

AIMS Mathematics, 5(4): 3357–3364. DOI:10.3934/math.2020216 Received: 06 October 2019 Accepted: 23 March 2020 Published: 31 March 2020

http://www.aimspress.com/journal/Math

Research article

On inequalities of Bellman and Aczél type

Mohsen Erfanian Omidvar* and Hamid Reza Moradi

Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

* Correspondence: Email: erfanian@mshdiau.ac.ir; Tel: +989153145973.

Abstract: The purpose of this paper is to prove some eigenvalue inequalities involving convex functions. These extend many remarkable inequalities, most of them related to the Bellman and Aczél inequalities.

Keywords: positive semidefinite matrix; weak majorization; convex functions; Bellman inequality; Aczél inequality

Mathematics Subject Classification: 15A42, 15A60, 47A30

1. Introduction

Let $\mathbb{B}(\mathcal{H})$ be the C^* - algebra of all bounded linear operators on a Hilbert space \mathcal{H} . When \mathcal{H} is finite dimensional of dimension n, we identify $\mathbb{B}(\mathcal{H})$ with \mathcal{M}_n ; the algebra of all complex $n \times n$ matrices. Let \mathscr{H}_n be the set of all Hermitian matrices in \mathcal{M}_n . We denote by $\mathscr{H}_n(J)$ the set of all Hermitian matrices in \mathcal{M}_n whose spectra are contained in an interval $J \subseteq \mathbb{R}$. The set of all positive definite matrices in \mathcal{M}_n is denoted by \mathscr{P}_n . By I_n we denote the identity matrix of \mathcal{M}_n . We write $A \ge 0$ if A is a positive semidefinite matrix, and A > 0 if $A \ge 0$ is invertible (or strictly positive definite). A linear map $\Phi : \mathcal{M}_n \to \mathcal{M}_m$ is said to be positive if $0 \le \Phi(A)$ when $0 \le A$. If, in addition, $\Phi(I_n) = I_m$, it is said to be unital.

When $0 \le t \le 1$, the arithmetic mean and geometric mean of A, B > 0 are defined and denoted by

$$A\nabla_t B = (1-t)A + tB, \quad A \sharp_t B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^t A^{\frac{1}{2}}.$$

Let $x = (x_1, ..., x_n)$ be an element of \mathbb{R}^n . Let x^{\downarrow} and x^{\uparrow} be the vectors obtained by rearranging the coordinates of x in decreasing and increasing order respectively. Thus $x_1^{\downarrow} \ge \cdots \ge x_n^{\downarrow}$ and $x_1^{\uparrow} \le \cdots \le x_n^{\downarrow}$. For $A \in \mathcal{M}_n$ with real eigenvalues, $\lambda(A)$ is a vector of the eigenvalues of A. Then, $\lambda^{\downarrow}(A)$ and $\lambda^{\uparrow}(A)$ can be defined as above. Let $x, y \in \mathbb{R}^n$. The weak majorization relation $x \prec_w y$ means $\sum_{j=1}^k x_j^{\downarrow} \le \sum_{j=1}^k y_j^{\downarrow}, (1 \le k \le n)$. If further equality holds for k = n then we have the majorization $x \prec y$. Similarly, the weak supermajorization relation $x \prec^w y$ means $\sum_{j=1}^k x_j^{\uparrow} \ge \sum_{j=1}^k y_j^{\uparrow}, (1 \le k \le n)$. Let $A \in \mathscr{H}_n(J)$ have spectral decomposition $A = U^* \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) U$, where U is a unitary and $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A. Let f be a real valued function defined on J. Then f(A) is defined by $f(A) = U^* \operatorname{diag}(f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)) U$.

The scalar Bellman inequality [3] says that if *p* is a positive integer and *a*, *b*, a_i , b_i $(1 \le i \le n)$ are positive real numbers such that $\sum_{i=1}^n a_i^p \le a^p$ and $\sum_{i=1}^n b_i^p \le b^p$, then

$$\left(a^p - \sum_{i=1}^n t_i^p\right)^{\frac{1}{p}} + \left(b^p - \sum_{i=1}^n s_i^p\right)^{\frac{1}{p}} \le \left((a+b)^p - \sum_{k=1}^n (a_i+b_i)^p\right)^{\frac{1}{p}}.$$

A multiplicative analogue of this inequality is due to Aczél [1]. In 1956, he proved that

$$\left(a_1^2 - \sum_{i=2}^n a_i^2\right) \left(b_1^2 - \sum_{i=2}^n b_i^2\right) \le \left(a_1 b_1 - \sum_{i=2}^n a_i b_i\right)^2$$

where a_i, b_i $(1 \le i \le n)$ are positive real numbers such that $a_1^2 - \sum_{i=2}^n a_i^2 > 0$ or $b_1^2 - \sum_{i=2}^n b_i^2 > 0$.

