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1. Introduction

Fractional calculus has undergone significant developments in recent years and has found use in
physics, engineering, economics, etc [1–3]. Classical results about the Riemann-Liouville and Caputo
derivatives as well as fractional differential equations can be found in [4, 5]. In [11] and [33], Caputo
and Fabrizio suggested a new fractional derivative, whose properties were investigated by Losada and
Nieto [15]. This fractional derivative was utilized in various applications, including the fractional
Nagumo equation in Alqahtani et al. [23], coupled systems of time-fractional differential problems in
Alsaedi et al. [24] and Fischer’s reaction-diffusion equation in Atangana et al [25]. More applications
of the Caputo-Fabrizio fractional derivative can be found in Aydogan et al [26]. and Atangana et al [27].

For 0 ≤ α ≤ 1, −∞ < a < t, f ∈ H1(a, b) and b > a, the Caputo fractional derivative is defined by

C
a Dα

t f (t) =
1

Γ(1 − α)

∫ t

a
f ′(s)(t − s)−αds. (1)

By replacing the term 1
Γ(1−α) with the normalization constant M(α) such that M(0) = M(1) = 1 and

adjusting the kernel (t − s)−α, we obtain the Caputo-Fabrizio fractional derivative defined by
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CF
a Dα

t f (t) =
M(α)

Γ(1 − α)

∫ t

a
f ′(s) exp

(
−α(t − s)
α − 1

)
ds. (2)

The Caputo-Fabrizio fractional derivative of a constant vanishes as does the usual Caputo derivative,
however the new kernel exp

(
−α
α−1 ) is no longer singular for s = t. Caputo and Fabrizio try to extend

their definition in [11] to functions in L1 by

CF D(α)
t f (t) =

M(α)
Γ(1 − α)

∫ t

−∞

( f (s) − f (t)) exp
(
−α(t − s)
α − 1

)
ds.

Algahtani et al. [23] show that the nonlinear Nagumo equation given by

CF
0Dα

t u(x, t) + βu(x, t)n∂xu(x, t) = ∂x(αu(x, t)n∂xu(x, t)) + γu(x, t)(1 − um)(um − δ), (3)

where 0 < α < 1 and β, γ, δ are constant, subject to the boundary conditions

u(x, 0) = f (x), u(0, t) = g(t)

has an exact solution. The authors show that this PDE can be reformulated in terms of a Lipschitz
kernel. Existence of the exact solution is shown using a fixed point approach and uniqueness is
provided, given that suitable assumptions are made about the Lipschitz constant. Their study claims
that an exponential kernel is in some sense a better kernel than a power function, since the lack of a
singularity provides a better filtration effect. In the context of fractional differential equation
applications, since the associated functions are not defined in a Banach space, only approximate
solutions to certain fractional differential equations can be investigated. The methods used to handle
fractional differential problems such as CF Dα f (t) = g(t, f (t)), cannot be extended to the problems
resembling CF Dα f (t) = g(t, f (t), CF Dα f (t)).

In Baleanu et al [14], the Caputo-Fabrizio fractional derivative on the Banach space CR[0, 1] is
considered in the context of higher order series-type fractional integrodifferential equations. More
precisely, an extended Caputo-Fabrizio type fractional derivative is provided of order 0 ≤ α < 1 on
CR[0, 1] for b > 0 by

CF
N Dα f (t) =

M(α)
1 − α

( f (t) − f (0)) exp
(
−αt

1 − α

)
+
αM(α)
(1 − α)2

∫ t

0
( f (t) − f (s)) exp

(
−α(t − s)

1 − α

)
ds.

These authors use a standard fixed point approach to establish uniqueness of solutions to fractional
series-type differential problems such as

CF
N Dα f (t) =

∞∑
j=0

CF
N Dρ[ j]

g(t, f (t), (φ f )(t), h(t)CF
N Dγ f (t), g(t)CF

N Dδ f (t))
2 j ,

with initial condition f (0) = 0 and α, γ, δ, ρ ∈ (0, 1).
An extension of this type which is compatible with orders beyond (0, 1) has yet to be provided.

