2. Isotropic space

The three dimensional isotropic space I3 has been developed by Strubecker in the 1940s, and it is
based on the following group G6 of an affine transformations (x, y, z)→ (x̄, ȳ, z̄) in R3,

x̄ = a + x cos φ − y sin φ,
ȳ = b + x sin φ + y cos φ,
z̄ = c + c1x + c2y + z,

where a, b, c, c1, c2, φ ∈ R. Such affine transformations are called isotropic congruence transformations
or isotropic motions of I3, in this case B6 is denoted by the group of isotropic motions (cf. [12]).
Observe that on the xy plane this geometry looks exactly like the plane Euclidean geometry. The
projection of a vector x = (x1, y1, z1) in I3 on the xy plane is called the top view of x and we shall
denote it by x̂ = (x1, y1, 0). The top view concept plays a fundamental role in the isotropic space I3,
since the z direction is preserved under action of B6. A line with this direction is called an isotropic
line and a plane that contains an isotropic line is said to be an isotropic plane.

In the sequel, many of metric properties in isotropic geometry (invariants under B6) are Euclidean
invariants in the top view such as the isotropic distance, so call i-distance. The isotropic distance of two
points P = (x1, y1, z1) and Q = (x2, y2, z2) is defined as the Euclidean distance of the their top views,
i.e.,

d(P,Q) :=
√

(x1 − x2)2 + (y1 − y2)2. (2.1)

As a fact, two points (x, y, zi) (i = 1, 2) with the same top views have isotropic distance zero, they called
parallel points.

Let x = (x1, y1, z1) and y = (x2, y2, z2) be vectors in I3. The isotropic inner product of x and y is
defined by

〈x, y〉 =

z1z2, if xi = 0 and yi = 0
x1x2 + y1y2, if otherwise.

(2.2)
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We call vector of the form x = (0, 0, z) in I3 isotropic vector, and non-isotropic vector otherwise.
Now we introduce some terminology related to curves. A regular curve C : I → I3, i.e., C′ , 0, is

parametrized by an arc-length s if ||C′|| = 1. In the following we assume that all curves are parametrized
by an arc-length s. In addition, a point α(s0) in which {C′(s0),C′′(s0)} is linearly dependent is an
inflection point and a regular unit speed curve C(s) = (x(s), y(s), z(s)) with no inflection point is called
an admissible curve if x′y′′ − x′′y′ , 0.

On the other hand, the (isotropic) unit tangent, principal normal, and curvature function of the curve
C are defined as usual

t(s) = C′(s), n(s) =
t′(s)
κ(s)

, and κ(s) = ||t′(s)|| = ||t̂′(s)||, (2.3)

respectively. As usually happens in isotropic geometry, the curvature κ is just the curvature function
of its top view Ĉ and then we may write κ(s) = (x′y′′ − x′′y′)(s). To compute the moving trihedron,
we define the binormal vector as the vector b = (0, 0, 1) in the isotropic direction. The Frenet equation
corresponding to the isotropic Frenet frame {t,n,b} can be written as ( [12])

d
ds


t
n
b

 =


0 κ 0
−κ 0 τ

0 0 0




t
n
b

 , (2.4)

where τ is the (isotropic) torsion, that is,

τ =
det(C′,C′′,C′′′)

κ2 .

Consider a Cr-surface M, r ≥ 1, in I3 parameterized by

X(u, v) = (x(u, v), y(u, v), z(u, v)).

A surface M immersed in I3 is called admissible if it has no isotropic tangent planes. We restrict our
framework to admissible regular surfaces.

For such a surface, the coefficients gi j (i, j = 1, 2) of its first fundamental form are given by

g11 = 〈Xu, Xu〉, g12 = 〈Xu, Xv〉, g22 = 〈Xv, Xv〉,

where Xu = ∂X
∂u and Xv = ∂X

∂v . The coefficients hi j (i, j = 1, 2) of the second fundamental form of M are
calculated with respect to the normal vector of M and they are given by

h11 =
det(XuuXuXv)√

det(gi j)
, h12 =

det(XuvXuXv)√
det(gi j)

, h22 =
det(XvvXuXv)√

det(gi j)
.

