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1. Introduction

Let B (H) be the C∗- algebra of all bounded linear operators on a Hilbert spaceH . WhenH is finite
dimensional of dimension n, we identify B (H) withMn; the algebra of all complex n×n matrices. Let
Hn be the set of all Hermitian matrices inMn. We denote by Hn (J) the set of all Hermitian matrices
in Mn whose spectra are contained in an interval J ⊆ R. The set of all positive definite matrices in
Mn is denoted by Pn. By In we denote the identity matrix ofMn. We write A ≥ 0 if A is a positive
semidefinite matrix, and A > 0 if A ≥ 0 is invertible (or strictly positive definite). A linear map
Φ :Mn →Mm is said to be positive if 0 ≤ Φ (A) when 0 ≤ A. If, in addition, Φ (In) = Im, it is said to
be unital.

When 0 ≤ t ≤ 1, the arithmetic mean and geometric mean of A, B > 0 are defined and denoted by

A∇tB = (1 − t) A + tB, A]tB = A
1
2
(
A−

1
2 BA−

1
2
)t

A
1
2 .

Let x = (x1, . . . , xn) be an element of Rn. Let x↓ and x↑ be the vectors obtained by rearranging
the coordinates of x in decreasing and increasing order respectively. Thus x↓1 ≥ · · · ≥ x↓n and x↑1 ≤
· · · ≤ x↑n. For A ∈ Mn with real eigenvalues, λ (A) is a vector of the eigenvalues of A. Then, λ↓ (A)
and λ↑ (A) can be defined as above. Let x, y ∈ Rn. The weak majorization relation x ≺w y means∑k

j=1 x↓j ≤
∑k

j=1 y↓j , (1 ≤ k ≤ n). If further equality holds for k = n then we have the majorization
x ≺ y. Similarly, the weak supermajorization relation x ≺w y means

∑k
j=1 x↑j ≥

∑k
j=1 y↑j , (1 ≤ k ≤ n).
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Let A ∈ Hn (J) have spectral decomposition A = U∗diag (λ1, λ2, . . . , λn) U, where U is a unitary
and λ1, λ2, . . . , λn are the eigenvalues of A. Let f be a real valued function defined on J. Then f (A) is
defined by f (A) = U∗diag ( f (λ1) , f (λ2) , . . . , f (λn)) U.

The scalar Bellman inequality [3] says that if p is a positive integer and a, b, ai, bi (1 ≤ i ≤ n) are
positive real numbers such that

∑n
i=1 ap

i ≤ ap and
∑n

i=1 bp
i ≤ bp, thenap −

n∑
i=1

tp
i


1
p

+

bp −

n∑
i=1

sp
i


1
p

≤

(a + b)p
−

n∑
k=1

(ai + bi)p


1
p

.

A multiplicative analogue of this inequality is due to Aczél [1]. In 1956, he proved thata2
1 −

n∑
i=2

a2
i

 b2
1 −

n∑
i=2

b2
i

 ≤ a1b1 −

n∑
i=2

aibi

2

where ai, bi (1 ≤ i ≤ n) are positive real numbers such that a2
1 −

∑n
i=2 a2

i > 0 or b2
1 −

∑n
i=2 b2

i > 0.
The operator theory related to inequalities in Hilbert space is studied in many papers. In [11,

Corollary 2.2], Morassaei et al. showed the following non-commutative version of classical Bellman
inequality:

Φ
(
(I − A)

1
p∇t(I − B)

1
p
)
≤ (Φ (I − A∇tB))

1
p , (0 ≤ t ≤ 1, p > 1)

where A, B ∈ B (H) are two contractions (i.e., 0 ≤ A, B ≤ I) and Φ : B (H)→ B (H) is a unital positive
linear map. The reverse inequality holds when 1

2 ≤ p ≤ 1 or p ≤ −1 [13, Theorem 3]. Actually, this
result follows from the following inequality

f (Φ (A)∇tΦ (B)) ≤ Φ ( f (A))∇tΦ ( f (B))

where f is an operator convex.
In [12, Theorem 2.2], Moslehian noted the following inequality for non-negative operator

decreasing and operator concave f and p, q > 1 with 1
p + 1

q = 1:

f (Ap) ] 1
q

f (Bq) ≤ f
(
Ap] 1

q
Bq

)
. (1.1)