The operator theory related to inequalities in Hilbert space is studied in many papers. In [11, Corollary 2.2], Morassaei et al. showed the following non-commutative version of classical Bellman inequality:

$$\Phi\left((I-A)^{\frac{1}{p}}\nabla_t(I-B)^{\frac{1}{p}}\right) \le (\Phi\left(I-A\nabla_t B\right))^{\frac{1}{p}}, \quad (0 \le t \le 1, \ p > 1)$$

where $A, B \in \mathbb{B}(\mathcal{H})$ are two contractions (i.e., $0 \le A, B \le I$) and $\Phi : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ is a unital positive linear map. The reverse inequality holds when $\frac{1}{2} \le p \le 1$ or $p \le -1$ [13, Theorem 3]. Actually, this result follows from the following inequality

$$f\left(\Phi\left(A\right)\nabla_{t}\Phi\left(B\right)\right) \leq \Phi\left(f\left(A\right)\right)\nabla_{t}\Phi\left(f\left(B\right)\right)$$

where f is an operator convex.

In [12, Theorem 2.2], Moslehian noted the following inequality for non-negative operator decreasing and operator concave f and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$:

$$f(A^p) \sharp_{\frac{1}{q}} f(B^q) \le f\left(A^p \sharp_{\frac{1}{q}} B^q\right).$$

$$(1.1)$$

This inequality may be considered as operator versions of Aczél inequality.

As it is mentioned in [6, Corollary 1.12], the function f on $[0, \infty)$ is operator concave if and only if f is operator monotone (increasing). So, the above inequality is valid just for the functions of type $f(t) = \alpha + \beta t$. In this paper, we give a matrix version of the inequality (1.1) for decreasing concave function f on $[0, \infty)$. Let f be a convex function (in the usual sense) on J, $A, B \in \mathcal{H}_n(J)$, and $0 \le t \le 1$. In this paper we prove that the eigenvalues of $f(\Phi(A) \nabla_t \Phi(B))$ are weakly majorized by the eigenvalues of $\Phi(f(A)) \nabla_t \Phi(f(B))$. The results presented in this paper are motivated by the results in [2, 10, 12, 13].

2. Main results

We start from the well-known Jensen inequality [4, p. 281]: If $A \in \mathscr{H}_n(J)$ and f is a convex (resp. concave) function on J, then for any $x \in \mathbb{C}^m$ with ||x|| = 1,

$$f(\langle Ax, x \rangle) \le (resp. \ge) \langle f(A)x, x \rangle.$$
(2.1)

AIMS Mathematics

Volume 5, Issue 4, 3357–3364.

The following result provides an extension of (2.1).

Lemma 2.1. Let $\Phi : \mathcal{M}_n \to \mathcal{M}_m$ be a unital positive linear map, f be a convex function on J, and $x \in \mathbb{C}^m$ with ||x|| = 1. Then

$$f\left(\langle \Phi(A) \, x, x \rangle\right) \le \langle \Phi(f(A)) \, x, x \rangle \tag{2.2}$$

for all $A \in \mathscr{H}_n(J)$.

Proof. We know that if f is a convex function on an interval J, then for each point (s, f(s)), there exists a real number C_s such that

$$f(s) + C_s(t-s) \le f(t), \quad \text{for all } t \in J.$$
(2.3)

(if *f* is differentiable at *s*, then $C_s = f'(s)$.)