The Caputo-Fabrizio fractional derivative is discussed in the setting of distributions in [28]. Other
types of fractional derivatives can be found in Katugampola [22] and Oliveira et al [6]. In de Oliveira
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[12], it is shown that the choice of kernel in a Caputo-type fractional derivative is connected to the
Laplace transform via convolution.

Let I denote the Schwarz class of smooth test functions whose derivatives decay at infinity.
Moreover, let I ′ denote the space of continuous linear functionals on I . The distributional
derivative
{ T’ } is defined as in [32] ∫

R

T ′(t)φ(t)dt = −

∫
R

T (t)φ(t)dt, (4)

for all smooth compactly supported test functions φ on R.The distributional Laplace transform is given
by

F(s) = L (φ(t)) = F (φ(t)e−σt)(µ),

where s = σ + iµ, µ < 0 and φ(t)e−σt ∈ I ′. Suppose that f is supported on (0,∞) such that σ > 0 and
f (t)e−σt ∈ I ′. It follows that the Laplace transform of the derivative is given by

L (φ′(t))(s) = sL (φ(t))(s).

Let L denote the distributional Laplace transform defined by

L ( f ′(x)) = L −1(sL ( f )).

One can define a more general fractional derivative as follows. Suppose that Φ(s, α) is a fractional
integrodifferential operator and K(t, s) : R2 → R is a continuous kernel. Let the corresponding operator
φ(s, α) be defined for some fractional derivative Dα such that

L (Dα f (t)) = Φ(s, α)L ( f (t)),

where Φ(s, 1) = s,Φ(s,−1) = 1
s and Φ(s, 0) = 1. Then, letting Φ(s, α) = sL (K(s, t, α)). Proceeding

with the Convolution Theorem, we are left with a Caputo-type fractional operator of the form

aDα
K f (t) =

∫ t

a
K(t − s, α) f ′(s)ds, (5)

which is dependent on the choice of kernel K. For f ∈ H1(a, b), and n ∈ N, we can spot commonly
used kernels such as the Caputo kernel K1 = 1

Γ(1−α) (t − s)dαe−α−1 , the Caputo-Fabrizio kernel K2 =
M(α)
1−α exp

(
−α(t−s)
α−1

)
and the Gaussian kernel K3 = 1

√
2πσ2

exp
(
−t2
2σ2

)
[4, 10, 13].

The memory principle for fractional derivatives describes the history of f (t) near the terminal point
t = a. Let L denote the memory length, satisfying a + L ≤ t ≤ b. Define the error in approximating the
fractional derivative by

EL,α,a(t) = |aDα
K f (t) −t−L Dα

K f (t)|,

where aDα
K f (t) is as in (5). If f ′(t) ≤ M for a < t < b and 0 < α < 1, we have the following error

estimate for the Caputo fractional derivative

AIMS Mathematics Volume 5, Issue 4, 3284–3297.



3287

EL,α,a(t) =

∣∣∣∣∣ 1
Γ(1 − α)

∫ t

t−L
f ′(s)(t − s)−αds

∣∣∣∣∣ ≤ ML1−α

|Γ(2 − α)|
.

For all ε > 0, if EL,α,a(t) ≤ ε with a + L ≤ t ≤ b, we have

L ≥
( M
ε |Γ(2 − α)|

) 1
α−1

. (6)

Therefore, the Caputo fractional derivative with terminal a can be approximated by the corresponding
fractional derivative with lower limit t − L, with the level of accuracy described above.