This inequality may be considered as operator versions of Aczél inequality.
As it is mentioned in [6, Corollary 1.12], the function f on [0,∞) is operator concave if and only

if f is operator monotone (increasing). So, the above inequality is valid just for the functions of
type f (t) = α + βt. In this paper, we give a matrix version of the inequality (1.1) for decreasing
concave function f on [0,∞). Let f be a convex function (in the usual sense) on J, A, B ∈Hn (J), and
0 ≤ t ≤ 1. In this paper we prove that the eigenvalues of f (Φ (A)∇tΦ (B)) are weakly majorized by the
eigenvalues of Φ ( f (A))∇tΦ ( f (B)). The results presented in this paper are motivated by the results
in [2, 10, 12, 13].

2. Main results

We start from the well-known Jensen inequality [4, p. 281]: If A ∈ Hn (J) and f is a convex (resp.
concave) function on J, then for any x ∈ Cm with ‖x‖ = 1,

f (〈Ax, x〉) ≤ (resp. ≥) 〈 f (A) x, x〉 . (2.1)
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The following result provides an extension of (2.1).

Lemma 2.1. Let Φ : Mn → Mm be a unital positive linear map, f be a convex function on J, and
x ∈ Cm with ‖x‖ = 1. Then

f (〈Φ (A) x, x〉) ≤ 〈Φ ( f (A)) x, x〉 (2.2)

for all A ∈Hn (J).

Proof. We know that if f is a convex function on an interval J, then for each point (s, f (s)), there
exists a real number Cs such that

f (s) + Cs (t − s) ≤ f (t) , for all t ∈ J. (2.3)

(if f is differentiable at s, then Cs = f ′ (s).)
Fix s ∈ J. Since J contains the spectra of the A, we may replace t in the above inequality by A, via

a functional calculus to get
f (s) In + CsA −CssIn ≤ f (A) .

Applying the positive linear mappings Φ, this implies

f (s) Im + CsΦ (A) −CssIm ≤ Φ ( f (A)) . (2.4)

The inequality (2.4) easily implies, for any x ∈ Cm with ‖x‖ = 1,

f (s) + Cs 〈Φ (A) x, x〉 −Css ≤ 〈Φ ( f (A)) x, x〉 . (2.5)

On the other hand, since Φ is unital, we have 〈Φ (A) x, x〉 ∈ J where x ∈ Cm with ‖x‖ = 1. Therefore,
we may replace s by 〈Φ (A) x, x〉 in (2.5). This yields (2.2). �

Remark 2.2. From inequality (2.3) one can infer that

〈Φ ( f (A)) x, x〉 + 〈Φ (A) x, x〉 〈Φ (CA) x, x〉 − 〈Φ (CAA) x, x〉 ≤ f (〈Φ (A) x, x〉) . (2.6)

This inequality can be regarded as a reverse of (2.2).
Actually, inequality (2.2) implies

f (A) + tCA −CAA ≤ f (t) In.

From the assumptions on Φ, we can write

Φ ( f (A)) + tΦ (CA) − Φ (CAA) ≤ f (t) Im.

Consequently, for any unit vector x ∈ Cm,

〈Φ ( f (A)) x, x〉 + t 〈Φ (CA) x, x〉 − 〈Φ (CAA) x, x〉 ≤ f (t) . (2.7)

Now, (2.6) follows from (2.7) by putting t = 〈Φ (A) x, x〉.

We repeat the following result from [7] for completeness.
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Remark 2.3. Regarding the convexity of f on the interval J, we have

f ((1 − v) s + vt) = f
(
(1 − 2v) s + 2v

s + t
2

)
≤ (1 − 2v) f (s) + 2v f

( s + t
2

)
= (1 − v) f (s) + v f (t) − 2r

(
f (s) + f (t)

2
− f

( s + t
2

))
for any s, t ∈ J and r = min {v, 1 − v} with 0 ≤ v ≤ 1

2 . For the case 1
2 ≤ v ≤ 1, the same result is true.