The isotropic Gaussian curvature K and the isotropic mean curvature H are defined by

K =
det (hi j)
det (gi j)

, H =
g11h22 − 2g12h12 + g22h11

2 det(gi j)
. (2.5)

The surface M is said to be isotropic flat (resp. isotropic minimal ) if K (resp.H) vanishes (cf. [12,14]).

AIMS Mathematics Volume 5, Issue 4, 3434–3445.



3437

3. Inextensible flows of a space curve

We assume that C : [0, l] × [0,w]→ M ⊂ I3 is a one parameter family of a space curve in I3, where
l is the arc-length of a initial curve. Let u be the curve parametrization variable, 0 ≤ u ≤ l. We put
v = ||∂C

∂u ||, from which the arc-length of C is defined by s(u) =
∫ u

0
vdu. Also, the operator ∂

∂s is given in
terms of u by ∂

∂s = 1
v
∂
∂u and the arc-length parameter is given by ds = vdu.

On the Frenet frame {t,n,b} of the curve C in I3, any flow of C can be given by

∂C
∂t

= αt + βn + γb, (3.1)

where α, β, γ are scalar speeds of the space curve C, respectively. We put s(u, t) =
∫ u

0
vdu, it is called

the arc-length variation of C. From this, the requirement that the curve not be subject to any elongation
or compression can be expressed by the condition

∂

∂t
s(u, t) =

∫ u

0

∂v
∂t

du = 0 (3.2)

for all u ∈ [0, l].

Definition 3.1. A curve evolution C(u, t) and its flow ∂C
∂t in I3 are said to be inextensible if

∂

∂t

∣∣∣∣∣∣∣∣∣∣∂C
∂u

∣∣∣∣∣∣∣∣∣∣ = 0.

Theorem 3.2. If ∂C
∂t = αt +βn +γb is a flow of C in an isotropic 3-space I3, then we have the following

equation:
∂v
∂t

=
∂α

∂u
− vκβ. (3.3)

Proof. Since v2 =
〈
∂C
∂u ,

∂C
∂u

〉
and u, t are independent coordinates, ∂

∂u and ∂
∂t commute. So by

differentiating of v2 with respect to t and using (2.4) and (3.1) we can easily obtain (3.3). �

Now, we give necessary and sufficient condition for a inextensible flow in an isotropic space and it
is useful to get our results.

Theorem 3.3. Let ∂C
∂t = αt + βn + γb be a flow of a space curve C in I3. Then the flow is inextensible

if and only if
∂α

∂s
= κβ. (3.4)

Proof. Suppose that the curve flow of a space curve C is inextensible. From (3.2) and (3.3) we have

∂

∂t
s(u, t) =

∫ u

0

∂v
∂t

du =

∫ u

0

(
∂α

∂u
− vκβ

)
du = 0, for all u ∈ [0, l].

It follows that
∂α

∂u
= vκβ.

Since ∂
∂s = 1

v
∂
∂u , we can obtain (3.4).

Conversely, by following a similar way as above, the proof is completed. �
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Theorem 3.4. Let ∂C
∂t = αt + βn + γb be a flow of a space curve C in I3. If the flow is inextensible, then

a time evolution of the Frenet frame {t,n,b} along a curve C is given by

d
dt


t
n
b

 =


0 ϕ1 ϕ2

−ϕ1 0 0
0 0 0




t
n
b

 , (3.5)

where
ϕ1 =

∂β

∂s
+ ακ, ϕ2 =

∂γ

∂s
+ βτ. (3.6)

Proof. Noting that
∂t
∂t

=
∂

∂t

(
∂C
∂s

)
=
∂

∂s
(αt + βn + γb)

=

(
∂β

∂s
+ ακ

)
n +

(
∂γ

∂s
+ βτ

)
b.

(3.7)

Also,

0 =
∂

∂t
〈t,n〉 = 〈

∂t
∂t
,n〉 + 〈t,

∂n
∂t
〉 = (

∂β

∂s
+ ακ) + 〈t,

∂n
∂t
〉,

0 =
∂

∂t
〈n,b〉 = 〈

∂n
∂t
,b〉,

which imply that a time evolution of the principal normal vector n can be expressed as

∂n
∂t

= −(
∂β

∂s
+ ακ)t.

This completes the proof. �

Now, we give time evolution equations of the curvature κ and the torsion τ of the inextensible space
curve C in I3.