In this work, we propose a different fractional derivative that has a smooth kernel. Our primary
interest in defining this fractional derivative is the improvement of machine learning algorithms.
Caputo-type fractional derivatives have been applied in machine learning, such as in Pu et al [10]. In
particular, fractional order gradient methods have been considered in order to improve the
performance of the integer order methods. For example, suppose that f : Rn → R is convex and
differentiable with a Lipschitz gradient, then the integer order gradient method defined by

xk+1 = xk − µ∇ f (xk)

has a linear convergence rate. Improving the performance of the integer-order gradient method is
critical in optimization problems. In recent literature, fractional calculus has been thought to improve
the integer order gradient method due to nonlocality and the memory principle. Fractional order
gradient methods have been proposed based on the Caputo fractional derivative that offer competitive
convergence rates. For example, in [19], a Caputo fractional gradient method is proposed that is
shown to be monotone and exhibit strong convergence.

Fractional derivatives were used in the backpropagation algorithm for feedforward neural networks
and convolutional neural networks in [20, 31]. In both studies, the rate of convergence was shown
to exceed the rate of integer-order methods. Fractional-order methods have been used to investigate
complex-valued neural networks in [17] and recurrent neural network models in [30]. In [19] and [16],
gradients based on the Caputo fractional derivative are used to update parameters while integer order
gradients are used to handle backpropagation allowing for simpler computation. The experiments
therein are shown to improve the accuracy of the neural network’s performance compared to integer-
order methods while being equally costly.

In the training of machine learning models, one often needs to obtain weights of the features which
optimize the training data. In the case of maximum likelihood training, regularization is typically
needed so that the model does not overfit the training data. In `p regularization, the weight vector is
penalized by its `p norm. While the case for p = 1 and p = 2 are very common and result in similar
levels of accuracy, `1 regularization is much more practical. Due to its sparsity, `1 regularization is
less memory intensive and more time-effective than `2 regularization. On the other hand, `1

regularization is problematic in that during the update process, the gradient of the regularization term
is not differentiable at the origin as the error function given below

E`1 = E + λ

N∑
k=1

|xk| (7)
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has classical derivative

∂E`1

∂x j
=
∂E
∂x j

+ λsgn(x j).

A typical remedy to this problem is to use the stochastic gradient descent method, which
approximates the gradient using the training data. Although time efficient for training, when the
dimension of the feature space is large, the update process slows down significantly. Furthermore, the
model becomes less sparse after training the data. The discontinuity induced by the regularizer proves
to be problematic as it adjusts the direction of descent. The use of sigmoids in regularization
problems has been previously explored as in Krutikov [29], but not in the context of fractional
derivatives. Another remedy to the aforementioned problem is the use of fractional gradients over the
classical descent methods. These methods are still in their infancy and problematic in that
convergence to the local optimum is not always guaranteed, even when the algorithm converges.
Furthermore, these methods often require an adjustment to the fractional derivative by truncation as
in [9], variable order techniques as in [18], and methods based on the memory principle (6) due to the
computational expense and the failure of the Caputo kernel to be smooth.

We would also like our operator to be nonlocal. In [13], it is shown that unlike the Caputo derivative,
the Caputo-Fabrizio fractional derivative is not a nonlocal operator. The linear fractional differential
equation

λ(CF
a Dα

t f (t)) + ν(t)g(t) + η(t, t0)Y(t0) = 0

is shown to reduce to a first-order ordinary differential equation. This means that the Caputo-Fabrizio
derivative cannot sufficiently describe processes with nonlocality and memory. With the correct choice
of kernel, this complication can be avoided.

2. Main results

In this section, we define a new left-sided fractional derivative. We show that the proposed fractional
derivative reduces to the H1 derivative as the order approaches 1. In the results to follow, for 0 < α ≤ 1,
we will let C1(α) denote a normalization constant C(α)

Γ(2−α) satisfying C(α)Γ(1 − α)→ 1
2 as α→ 1−.

Definition 2.1. (Left sigmoidal fractional derivative) Let 0 < α ≤ 1 , f ∈ H1((a, b)), t > a and { f (t)}′

denotes the H1 distributional derivative as in (4). We define a new fractional derivative by

σDα
a f (t) = C1(α)

∫ t

a
{ f (s)}′ sech2

( s − t
1 − α

)
ds. (8)

Now, we show that the left sigmoidal fractional derivative reduces to the H1 derivative.

