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Abstract: In this paper, we introduce two new classes Bλ
Σ
(m, µ) of λ-pseudo bi-starlike functions and

L
η
Σ
(m, β) to determine the bounds for |a2| and |a3|, where a2, a3 are the initial Taylor coefficients of

f ∈ Bλ
Σ
(m, µ) and f ∈ Lη

Σ
(m, β). Also, we attain the upper bounds of the Fekete-Szegö inequality by

means of the results of |a2| and |a3|.
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1. Introduction

LetA denote the class of functions of the form

f (z) = z +

∞∑
k=2

akzk (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Further, denote by S the class
of all functions inA which are univalent in U and normalized by the condition f (0) = 0 = f ′(0) − 1.

One of the important and well examined subclasses of S is the class S∗(α) of starlike functions of
order α, (0 ≤ α < 1), defined by the condition

<

(
z f ′(z)
f (z)

)
> α

and the class K(α) ⊂ S of convex functions of order α, (0 ≤ α < 1), is defined by the condition

<

(
1 +

z f ′′(z)
f ′(z)

)
> α.
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The class Bλ(α) of λ-pseudo-starlike functions of order α, (0 ≤ α < 1) was introduced and
investigated by Babalola [1]. A function f , f ∈ A is in the class Bλ(α) if it satisfies

<

(
z( f ′(z))λ

f (z)

)
> α, (λ > 1; z ∈ U).

In [1] it was showed that all pseudo-starlike functions are Bazilevič functions of type (1 − 1/λ) and
of order α1/λ and univalent in U.

In [13] Padmanabhan and Parvatham defined the classes of functions Pm(β) as follows:

Definition 1.1. [13] Let Pm(β), with m ≥ 2 and 0 ≤ β < 1, denote the class of univalent analytic
functions P, normalized with P(0) = 1, and satisfying∫ 2π

0

∣∣∣∣∣Re P(z) − β
1 − β

∣∣∣∣∣ d θ ≤ mπ,

where z = reiθ ∈ U.

For β = 0, we denote Pm := Pm(0), hence the class Pm represents the class of functions p analytic
in U, normalized with p(0) = 1, and having the representation

p(z) =

2π∫
0

1 − zeit

1 + zeit d µ(t),

where µ is a real-valued function with bounded variation, which satisfies∫ 2π

0
dµ(t) = 2π and

∫ 2π

0
|dµ(t)| ≤ m, m ≥ 2.

Details referring the above integral representation could be found in [13, Lemma 1]. Remark that
P := P2 is the well-known class of Carathéodory functions, i.e. the normalized functions with positive
real part in U.

Lemma 1.1. ( [6, Lemma 2.1]) Let the function Φ(z) = 1 +
∞∑

n=1
hnzn, z ∈ U, be such that Φ ∈ Pm(β).

Then,
|hn| ≤ m(1 − β), n ≥ 1.

Supposing that the functions p, q ∈ Pm(β), with

p(z) = 1 +

∞∑
k=1

pkzk and q(z) = 1 +

∞∑
k=1

qkzk,

from Lemma 1.1 it follows that

|pk| ≤ m(1 − β), (1.2)
|qk| ≤ m(1 − β), for all k ≥ 1. (1.3)
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It is well known that every univalent function f ∈ S of the form (1.1), has an inverse f −1(w) defined
in

(
|w| < r0( f ); r0( f ) ≥ 1

4

)
, where

g(w) = f −1(w) = w − a2w2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . (1.4)

A function f ∈ S is said to be bi-univalent in U if there exists a function g ∈ S such that g(z)
is an univalent extension of f −1 to U. Let Σ denote the class of bi-univalent functions in U. The
functions z

1−z , − log(1 − z), 1
2 log

(
1+z
1−z

)
are in the class Σ [14]. However, the familiar Koebe function

is not bi-univalent. Lewin [8] investigated the class of bi-univalent functions Σ and obtained a bound
|a2| 5 1.51. Further Brannan and Clunie [3], Brannan and Taha [4] also worked on certain subclasses of
the bi-univalent function class Σ and obtained estimates for their initial coefficients. Various classes of
bi-univalent functions were introduced and studied in recent times, the study of bi-univalent functions
gained momentum mainly due to the work of Srivastava et al. [14]. Motivated by this, many researchers
[2,5,11,14–20] recently investigated several interesting subclasses of the class Σ and found non-sharp
estimates on the first two Taylor-Maclaurin coefficients.