Thus.

f ((1 − v) s + vt) ≤ (1 − v) f (s) + v f (t) − 2r
(

f (s) + f (t)
2

− f
( s + t

2

))
holds for any s, t ∈ J and r = min {v, 1 − v} with 0 ≤ v ≤ 1.
From the above inequality one can write

f (s + v (t − s)) − f (s) ≤ v f (t) − v f (s) − 2r
(

f (s) + f (t)
2

− f
( s + t

2

))
.

Dividing by v > 0, we get

f (s + v (t − s)) − f (s)
v

≤ f (t) − f (s) − 2
r
v

(
f (s) + f (t)

2
− f

( s + t
2

))
.

Now, if v→ 0, and by taking into account that for 0 ≤ v ≤ 1
2 , r = v we infer

f (s) + f ′ (s) (t − s) ≤ f (t) − 2
(

f (s) + f (t)
2

− f
( s + t

2

))
.

This result can be considered as a refinement of inequality (2.3). Thus, if we apply the same arguments
as in Lemma 2.1, we can obtain a sharper estimate than (2.2). Namely,

f (〈Φ (A) x, x〉)

≤ 〈Φ ( f (A)) x, x〉

− 2
(

f (〈Φ (A) x, x〉) + 〈Φ ( f (A)) x, x〉
2

−

〈
Φ

(
f
(
〈Φ (A) x, x〉 In + A

2

))
x, x

〉)
.

Lemma 2.4. [4, p. 35] If λ↓j (A) denote the eigenvalues of n × n Hermitian matrix A arranged in
decreasing order, then

k∑
j=1

λ↓j (A) = max
k∑

j=1

〈
Au j, u j

〉
, j = 1, . . . , n

where the maximum is taken over all choices of orthonormal vectors u1, . . . , uk.

Theorem 2.5. Let Φ : Mn → Mm be a unital positive linear map, f be a convex (resp. concave)
function on J, and 0 ≤ t ≤ 1. Then

λ↓ ( f (Φ (A)∇tΦ (B))) ≺w (resp. ≺w) λ↓ (Φ ( f (A))∇tΦ ( f (B)))

for all A, B ∈Hn (J).
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Proof. Since x ≺w y if and only if (−x) ≺w (−y), it suffices to consider the convex case. Let λ1, . . . , λn

be the eigenvalues of (1 − t) Φ (A) + tΦ (B) and let u1, . . . , un be the corresponding orthonormal
eigenvectors arranged such that f (λ1) ≥ · · · ≥ f (λn). Let k = 1, . . . , n. Then

k∑
j=1

λ↓j ( f ((1 − t) Φ (A) + tΦ (B)))

=

k∑
j=1

f
(〈

(1 − t) Φ (A) + tΦ (B) u j, u j

〉)
=

k∑
j=1

f
(
(1 − t)

〈
Φ (A) u j, u j

〉
+ t

〈
Φ (B) u j, u j

〉)
≤

k∑
j=1

[
(1 − t) f

(〈
Φ (A) u j, u j

〉)
+ t f

(〈
Φ (B) u j, u j

〉)]
(since f is convex)

≤

k∑
j=1

[
(1 − t)

〈
Φ ( f (A)) u j, u j

〉
+ t

〈
Φ ( f (B)) u j, u j

〉]
(by Lemma 2.1)

=

k∑
j=1

〈
(1 − t) Φ ( f (A)) + tΦ ( f (B)) u j, u j

〉
≤

k∑
j=1

λ↓j ((1 − t) Φ ( f (A)) + tΦ ( f (B))) (by Lemma 2.4).

Therefore, we conclude
k∑

j=1

λ↓j ( f (Φ (A)∇tΦ (B))) ≤
k∑

j=1

λ↓j (Φ ( f (A))∇tΦ ( f (B)))

so that we get the desired conclusion. �

If we choose Φ (X) = X in Theorem 2.5, we recover [2, Theorem 2.3], i.e.,

λ↓ ( f (A∇tB)) ≺w λ
↓ ( f (A)∇t f (B)) .