Theorem 2.1. (Reduction to classical derivative) Suppose f ∈ H1(a, b), then

lim
α→1−

σDα
a f (t) = { f (t)}′. (9)

Proof.
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lim
α→1−

σDα
a f (t) =

C(α)
Γ(2 − α)

lim
α→1−

∫ t

a
{ f (s)}′ sech2

( s − t
1 − α

)
ds

=
2C(α)

Γ(1 − α)
lim
α→1−

∫ t

a
{ f (s)}′

sech2 ( s−t
1−α

)
2(1 − α)

ds =
2C(α)

Γ(1 − α)
lim
α→1−

∫ t

a
{ f (s)}′

sech2 ( s−t
1−α

)
2(1 − α)

ds

= lim
α→1−

2C(α)
Γ(1 − α)

( ∫ t

a
{ f (s)}′ lim

α→1−

sech2
(

s−t
1−α

)
2(1 − α)

ds
)

=

∫ t

a
{ f (s)}′δ(s − t)ds = { f (t)}′,

where the last result follows from the observation that
δ(t) is the Dirac distribution.

�

In the following theorem, we show that this left sigmoidal fractional derivative is commutative with
respect to the classical derivative.

Theorem 2.2. Suppose that f is at least twice continuously differentiable and σDα
a f (t) is differentiable.

If f ′(a) = 0, then

σDα
a (σD1

a f (t)) = σD1
a(σDα

a f (t)), (10)

where 0 < α < 1.

Proof. From (8), integrating by parts yields

σDα
a (σD1

a f (t)) = C1(α)
∫ t

a
f ′′(s) sech2

( s − t
1 − α

)
ds

=
f ′(t)

1 − α
+

2C(α)
Γ(2 − α)(1 − α)

∫ t

a
f ′′(s) sech

( s − t
1 − α

)
tanh

( s − t
1 − α

)
ds, (11)

so we have

σD1
a(σDα

a f (t)) = lim
γ→1−

σDγ
a(σDα

a f (t)) =
d
dt

(σDα
a f (t)) = C1(α)

d
dt

∫ t

a
f ′(s) sech2

( s − t
1 − α

)
ds

=
f ′(t)

1 − α
+

2C(α)
Γ(2 − α)(1 − α)

∫ t

a
f ′′(s) sech

( s − t
1 − α

)
tanh

( s − t
1 − α

)
ds, (12)

appealing to the Leibniz integral rule

d
dt

( ∫ b(t)

a(t)
f (t, s)ds

)
= f (t, b(t))b′(t) − f (t, a(t))a′(t) +

∫ b(t)

a(t)

∂

∂t
f (s, t)dt.

From (11) and (12), the desired result is obtained. �

In the next theorem, we show that the left sigmoidal fractional derivative does not satisfy the memory
principle in the sense of (6). More precisely, the next theorem implies that we show that the left
sigmoidal fractional derivative can be approximated by the corresponding fractional derivative with
lower limit t − L with increased accuracy for orders in which C1(α) is large.
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Theorem 2.3. (Memory principle) Suppose that f is differentiable on (a, b), a + L ≤ t ≤ b and
0 < α < 1. For every ε > 0, if there exists C0 > 0 such that f ′(t) ≤ C0, then

L ≥ (1 − α)(|C1(α)|C0ε
−1)

1
2 . (13)

Proof. Making use of the inequality

cosh(s) ≥
√

1 + s2,

we have

|σDα
a f (t) − σDα

t−L f (t)| = C1(α)
∫ t−L

a
f ′(s) sech2

( s − t
1 − α

)
ds ≤ C1(α)C0

∫ t−L

a

ds
1 + ( s−t

1−α )2
≤

C1(α)C0

1 + ( L
1−α )2

,

and the result follows.
�

In the theorem below, we show that our new fractional derivative provides a sigmoidal
approximation to functions that have a piecewise linear H1 distributional derivative. For instance, the
proposed left sigmoidal fractional derivative is compatible with `1-regularization. In the case of the `1

norm, it can be used to define a fractional gradient, which approximates its classical gradient via a
family of sigmoids as α approaches 1. This is promising in the context of gradient descent algorithms.