Fix $s \in J$. Since J contains the spectra of the A, we may replace t in the above inequality by A, via a functional calculus to get

$$f(s)I_n + C_s A - C_s s I_n \le f(A).$$

Applying the positive linear mappings Φ , this implies

$$f(s)I_m + C_s\Phi(A) - C_ssI_m \le \Phi(f(A)).$$
(2.4)

The inequality (2.4) easily implies, for any $x \in \mathbb{C}^m$ with ||x|| = 1,

$$f(s) + C_s \langle \Phi(A) x, x \rangle - C_s s \le \langle \Phi(f(A)) x, x \rangle.$$
(2.5)

On the other hand, since Φ is unital, we have $\langle \Phi(A) x, x \rangle \in J$ where $x \in \mathbb{C}^m$ with ||x|| = 1. Therefore, we may replace *s* by $\langle \Phi(A) x, x \rangle$ in (2.5). This yields (2.2).

Remark 2.2. From inequality (2.3) one can infer that

$$\langle \Phi(f(A)) x, x \rangle + \langle \Phi(A) x, x \rangle \langle \Phi(C_A) x, x \rangle - \langle \Phi(C_A A) x, x \rangle \le f(\langle \Phi(A) x, x \rangle).$$
(2.6)

This inequality can be regarded as a reverse of (2.2).

Actually, inequality (2.2) implies

$$f(A) + tC_A - C_A A \le f(t) I_n.$$

From the assumptions on Φ , we can write

$$\Phi(f(A)) + t\Phi(C_A) - \Phi(C_A A) \le f(t) I_m.$$

Consequently, for any unit vector $x \in \mathbb{C}^m$,

$$\langle \Phi(f(A)) x, x \rangle + t \langle \Phi(C_A) x, x \rangle - \langle \Phi(C_A A) x, x \rangle \le f(t).$$
(2.7)

Now, (2.6) follows from (2.7) by putting $t = \langle \Phi(A) x, x \rangle$.

We repeat the following result from [7] for completeness.

AIMS Mathematics

Volume 5, Issue 4, 3357-3364.

Remark 2.3. Regarding the convexity of f on the interval J, we have

$$f((1-v) s + vt) = f\left((1-2v) s + 2v\frac{s+t}{2}\right)$$

$$\leq (1-2v) f(s) + 2vf\left(\frac{s+t}{2}\right)$$

$$= (1-v) f(s) + vf(t) - 2r\left(\frac{f(s) + f(t)}{2} - f\left(\frac{s+t}{2}\right)\right)$$

for any $s, t \in J$ and $r = \min\{v, 1 - v\}$ with $0 \le v \le \frac{1}{2}$. For the case $\frac{1}{2} \le v \le 1$, the same result is true. Thus.

$$f((1-v)s+vt) \le (1-v)f(s) + vf(t) - 2r\left(\frac{f(s)+f(t)}{2} - f\left(\frac{s+t}{2}\right)\right)$$

holds for any $s, t \in J$ and $r = \min \{v, 1 - v\}$ with $0 \le v \le 1$. From the above inequality one can write

$$f(s + v(t - s)) - f(s) \le vf(t) - vf(s) - 2r\left(\frac{f(s) + f(t)}{2} - f\left(\frac{s + t}{2}\right)\right).$$

Dividing by v > 0, we get

$$\frac{f(s+v(t-s)) - f(s)}{v} \le f(t) - f(s) - 2\frac{r}{v} \left(\frac{f(s) + f(t)}{2} - f\left(\frac{s+t}{2}\right)\right).$$

Now, if $v \to 0$, and by taking into account that for $0 \le v \le \frac{1}{2}$, r = v we infer

$$f(s) + f'(s)(t-s) \le f(t) - 2\left(\frac{f(s) + f(t)}{2} - f\left(\frac{s+t}{2}\right)\right)$$

This result can be considered as a refinement of inequality (2.3). Thus, if we apply the same arguments as in Lemma 2.1, we can obtain a sharper estimate than (2.2). Namely,

$$\begin{split} f\left(\langle \Phi\left(A\right)x,x\rangle\right) \\ &\leq \langle \Phi\left(f\left(A\right)\right)x,x\rangle \\ &- 2\left(\frac{f\left(\langle \Phi\left(A\right)x,x\rangle\right) + \langle \Phi\left(f\left(A\right)\right)x,x\rangle}{2} - \left\langle \Phi\left(f\left(\frac{\langle \Phi\left(A\right)x,x\rangle I_{n} + A}{2}\right)\right)x,x\right\rangle\right) \right\rangle \end{split}$$

Lemma 2.4. [4, p. 35] If $\lambda_j^{\downarrow}(A)$ denote the eigenvalues of $n \times n$ Hermitian matrix A arranged in decreasing order, then

$$\sum_{j=1}^{k} \lambda_{j}^{\downarrow}(A) = \max \sum_{j=1}^{k} \langle Au_{j}, u_{j} \rangle, \ j = 1, \dots, n$$

where the maximum is taken over all choices of orthonormal vectors u_1, \ldots, u_k .