Theorem 3.5. Let ∂C
∂t = αt + βn + γb be a flow of a space curve C in I3. Then, the time evolution

equations of the functions κ and τ for the inextensible space curve C are given by

∂κ

∂t
=
∂ϕ1

∂s
,

∂τ

∂t
= κϕ2.

(3.8)

Proof. It is well known that the arc length and time derivatives commute. That is,

∂

∂s

(
∂t
∂t

)
=
∂

∂s
(ϕ1n + ϕ2b)

= (−κϕ1)t + (
∂ϕ1

∂s
)n + (

∂ϕ2

∂s
+ ϕ1τ)b,

and
∂

∂t

(
∂t
∂s

)
=
∂

∂t
(κn)

= (−κϕ1)t + (
∂κ

∂t
)n.
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Comparing two equations, we find
∂κ

∂t
=
∂ϕ1

∂s
.

Also by using ∂
∂s

(
∂n
∂t

)
= ∂

∂t

(
∂n
∂s

)
and following a similar way as above, we can obtain the second

equation of (3.8). The proof is completed. �

Remark 3.6. Taking β = −κs, by (3.4) one find α = −1
2κ

2. From the time evolution of the curvature
(3.8) we get

κt = −κsss −
3
2
κ2κs,

it follows that the curvature κ evolves according to the mKdV equation

κt + κsss +
3
2
κ2κs = 0,

where κs = ∂κ
∂s and κt = ∂κ

∂t . The corresponding flow of a curve is

Ct = −
1
2
κ2t − κsn,

which is the so-called modified KdV flow [3].

We give a example of inextensible flow of a curve with constant torsion as follows:

Example 3.7. Taking τ = τ0 = constant. If we consider

α = α0, β = β0, γ = −β0τ0s + γ0t,

where α0, β0, γ0 are non zero constants, then the PDE system (3.8) takes the form

κt = α0κs.

it follows that one solution of the last equation is

κ(s, t) = es+α0t.

Thus, (2.4) and (3.5) imply α0ts = tt and n = e−(s+α0t)ts. If we take

t = (cosh(α0s + t), sinh(α0s + t), α0s + t),

the vector n is given by

n(s, t) = α0e(s+α0)(sinh(α0s + t), cosh(α0s + t), 1).

Thus, we can get the family of curves Ct, so we can determine the surface that is generated by this
family of curves.

4. Binormal flows of a space curve

Qu et al. [10] studied the Bäcklund transformations of geometric curve flows in a Euclidean 3-space
R3. In this section, we aim to give the Bäcklund transformations of integrable geometric curve flows
by using time evolutions of a curve in an isotropic 3-space I3.
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4.1. The Schrödinger flows

It is well-known that the Schrödinger flow in a 3-space is given by [5]

Ct = Cs ×Css = κb. (4.1)

In this case we take (α, β, γ) = (0, 0, κ) in (3.1), it follows that (3.5) and (3.8) imply the following
theorem:

Theorem 4.1. The Schrödinger flow (4.1) implies the time evolutions of frame fields, the curvature and
the torsion of a space curve C in an isotropic 3-space I3 as follows:

d
dt


t
n
b

 =


0 0 κs

0 0 0
0 0 0




t
n
b

 , (4.2)

d
dt

(
κ

τ

)
=

(
0 0
κs 0

) (
κ

τ

)
. (4.3)

We now construct the Bäcklund transformation of the Schrödinger flow (4.1). Considering another
curve in I3 related C by

C̃(s, t) = C(s, t) + µ(s, t)t + ν(s, t)n + ξ(s, t)b, (4.4)

where µ, ν and ξ are the smooth functions of s and t. Using (2.4), (4.1) and (4.2), a direct computation
leads to

C̃s = (1 + µs − κν)t + (νs + κµ)n + (ξs + τν)b,
C̃t = µtt + νtn + (κ + ξt + κsµ)b.