Theorem 2.4 (Norm-1 compatibility) σDα
a provides a smooth approximation to the `1 norm defined

by

‖x‖1 =

n∑
k=1

|xk|

as α→ 1 in the sense that for the error function E given in (7), σDα
a E`1(x j) is given by

σDα
a E(x j) + λC1(α)(α − 1) tanh

(a − x j

1 − α

)
,

where a > 0.

Proof. The result follows from the observation that

C1(α)
∫ t

a
{|s|} sech2

( s − t
1 − α

)
ds = C1(α)

∫ t

a
H(t) sech2

( s − t
1 − α

)
ds,

= C1(α)(α − 1) tanh
( a − t
1 − α

)
ds→

1
2

(2H(t) − 1) as α→ 1−,

where H(t) is the Heaviside function.
�

Theorem 2.5. (Mittag-Leffler function). Suppose that γ, η > 0 and 0 < a < t. Then

σDα
a Eγ,η(t) ≤ C1(α)Eγ,η(t − a),

AIMS Mathematics Volume 5, Issue 4, 3284–3297.
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where Eγ,η(z) =
∞∑

k=0

zk

Γ(γk+η) is the two-parameter Mittag-Leffler function

Proof.
σDα

a Eγ,η(t) =

∫ t

a
sech2

( s − t
1 − α

) d
ds

∞∑
k=0

sk

Γ(γk + η)
ds

=

∫ t

a
sech2

( s − t
1 − α

) ∞∑
k=0

ksk−1

Γ(γk + η)
=

∞∑
k=0

k
Γ(γk + η)

∫ t

a
sk−1 sech2

( s − t
1 − α

)
ds

≤

∞∑
k=0

k
Γ(γk + η)

∫ t

a
sk−1ds =

∞∑
k=1

(t − a)k

Γ(γk + η)
.

�
Theorem 2.6. Suppose that f ≥ 0, 1 < p < ∞, 0 < α < 1 and 0 < t ≤ T . If f ≥ 0 is differentiable

with f ′ ∈ Lp(R) and M is the maximal operator of f given by

M f (x) = sup
t→0

1
2(a + x)

∫ a+x

a−x
f (t)dt,

then

(a) σDα
−t f (t) ≤ 2TC1(α)M(| f ′|)(0)

(b) σDα
a f (t) is integrable on R.

Proof. (a) Since

σDα
−tM f (t) = C1(α)

∫ t

−t
f ′(s) sech2

( s − t
1 − α

)
ds ≤ 2tC1(α) ·

1
2t

∫ t

−t
f ′(s)ds

≤ 2TC1(α) sup
t>0

∫ t

−t
| f ′(s)|ds

t
= 2TC1(α)M| f ′|(0).

(b) From Young’s convolution inequality, ‖ f ? g‖Lr ≤ ‖ f ‖Lp‖g‖
L

pr
p+r(p−1)

.∫ ∞

−∞

σDα
a M f (t)dt ≤ C1(α)

∫ ∞

−∞

∫ t

a
| f ′(s) sech2

( s − t
1 − α

)
|ds

=

∥∥∥∥∥ f ′(t) ? sech2
( t
α − 1

)∥∥∥∥∥
L1(R)
≤ ‖ f ′‖Lp(R)

∥∥∥∥∥sech2
( t
α − 1

)∥∥∥∥∥
L

p
2p−1 (R)

< ∞.