Theorem 2.5. Let $\Phi : \mathcal{M}_n \to \mathcal{M}_m$ be a unital positive linear map, f be a convex (resp. concave) function on J, and $0 \le t \le 1$. Then

$$\lambda^{\downarrow} \left(f\left(\Phi\left(A\right) \nabla_{t} \Phi\left(B\right) \right) \right) \prec_{w} (resp. \prec^{w}) \lambda^{\downarrow} \left(\Phi\left(f\left(A\right) \right) \nabla_{t} \Phi\left(f\left(B\right) \right) \right)$$

for all $A, B \in \mathscr{H}_n(J)$.

AIMS Mathematics

Volume 5, Issue 4, 3357-3364.

Proof. Since $x \prec_w y$ if and only if $(-x) \prec^w (-y)$, it suffices to consider the convex case. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $(1 - t) \Phi(A) + t\Phi(B)$ and let u_1, \ldots, u_n be the corresponding orthonormal eigenvectors arranged such that $f(\lambda_1) \ge \cdots \ge f(\lambda_n)$. Let $k = 1, \ldots, n$. Then

$$\begin{split} \sum_{j=1}^{k} \lambda_{j}^{\downarrow} \left(f\left((1-t) \Phi\left(A\right) + t \Phi\left(B\right) \right) \right) \\ &= \sum_{j=1}^{k} f\left(\left\langle (1-t) \Phi\left(A\right) + t \Phi\left(B\right) u_{j}, u_{j} \right\rangle \right) \\ &= \sum_{j=1}^{k} f\left((1-t) \left\langle \Phi\left(A\right) u_{j}, u_{j} \right\rangle + t \left\langle \Phi\left(B\right) u_{j}, u_{j} \right\rangle \right) \\ &\leq \sum_{j=1}^{k} \left[(1-t) f\left(\left\langle \Phi\left(A\right) u_{j}, u_{j} \right\rangle \right) + t f\left(\left\langle \Phi\left(B\right) u_{j}, u_{j} \right\rangle \right) \right] \quad (\text{since } f \text{ is convex}) \\ &\leq \sum_{j=1}^{k} \left[(1-t) \left\langle \Phi\left(f\left(A\right)\right) u_{j}, u_{j} \right\rangle + t \left\langle \Phi\left(f\left(B\right)\right) u_{j}, u_{j} \right\rangle \right] \quad (\text{by Lemma 2.1}) \\ &= \sum_{j=1}^{k} \left\langle (1-t) \Phi\left(f\left(A\right)\right) + t \Phi\left(f\left(B\right)\right) u_{j}, u_{j} \right\rangle \\ &\leq \sum_{j=1}^{k} \lambda_{j}^{\downarrow} \left((1-t) \Phi\left(f\left(A\right)\right) + t \Phi\left(f\left(B\right)\right) \right) \quad (\text{by Lemma 2.4}). \end{split}$$

Therefore, we conclude

$$\sum_{j=1}^{k} \lambda_{j}^{\downarrow} \left(f\left(\Phi\left(A\right) \nabla_{t} \Phi\left(B\right) \right) \right) \leq \sum_{j=1}^{k} \lambda_{j}^{\downarrow} \left(\Phi\left(f\left(A\right)\right) \nabla_{t} \Phi\left(f\left(B\right)\right) \right)$$

so that we get the desired conclusion.