(4.5)

Let s̃ be the arclength parameter of the curve C̃. Then

ds̃ = ||C̃s||ds =
√

(1 + µs − κν)2 + (νs + κµ)2ds := Ωds,

where Ω is a non zero smooth function. It follows that the unit tangent vector of the curve C̃ is
determined by

t̃ = Φ1t + Φ2n + Φ3b, (4.6)

where Φ1 = Ω−1(1 + µs − κν),Φ2 = Ω−1(νs + κµ) and Φ3 = Ω−1(ξs + τν). Differentiating (4.6) with
respect to s̃, we get

t̃s̃ =
Φ1s − κΦ2

Ω
t +

Φ2s + κΦ1

Ω
n +

Φ3s + τΦ2

Ω
b

which gives the curvature of the curve C̃:

κ̃ = || ̂̃Cs|| =

√
(Φ1s − κΦ2)2 + (Φ2s + κΦ1)2

Ω
:=

Θ

Ω
. (4.7)

Thus form (2.3) the Frenet frames of the curve C̃ are given by

ñ =
Φ1s − κΦ2

Θ
t +

Φ2s + κΦ1

Θ
n +

Φ3s + τΦ2

Θ
b, b̃ = (0, 0, 1). (4.8)
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Assume that the curve C̃ also fulfills the Schrödinger flow, that is,

C̃t = κ̃b̃. (4.9)

The Bäcklund transformation of the Schrödinger flow with the help of (4.6), (4.8) and (4.9) turns out
to be the following result (cf. [10]):

Theorem 4.2. The Schrödinger flow (4.1) is invariant with respect to the Bäcklund transformation
(4.4) in an isotropic 3-space I3 if µ, ν and ξ satisfy the system

µt = 0,
νt = 0,

κ + ξt + κsµ =
Θ

Ω
.

4.2. The extended Harry-Dym flows

The extended Harry-Dym flow [11]
Ct = τ−

1
2 b (4.10)

is obtained by setting α = 0, β = 0 and γ = τ−
1
2 in a space curve flow (3.1).

Theorem 4.3. The extended Harry-Dym flow (4.10) implies the time evolutions of frame fields, the
curvature and the torsion of a curve C in an isotropic 3-space I3 as follows:

d
dt


t
n
b

 =


0 0 (τ−

1
2 )s

0 0 0
0 0 0




t
n
b

 , (4.11)

d
dt

(
κ

τ

)
=

(
0 0

(τ−
1
2 )s 0

) (
κ

τ

)
. (4.12)

We consider the Bäcklund transformation of the extended Harry-Dym flow (4.10)

C̃(s, t) = C(s, t) + µ(s, t)t + ν(s, t)n + ξ(s, t)b, (4.13)

where µ, ν and ξ are the smooth functions of s and t. Differentiating (4.13) with respect to s and t and
using (4.11) we get

C̃s = (1 + µs − κν)t + (νs + κµ)n + (ξs + τν)b,

C̃t = µtt + νtn + (τ−
1
2 + ξt + µ(τ−

1
2 )s)b.

(4.14)

Let s̃ be the arclength parameter of the curve C̃. Then the unit tangent vector of the curve C̃ is given
by

t̃ = Φ1t + Φ2n + Φ3b, (4.15)

where we put
Φ1 = Ω−1(1 + µs − κν),
Φ2 = Ω−1(νs + κµ),
Φ3 = Ω−1(ξs + τν),

Ω =
√

(1 + µs − κν)2 + (νs + κµ)2.
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Differentiating (4.15) with respect to s̃, we get

t̃s̃ =
Φ1s − κΦ2

Ω
t +

Φ2s + κΦ1

Ω
n +

Φ3s + τΦ2

Ω
b,

it follows that the curvature of the curve C̃ leads to

κ̃ = || ̂̃Cs|| =

√
(Φ1s − κΦ2)2 + (Φ2s + κΦ1)2

Ω
:=

Θ

Ω
. (4.16)

Thus form (2.3) the Frenet frames of the curve C̃ are given by

ñ =
Φ1s − κΦ2

Θ
t +

Φ2s + κΦ1

Θ
n +

Φ3s + τΦ2

Θ
b, b̃ = (0, 0, 1). (4.17)

Assume that the curve C̃ also fulfills the extended Harry-Dym flow, that is,

C̃t = τ̃−
1
2 b̃. (4.18)

The Bäcklund transformation of the extended Harry-Dym flow with the help of (4.14) and (4.17) turns
out to be the following result:

Theorem 4.4. The extended Harry-Dym flow (4.10) is invariant with respect to the Bäcklund
transformation (4.13) in an isotropic 3-space I3 if µ, ν and ξ satisfy the system

µt = 0,
νt = 0,

τ−
1
2 + ξt + µ(τ−

1
2 )s =

Θ

Ω
.