�

The next theorem describes the effect of the Laplace and Fourier transforms, which can extend
to distributions as in de Oliveira [6]. The Convolution Theorem connects our choice of kernel as in
(5) via the operator Φ(s, α) = sL (K(s, t, α)). In this case, Φ(s, α) depends on the digamma function
Ψ(z) =

Γ′(z)
Γ(z) . This shows that the left-sigmoidal fractional derivative does not reduce to the left-sided

Riemann-Liouville fractional derivative.
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Theorem 2.7. (Transformations) Suppose that 0 < α < 1, Re(s) > 0, ω ∈ R, a ∈ R and f is a
differentiable function of exponential order such that f (0) = 0. If T1(s),T2(ω) are defined by

T1(s) =

(
1 + s

(Ψ( 2+s
4 ) − Ψ( s

4 )
2

))
, T2(ω) =

√
π

2
csch

(
πω

2

)
,

then

(a) L (σDα
0 f (t))(s) = C1(α)(s(α − 1))2T1

(
(α − 1)s

)
L ( f )(s)

(b) F (σDα
0 )(ω) = −C1(α)ω2|α − 1|(α − 1)T2

(
(α − 1)s

)
F ( f )(ω),

where L ( f )(s) denotes the Laplace transform of f and F ( f )(ω) denotes the Fourier transform of f .

Proof. (a) follows from a standard application of the Convolution theorem. By using the dilation
property L ( f (at)) =

F( s
a )

a , we have

L
(σDα

0 f (t))(s)
C1(α)

= L
(

f ′ ? sech2
( t
α − 1

))
= L ( f ′)L

(
sech2

( t
α − 1

))
= s(α − 1)L ( f )(s)L (sech2)(s(α − 1))

= ((α − 1)s)2L ( f )(s)L (tanh)(s(α − 1)).

The transform L (tanh t) is handled as follows

s2L (tanh(t))(s) = s2L (tanh(t)) = s2
∫ ∞

0

e−st(1 − e−2t)
1 + e−2t dt

= s2
∫ ∞

0
e−st(1 − e−2t)

∞∑
k=0

(−e−2t)kdt.

Because of the absolute convergence of the monotone decreasing sum
∞∑

k=0
(−1)ke−2ktdt and the

nondecreasing nature of its partial sums, we can exchange integration and summation using the
Lebesgue Monotone Convergence Theorem. Continuing, we have

s + 2s2
∞∑

k=1

(−1)kL (e−2kt) = s + 2s2
∞∑

k=1

(−1)k

2k + s

= s + 2s
∞∑

k=1

=
(−1)k

2k
s + 1

= s
(
1 + s

(Ψ(2+s
4 ) − Ψ( s

4 )
2

))
.

The identity

∞∑
k=0

(−1)k

sk + 1
=

Ψ( s+1
2s ) − Ψ( 1

2s )
2s

used above comes from the Lerch transcendent, defined by

AIMS Mathematics Volume 5, Issue 4, 3284–3297.
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Φ(s, z, a) =

∞∑
k=0

zk

(a + k)s ,

where |z| < 1, a , 0,−1,−2, ... and using the dilation property once more, the result follows.

(b) We proceed as in (a).

F (σDα
0 f (t)) =

∫ ∞

−∞

(σDα
0 f (t))eiωtdt = F ( f ′)F

(
sech2

( t
α − 1

))
= iωF ( f )F

(
sech2

( t
α − 1

))
= iω|α − 1|F ( f )F (sech2)((α − 1)ω)

= −ω2|α − 1|(α − 1)F ( f )F (tanh(t))((α − 1)ω).

To finish the proof, we recall the result

F (tanh(t)) = iω
√
π

2
csch

(
πω

2

)
.

�
Theorem 2.8. Suppose that f is differentiable and 0 < α < 1. Then∫ t

a
f ′(s)e−( s−t

1−α )2
ds ≤ C1(α)−1 σDα

a ( f (t)) ≤
∫ t

a

(1 − α)2 f ′(s)
(1 − α)2 + (s − t)2 ds ≤ f (t) − f (a).