Motivated by the aforementioned work on bi-univalent functions and recent works in [7,10] ,in this
paper we define two new subclasses Bλ

Σ
(m, µ), λ-bi-pseudo-starlike functions and Lη

Σ
(m, β) of Σ and

determine the bounds for the initial Taylor-Maclaurin coefficients of |a2| and |a3| for f ∈ Bλ
Σ
(m, µ) and

f ∈ Lη
Σ
(m, β).

Definition 1.2. Assume that f ∈ Σ, λ ≥ 1 and ( f ′(z))λ is analytic in U with ( f ′(0))λ = 1. Furthermore,
assume that g(z) is an univalent extension of f −1 to U, and (g′(z))λ is analytic in U with (g′(0))λ = 1.
Then f (z) is said to be in the classBλ

Σ
(m, µ) of λ-bi-pseudo-starlike functions if the following conditions

are satisfied:
z( f ′(z))λ

(1 − µ)z + µ f (z)
∈ Pm(β) (z ∈ U) (1.5)

and
w(g′(w))λ

(1 − µ)w + µg(w)
∈ Pm(β) (w ∈ U), (1.6)

where 0 ≤ µ ≤ 1.

Remark 1.1. For λ = 1, a function f ∈ Σ is in the class B1
Σ
(m, µ) ≡ MΣ(m, µ) if the following

conditions are satisfied:

z f ′(z)
(1 − µ)z + µ f (z)

∈ Pm(β) and
wg′(w)

(1 − µ)w + µg(w)
∈ Pm(β), (1.7)

where z,w ∈ U and the function g is described in (1.4).

Remark 1.2. For λ = 1; µ = 1, a function f ∈ Σ is in the class B1
Σ
(m, 1) ≡ S∗

Σ
(m) if the following

conditions are satisfied:
z f ′(z)
f (z)

∈ Pm(β) and
wg′(w)
g(w)

∈ Pm(β), (1.8)

where z,w ∈ U and the function g is described in (1.4).

AIMS Mathematics Volume 5, Issue 4, 3346–3356.



3349

Remark 1.3. For λ = 2; µ = 1, a function f ∈ Σ is in the class B2
Σ
(m, 1) ≡ GΣ(m) if the following

conditions are satisfied:

f ′(z)
z f ′(z)
f (z)

∈ Pm(β) and g′(w)
wg′(w)
g(w)

∈ Pm(β), (1.9)

where z,w ∈ U and the function g is described in (1.4).

Remark 1.4. For µ = 0, a function f ∈ Σ is in the class Bλ
Σ
(m, 0) ≡ Rλ

Σ
(m) if the following conditions

are satisfied:
( f ′(z))λ ∈ Pm(β) and (g′(w))λ ∈ Pm(β), (1.10)

where z,w ∈ U and the function g is described in (1.4).

Remark 1.5. For λ = 1; µ = 0, a function f ∈ Σ is in the class B1
Σ
(m, 0) ≡ NΣ(m) if the following

conditions are satisfied:
f ′(z) ∈ Pm(β) and g′(w) ∈ Pm(β), (1.11)

where z,w ∈ U and the function g is described in (1.4).

2. Coefficient estimates for f ∈ Bλ
Σ
(m, µ)

Theorem 2.1. Let f (z) given by (1.1) be in the class Bλ
Σ
(m, µ), then

|a2| ≤ min

m(1 − β)
2λ − µ

;

√
m(1 − β)

2λ2 + λ(1 − 2µ) − µ(1 − µ)

 , (2.1)

|a3| ≤ min
{

m(1 − β)
3λ − µ

+
m(1 − β)[

2λ2 + λ(1 − 2µ) − µ(1 − µ)
] ;

m(1 − β)
3λ − µ

1 +
m(1 − β)

(
2λ2 − 2λ(µ + 1) + µ2

)
(2λ − µ)2

 ;

m(1 − β)
3λ − µ

1 +
m(1 − β)

(
2λ2 + (2λ − µ)(2 − µ)

)
(2λ − µ)2


 , (2.2)

and

|a3 − δa2
2| ≤

m(1 − β)
3λ − µ

,

where

δ =
2λ2 + (2λ − µ)(2 − µ)

3λ − µ
.