If we choose $\Phi(X) = X$ in Theorem 2.5, we recover [2, Theorem 2.3], i.e.,

$$\lambda^{\downarrow}(f(A\nabla_{t}B)) \prec_{w} \lambda^{\downarrow}(f(A)\nabla_{t}f(B)).$$

Corollary 2.6. Let $\Phi : \mathcal{M}_n \to \mathcal{M}_m$ be a unital positive linear map, and $0 \le t \le 1$, $p \ge 1$. Then

$$\lambda^{\downarrow} \left(\left(\Phi \left(I_n - A \nabla_t B \right) \right)^p \right) \prec_w \lambda^{\downarrow} \left(\Phi \left(\left(I_n - A \right)^p \nabla_t (I_n - B)^p \right) \right)$$
(2.8)

for all $A, B \in \mathscr{P}_n$ such that $0 \le A, B \le I_n$. In particular, for all unitarily invariant norm $\|\cdot\|_u$,

$$\|(\Phi(I_n - A\nabla_t B))^p\|_u \le \|\Phi((I_n - A)^p \nabla_t (I_n - B)^p)\|_u$$

Inequality (2.8) can be regarded as a weak majorization version of [13, Theorem 3].

Theorem 2.7. Let f be a decreasing concave function on $[0, \infty)$ and $0 \le t \le 1$. Then

$$\lambda_{j}^{\downarrow}(f(A) \sharp_{t} f(B)) \leq \lambda_{j}^{\downarrow}(f(A \sharp_{t} B)), \quad j = 1, \dots, n$$

$$(2.9)$$

for all $A, B \in \mathscr{P}_n$.

AIMS Mathematics

Volume 5, Issue 4, 3357-3364.

Proof. By the minimax principle, for any integer j less than or equal to the dimension of the space, we have a subspace \mathscr{F} of dimension j such that

$$\begin{split} \lambda_{j}^{\downarrow} \left(f\left(A\right) \sharp_{t} f\left(B\right) \right) \\ &= \min_{x \in \mathscr{F}; \|x\| = 1} \left\langle f\left(A\right) \sharp_{t} f\left(B\right) x, x \right\rangle \\ &\leq \min_{x \in \mathscr{F}; \|x\| = 1} \left\langle f\left(A\right) \nabla_{t} f\left(B\right) x, x \right\rangle \quad (by \text{ the arithmetic-geometric mean inequality}) \\ &= \min_{x \in \mathscr{F}; \|x\| = 1} \left[(1 - t) \left\langle f\left(A\right) x, x \right\rangle + t \left\langle f\left(B\right) x, x \right\rangle \right] \\ &\leq \min_{x \in \mathscr{F}; \|x\| = 1} \left[(1 - t) f\left(\left\langle Ax, x \right\rangle\right) + t f\left(\left\langle Bx, x \right\rangle\right) \right] \quad (by (2.1)) \\ &\leq \min_{x \in \mathscr{F}; \|x\| = 1} f\left((1 - t) \left\langle Ax, x \right\rangle + t \left\langle Bx, x \right\rangle) \quad (since f \text{ is concave}) \\ &\leq \min_{x \in \mathscr{F}; \|x\| = 1} f\left(\left\langle Ax, x \right\rangle \sharp_{t} \left\langle Bx, x \right\rangle) \quad (since f \text{ is decreasing}) \\ &\leq \min_{x \in \mathscr{F}; \|x\| = 1} f\left(\left\langle A \sharp_{t} Bx, x \right\rangle\right) \quad (by [5, \text{Lemma 8}]) \\ &= \min_{x \in \mathscr{F}; \|x\| = 1} \left\langle f\left(A \sharp_{t} B\right) x, x \right\rangle \end{aligned}$$

and hence we have (2.9).

Note that the above statement is equivalent to the existence of a unitary operator U satisfying in the following inequality:

$$f(A) \sharp_t f(B) \le U f(A \sharp_t B) U^*.$$
(2.10)

Inequality (2.10) yields inequality

$$f(A^p) \sharp_{\frac{1}{q}} f(B^q) \le U f\left(A^p \sharp_{\frac{1}{q}} B^q\right) U^*, \quad \frac{1}{p} + \frac{1}{q} = 1, \ p, q > 1.$$

Furthermore, if AB = BA we can write

$$f(A^p)^{\frac{1}{p}}f(A^q)^{\frac{1}{q}} \le Uf(AB) U^*.$$

Corollary 2.8. Let $A, B \in \mathscr{P}_n$ be contractive (in the sense that $||A||, ||B|| \le 1$, where $||\cdot||$ is the usual operator norm). Then for j = 1, ..., n

$$\lambda_{j}^{\downarrow}\left((I_{n}-A) \sharp (I_{n}-B)\right) \leq \lambda_{j}^{\downarrow}\left((I_{n}-A \sharp B)\right).$$

$$(2.11)$$

Proof. This inequality follows immediately from Theorem 2.7 by choosing f(x) = 1 - x on (0, 1) and t = 1/2.