Corollary 2.6. Let Φ :Mn →Mm be a unital positive linear map, and 0 ≤ t ≤ 1, p ≥ 1. Then

λ↓ ((Φ (In − A∇tB))p) ≺w λ
↓ (Φ ((In − A)p

∇t(In − B)p)) (2.8)

for all A, B ∈Pn such that 0 ≤ A, B ≤ In. In particular, for all unitarily invariant norm ‖·‖u,

‖(Φ (In − A∇tB))p
‖u ≤ ‖Φ ((In − A)p

∇t(In − B)p)‖u.

Inequality (2.8) can be regarded as a weak majorization version of [13, Theorem 3].

Theorem 2.7. Let f be a decreasing concave function on [0,∞) and 0 ≤ t ≤ 1. Then

λ↓j
(
f (A) ]t f (B)

)
≤ λ↓j

(
f
(
A]tB

))
, j = 1, . . . , n (2.9)

for all A, B ∈Pn.
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Proof. By the minimax principle, for any integer j less than or equal to the dimension of the space, we
have a subspace F of dimension j such that

λ↓j
(
f (A) ]t f (B)

)
= min

x∈F ;‖x‖=1

〈
f (A) ]t f (B) x, x

〉
≤ min

x∈F ;‖x‖=1
〈 f (A)∇t f (B) x, x〉 (by the arithmetic-geometric mean inequality)

= min
x∈F ;‖x‖=1

[
(1 − t) 〈 f (A) x, x〉 + t 〈 f (B) x, x〉

]
≤ min

x∈F ;‖x‖=1

[
(1 − t) f (〈Ax, x〉) + t f (〈Bx, x〉)

]
(by (2.1))

≤ min
x∈F ;‖x‖=1

f ((1 − t) 〈Ax, x〉 + t 〈Bx, x〉) (since f is concave)

≤ min
x∈F ;‖x‖=1

f
(
〈Ax, x〉 ]t 〈Bx, x〉

)
(since f is decreasing)

≤ min
x∈F ;‖x‖=1

f
(〈

A]tBx, x
〉)

(by [5, Lemma 8])

= min
x∈F ;‖x‖=1

〈
f
(
A]tB

)
x, x

〉
≤ λ↓j

(
f
(
A]tB

))
and hence we have (2.9). �

Note that the above statement is equivalent to the existence of a unitary operator U satisfying in the
following inequality:

f (A) ]t f (B) ≤ U f
(
A]tB

)
U∗. (2.10)

Inequality (2.10) yields inequality

f (Ap) ] 1
q

f (Bq) ≤ U f
(
Ap] 1

q
Bq

)
U∗,

1
p

+
1
q

= 1, p, q > 1.

Furthermore, if AB = BA we can write

f (Ap)
1
p f (Aq)

1
q ≤ U f (AB) U∗.

Corollary 2.8. Let A, B ∈ Pn be contractive (in the sense that ‖A‖ , ‖B‖ ≤ 1, where ‖·‖ is the usual
operator norm). Then for j = 1, . . . , n

λ↓j
(
(In − A) ] (In − B)

)
≤ λ↓j

((
In − A]B

))
. (2.11)

Proof. This inequality follows immediately from Theorem 2.7 by choosing f (x) = 1 − x on (0, 1) and
t = 1/2. �

Remark 2.9. It has been shown in [8] that if A, B are contractive, then for j = 1, . . . , n

λ↓j
(
(In − A∗A) ] (In − B∗B)

)
≤ λ↓j (|In − A∗B|) .
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We refer the reader to [9] for further results of this type of inequalities. If A, B ∈ Pn are contractive,
this inequality implies that

λ↓j
(
(In − A) ] (In − B)

)
≤ λ↓j

(∣∣∣∣In − A
1
2 B

1
2

∣∣∣∣) . (2.12)

We remark that there is no ordering between (2.11) and (2.12). To see this, letting A =

[
0.4 −0.1
−0.1 0.9

]
and B =

[
0.2 0.2
0.2 0.7

]
. Direct computation shows that

λ1
(
I2 − A]B

)
≈ 0.7555, λ2

(
I2 − A]B

)
≈ 0.2355,

and
λ1

(
I2 − A

1
2 B

1
2
)
≈ 0.7639, λ2

(
I2 − A

1
2 B

1
2
)
≈ 0.2199.
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