Proof. It is known that g has the form

g(w) = w − a2w2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .
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Since f ∈ Bλ
Σ
(m, µ), there exists two analytic functions

p(z) := 1 + p1z + p2z2 + · · · (2.3)

and
q(w) := 1 + q1w + q2w2 + · · · , (2.4)

then

z[ f ′(z)]λ

(1 − µ)z + µ f (z)
= p(z), (2.5)

w[g′(w)]λ

(1 − µ)w + µg(w)
= q(w). (2.6)

On the other hand, we have

z[ f ′(z)]λ

(1 − µ)z + µ f (z)
= 1 + (2λ − µ)a2z + [

(
2λ2 − 2λ(µ + 1) + µ2

)
a2

2 + (3λ − µ)a3]z2 + · · · ,

(2.7)
w[g′(w)]λ

(1 − µ)w + µg(w)
= 1 − (2λ − µ)a2w + [

(
2λ2 + (2λ − µ)(2 − µ)

)
a2

2 − (3λ − µ)a3]w2 + · · · .

(2.8)

Using (2.3), (2.4), (2.7) and (2.8) and comparing the like coefficients of z and z2 , we get

(2λ − µ)a2 = p1, (2.9)

(
2λ2 − 2λ(µ + 1) + µ2

)
a2

2 + (3λ − µ)a3 = p2, (2.10)

−(2λ − µ)a2 = q1, (2.11)

(
2λ2 + (2λ − µ)(2 − µ)

)
a2

2 − (3λ − µ)a3 = q2. (2.12)

From (2.9) and (2.11), we find that

a2 =
p1

2λ − µ
=
−q1

2λ − µ
; (2.13)

from Lemma 1.1 it follows that
|a2| ≤

m(1 − β)
2λ − µ

. (2.14)

Adding (2.10) and (2.12), we have[
4λ2 + 2λ(1 − 2µ) − 2µ(1 − µ)

]
a2

2 = p2 + q2, (2.15)

a2
2 =

p2 + q2

4λ2 + 2λ(1 − 2µ) − 2µ(1 − µ)
.
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Hence by Lemma 1.1

|a2|
2 ≤

2m(1 − β)
2
[
2λ2 + λ(1 − 2µ) − µ(1 − µ)

] ,
|a2| ≤

√
m(1 − β)

2λ2 + λ(1 − 2µ) − µ(1 − µ)
. (2.16)

Subtracting (2.10) from (2.12), we obtain

a3 =
(p2 − q2)
2(3λ − µ)

+ a2
2,

|a3| ≤
m(1 − β)
3λ − µ

+ |a2|
2

=
m(1 − β)
3λ − µ

+
m(1 − β)[

2λ2 + λ(1 − 2µ) − µ(1 − µ)
] .

By using (2.9) and (2.10) and by simple computation, we get

|a3| ≤
m(1 − β)
3λ − µ

1 +
m(1 − β)

(
2λ2 − 2λ(µ + 1) + µ2

)
(2λ − µ)2

 . (2.17)

Again by using (2.9) and (2.12)

|a3| ≤
m(1 − β)
3λ − µ

1 +
m(1 − β)

(
2λ2 + (2λ − µ)(2 − µ)

)
(2λ − µ)2

 . (2.18)

From (2.12) we have (
2λ2 + (2λ − µ)(2 − µ)

)
3λ − µ

a2
2 − a3 =

q2

3λ − µ
.

Furthermore by

|a3 − δa2
2| =

|q2|

3λ − µ
≤

m(1 − β)
3λ − µ

,

where

δ =
2λ2 + (2λ − µ)(2 − µ)

3λ − µ
.

This completes the proof of Theorem 2.1. �

Remark 2.1. Specializing λ, µ suitably as mentioned in Remarks 1.1 to 1.5 we can state the initial
Taylor coefficients |a2|, |a3| and the inequality |a3− δa2

2| for the function classes defined in Remarks 1.1
to 1.5.
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3. Coefficient estimates for f ∈ Lη
Σ
(m, β)

In [12], Obradovic et al. gave some criteria for univalence expressing by<( f ′(z)) > 0, for the linear
combinations

η

(
1 +

z f ′′(z)
f ′(z)

)
+ (1 − η)

1
f ′(z)

, (η ≥ 1, z ∈ U).

Based on the above definition recently, in [9], Lashin introduced and studied the new subclass of bi-
univalent functions. We define the following new bi-univalent function class:

Definition 3.1. A function f (z) ∈ Σ given by (1.1) is said to be in the class
L
η
Σ
(m, β) if it satisfies the following conditions :

η

(
1 +

z f ′′(z)
f ′(z)

)
+ (1 − η)

1
f ′(z)

∈ Pm(β) (3.1)

and

η

(
1 +

wg′′(z)
g′(w)

)
+ (1 − η)

1
g′(w)

∈ Pm(β), (3.2)

where η ≥ 1, z,w ∈ U and the function g is given by (1.4).