Remark 2.9. It has been shown in [8] that if A, B are contractive, then for j = 1, ..., n

$$\lambda_i^{\downarrow}\left((I_n - A^*A) \, \sharp \, (I_n - B^*B)\right) \le \lambda_i^{\downarrow}\left(|I_n - A^*B|\right).$$

AIMS Mathematics

Volume 5, Issue 4, 3357-3364.

We refer the reader to [9] for further results of this type of inequalities. If $A, B \in \mathcal{P}_n$ are contractive, this inequality implies that

$$\lambda_{j}^{\downarrow}\left(\left(I_{n}-A\right)\sharp\left(I_{n}-B\right)\right) \leq \lambda_{j}^{\downarrow}\left(\left|I_{n}-A^{\frac{1}{2}}B^{\frac{1}{2}}\right|\right).$$

$$(2.12)$$

We remark that there is no ordering between (2.11) and (2.12). To see this, letting $A = \begin{bmatrix} 0.4 & -0.1 \\ -0.1 & 0.9 \end{bmatrix}$

and $B = \begin{bmatrix} 0.2 & 0.2 \\ 0.2 & 0.7 \end{bmatrix}$. Direct computation shows that

$$\lambda_1 \left(I_2 - A \sharp B \right) pprox 0.7555, \quad \lambda_2 \left(I_2 - A \sharp B \right) pprox 0.2355,$$

and

$$\lambda_1 \left(I_2 - A^{\frac{1}{2}} B^{\frac{1}{2}} \right) \approx 0.7639, \quad \lambda_2 \left(I_2 - A^{\frac{1}{2}} B^{\frac{1}{2}} \right) \approx 0.2199.$$

Acknowledgement

The authors would like to express their hearty thanks to the referees for their valuable comments. This work was financially supported by Islamic Azad University, Mashhad Branch.

Conflict of interest

The authors declare that there is no interest regarding the publication of this paper.

References

- 1. J. Aczél, Some general methods in the theory of functional equations in one variable. New applications of functional equations, Uspehi Mat. Nauk (N.S.), **11** (1956), 3–68.
- J. S. Aujla, F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl., 369 (2003), 217–233.
- 3. R. Bellman, *On an inequality concerning an indefinite form*, Amer. Math. Monthly., **63** (1956), 101–109.
- 4. R. Bhatia, Matrix Analysis, Springer Verlag, New York, 1997.
- J. C. Bourin, E. Y. Lee, M. Fujii, et al. A matrix reverse Hölder inequality, Linear Algebra Appl., 431 (2009), 2154–2159.
- 6. T. Furuta, J. Mićić-Hot, J. Pečarić, et al. *Mond-Pečarić Method in Operator Inequalities*, Element, Zagreb, 2005.
- 7. E. Jaafari, M. S. Asgari, M. Shah Hosseini, et al. *On the Jensen's inequality and its variants*, AIMS Mathematics., **5** (2020), 1177–1185.
- M. Lin, *The Hua matrix and inequalities related to contractive matrices*, Linear Algebra Appl., 511 (2016), 22–30.

- 9. J. T. Liu, Y. T. Poon, Q. W. Wang, A generalized Hölder type eigenvalue inequality, Linear Multilinear Algebra, 65 (2017), 2145–2151.
- 10. H. R. Moradi, M. Sababheh, *Eigenvalue inequalities for n-tuple of matrices*, Linear Multilinear Algebra, (2019), 1–12.
- 11. A. Morassaei, F. Mirzapour, M. S. Moslehian, *Bellman inequality for Hilbert space operators*, Linear Algebra Appl., **438** (2013), 3776–3780.
- 12. M. S. Moslehian, Operator Aczél inequality, Linear Algebra Appl., 434 (2011), 1981–1987.
- 13. S. Sheybani, M. E. Omidvar, H. R. Moradi, *New inequalities for operator concave functions involving positive linear maps*, Math. Inequal. Appl., **21** (2018), 1167–1174.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)