4.3. Hasimoto surfaces

Definition 4.5. The surface C(s, t) wiped out by the Schrödinger flow (4.1) is called a Hasimoto
surface.

Sometimes, Eq. (4.1) is called the vortex filament or smoke ring equation, and can be viewed as a
dynamical system on the space curves. Since Cs = t and Ct = κb, the first and second fundamental
forms of the Hasimoto surface are given by

I = ds2 + κ2dt2,

II = −κds2.

In this case κ is non-vanishing everywhere. Thus, we have

Theorem 4.6. Let C(s, t) be a Hasimoto surface such that C(s, t) is a unit speed curve for all t in an
isotropic 3-space I3. Then the surface has zero Gaussian curvature and the mean curvature H = −1

2κ.

Corollary 4.7. There is no minimal Hasimoto surface in an isotropic 3-space.
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Theorem 4.8. Let C(s, t) be a Hasimoto surface in an isotropic 3-space I3. Then the followings are
satisfy:

(1). s-parameter curves of the surface are non-asymptotic curves.
(2). s-parameter curves of the surface are geodesic curves.

Proof. Suppose that C(s, t) is a Hasimoto surface such that C(s, t) is a unit speed curve for all t. It is
well known that the normal curvature κn of a s-parameter curve on the surface C(s, t) is given by

κn = 〈U,Css〉 = 〈−n, κn〉 = −κ,

where U = Cs×Ct
||Cs×Ct ||

is a unit normal vector of the surface. Since κ , 0, a s-parameter curve is non-
asymptotic.
Also, the geodesic curvature κg of a s-parameter curve on the surface C(s, t) is

κg = 〈U ×Cs,Css〉 = −〈n × t, κn〉 = 0,

it follows that a s-parameter curve is geodesic. The proof is completed. �

Theorem 4.9. Let C(s, t) be a Hasimoto surface in an isotropic 3-space I3. Then the followings are
satisfy:

(1). t-parameter curves of the surface are asymptotic curves.
(2). t-parameter curves of the surface are geodesic curves.

Proof. The normal curvature κn and the geodesic curvature κg of a t-parameter curve on the surface
C(s, t) are given by

κn = 〈U,Ctt〉 = −〈n, κtb〉 = 0,
κg = 〈U ×Ct,Ctt〉 = −〈n × κb, κtb〉 = 0.

Thus, a t-parameter curve is asymptotic and geodesic. The proof is completed. �

On the other hand, the mean curvature vector H is given by

H = HU =
1
2
κn, (4.19)

and Laplacian of the mean curvature vector is expressed as

∆H = (2κκs) t +
1
2κ

(
κ4 − κ2

s − κκss

)
n −

1
2

(3κsτ + κτs) b. (4.20)

Theorem 4.10. Let C(s, t) be a Hasimoto surface such that C(s, t) is a unit speed curve for all t in an
isotropic 3-space I3. If the surface satisfies the condition ∆H = λH for some constant λ, then the curve
C(s, t) for all t has a constant curvature and a constant torsion. Furthermore, λ = κ2.

Proof. Suppose that a Hasimoto surface satisfies the condition ∆H = λH. With the help of (4.19) and
(4.20), we obtain the following equations:

κκs = 0,
κ4 − κ2

s − κκss − λκ
2 = 0,

3κsτ + κτs = 0,
(4.21)

which imply κs = 0 and τs = 0. From (4.3) we also get κt = 0 and τt = 0, that is, κ and τ are constant.
Furthermore, from (4.21) λ = κ2. Thus, the proof is completed. �
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Corollary 4.11. There is no bi-harmonic Hasimoto surface in an isotropic 3-space.

Example 4.12. Let us consider the surface in I3 parametrized by

C(s, t) = (cos s, sin s, sin s − cos s + s + t)

with 0 ≤ s ≤ 2π and −2 ≤ t ≤ 2. Then, we have

t(s, t) = (− sin s, cos s, cos s + sin s + 1),
n(s, t) = (− cos s,− sin s,− sin s + cos s),
b(s, t) = (0, 0, 1),
κ(s, t) = 1,
τ(s, t) = 1.

On the other hand, we can check the following:

Ct = (0, 0, 1) = κb,
κt = 0,
τt = 0.

Thus the surface is a Hasimoto surface (Figure 1) and it satisfies ∆H = H.

Figure 1. Hasimoto surface with constant curvature and torsion.
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