Theorem 3.1. Let f (z) be given by (1.1) be in the class Lη
Σ
(m, β), η ≥ 1. Then

|a2| ≤ min

 m(1 − β)
2(2η − 1)

;

√
m(1 − β)
η + 1

 , (3.3)

|a3| ≤ min
{

m(1 − β)
3(3η − 1)

+
m(1 − β)

1 + η
;

m(1 − β)
3(3η − 1)

(
1 −

m(1 − β)
2η − 1

)
;

m(1 − β)
3(3η − 1)

(
1 +

m(1 − β)(5η − 1)
2(1 − 2η)2

)}
, (3.4)

and
|a3 − ρa2

2| =
|q2|

3(3η − 1)
≤

m(1 − β)
3(3η − 1)

,

where
ρ =

2(5η − 1)
3(3η − 1)

.

Proof. It follows from (3.1) and (3.2) that

η

(
1 +

z f ′′(z)
f ′(z)

)
+ (1 − η)

1
f ′(z)

∈ Pm(β) (3.5)

and

η

(
1 +

wg′′(z)
g′(w)

)
+ (1 − η)

1
g′(w)

∈ Pm(β). (3.6)

From (3.5) and (3.6), we have
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1 + 2(2η − 1)a2z +
[
3(3η − 1)a3 − 4(2η − 1)a2

2

]
z2 + · · ·

= 1 + p1z + p2z2 + · · ·

and

1 − 2(2η − 1)a2w +
[
(10η − 2)a2

2 − 3(3η − 1)a3

]
w2 − · · ·

= 1 + q1w + q2w2 + · · · .

Now, equating the coefficients, we get

(2η − 1)a2 = p1, (3.7)

3(3η − 1)a3 + 4(1 − 2η)a2
2 = p2, (3.8)

− 2(2η − 1)a2 = q1 (3.9)

and
(10η − 2)a2

2 − 3(3η − 1)a3 = q2. (3.10)

From (3.7) and (3.9), we get
a2 =

p1

2(2η − 1)
=

−q1

2(2η − 1)
; (3.11)

it follows that
|a2| ≤

m(1 − β)
2(2η − 1)

. (3.12)

Now by adding (3.8) and (3.10), we obtain

2(η + 1)a2
2 = p2 + q2, (3.13)

a2
2 =

p2 + q2

2(η + 1)
,

which, by virtue of Lemma 1.1, implies that

|a2|
2 ≤

m(1 − β)
η + 1

.

Hence

|a2| ≤

√
m(1 − β)
η + 1

. (3.14)

Subtracting (3.10) from (3.8), we obtain

a3 =
(p2 − q2)
6(3η − 1)

+ a2
2,

|a3| ≤
m(1 − β)
3(3η − 1)

+ |a2|
2
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=
m(1 − β)
3(3η − 1)

+
m(1 − β)

1 + η
.

By using (3.7) and (3.8) and by simple computation, we get

|a3| ≤
m(1 − β)
3(3η − 1)

(
1 −

m(1 − β)
2η − 1

)
. (3.15)

Again by using (3.7) in (3.10)

|a3| ≤
m(1 − β)
3(3η − 1)

(
1 +

m(1 − β)(5η − 1)
2(1 − 2η)2

)
. (3.16)

From (3.10) we have
2(5η − 1)
3(3η − 1)

a2
2 − a3 =

q2

3(3η − 1)
.

Furthermore by

|a3 − ρa2
2| =

|q2|

3(3η − 1)
≤

m(1 − β)
3(3η − 1)

,

where
ρ =

2(5η − 1)
3(3η − 1)

.

This completes the proof of Theorem 3.1. �

Corollary 3.2. Let f (z) be given by (1.1) be in the class Lη
Σ
(m, β), η = 1. Then

|a2| ≤ min

m(1 − β)
2

;

√
m(1 − β)

2

 ,
|a3| ≤ min

{
3m(1 − β)

2
;

m(1 − β)
6

(1 − m(1 − β)) ;

m(1 − β)
6

(1 + 2m(1 − β))
}

and
|a3 − ρa2

2| =
|q2|

6
≤

m(1 − β)
6

,

where
ρ =

4
3
.

4. Conclusion

In this paper, we introduce two new classes Bλ
Σ
(m, µ) of λ-pseudo bi-starlike functions and Lη

Σ
(m, β)

and obtain the estimates of |a2|, |a3| and the upper bounds of the Fekete-Szegö inequality, where a2 and
a3 belong to f ∈ Bλ

Σ
(m, µ) and f ∈ Lη

Σ
(m, β), respectively. In addition, we observe that, if we choose

some suitable parameters λ, µ, η and m in the results involved, we can get some corresponding bounds.
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