Proof. Using the inequality

cosh x ≤ e
x2
2 ,

we have

e−
1
2 ( s−t

1−α )2
≤ sech

( s − t
1 − α

)
,

which results in the leftmost inequality. Noticing that cosh2 x ≥ 1 + x2, we have that

sech2
( s − t
1 − α

)
≤

(1 − α)2

(1 − α)2 + (s − t)2 ≤ 1,

finishing the last three inequalities.
�

Theorem 2.9. The problem

σDα
a ( f (t)) = G(t), G(0) = 0

has the solution

f (t) =
g(t)

C1(α)
+ f (0),
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where G(t) =
∫ t

0
g(s)ds.

Proof. Differentiating the differential equation above, the problem above reduces to

C1(α) f ′(t) = g′(t),

which can be integrated to obtain the result.
�

Theorem 2.10. Let 0 < α < 1 and let g : (a, b) × R2 be a continuous function such that there exists a
constant C0 > 0 satisfying

|g(t, x1, y1) − g(t, x2, y2)| ≤ C0(|x1 − x2| + |y1 − y2|)

for all t ∈ (a, b) and x1, x2, y1, y2 ∈ R and |(α − 1)C(α)C0| < 1. Then, the problem

σDα
a f (t) = g(t, f (t), σDα

a f (t))

has a unique solution.

Proof.
|g(t, σDα

a ( f1(t))) − g(t, σDα
a ( f2(t))|

≤ |(α − 1)C1(α) tanh
( a − t
1 − α

)
| f1 − f2|

≤ |(α − 1)C1(α)C0|| f1 − f2|.

Since (α − 1)C(α)C0 < 1, the map F : H1(a, b)→ H1(a, b) defined by

C1(α)−1g(t, σDα
a ( f1(t)))

is a contraction. By the Banach fixed-point theorem, it has a unique fixed point, finishing the proof.
�

We note that this result is advantageous in that the analogous existence and uniqueness result as in
fractional differential systems defined by the Caputo derivative is highly dependent on initial conditions
imposed on the primary function of interest and its classical derivatives [4].

We now shift our attention to a gradient descent method. Suppose that f (x) has a bounded derivative
and unique critical point t∗ such that f ′(t∗) = 0. For a ≤ t ≤ b, 0 < α < 1, define the scalar left
sigmoidal fractional gradient descent method by

tk+1 = tk − µ
σDα

tk−1
f (tk). (14)

where 0 < µ < 1 is the learning rate.

Theorem 2.11 (Fractional Gradient Descent). Let f be as in (14). Then, the left-sigmoidal
fractional-order gradient method (14) converges to the true critical point t∗.

Proof. Denote the Lipschitz constant of f by L. For k ≥ N,
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|tk − tk+1| = µσDα
tK−1

f (tk) = C1(α)µ
∣∣∣∣∣ ∫ tk

tk−1

f ′(s) sech2
( s − tk

1 − α

)
ds

∣∣∣∣∣
≤ C1(α)µL|α − 1| tanh

( s − tk

1 − α

)
≤ C1(α)µL|tk − tk−1|.

Repeating this process, it follows that the tk form a Cauchy sequence, guaranteeing convergence. To
show that the sequence converges to the critical point, suppose for contradiction that the sequence
(tk)∞k=0 converges to a point t̂ , t∗. Then, for every ε > 0, there exists N ∈ N such that for all k ≥ N,
| f ′(tk)| > 0 and

|tk−1 − t̂| < ε < |t∗ − t̂|.

As a consequence of (14) and Theorem 2.8, we have

|tk+1 − tk| = C1(α)µ
∣∣∣∣∣ ∫ tk

tk−1

f ′(s) sech2
( s − a
1 − α

)
ds

∣∣∣∣∣ ≥ C1(α)µ inf
k>N

∫ tk

tk−1

f ′(s)e−( s−t
1−α )2

ds

≥ C1(α)µ inf
k>N
| f ′(tk−1)|

∫ tk

tk−1

1 −
( s − t
1 − α

)2

ds ≥ M1|tk − tk−1|

(
1 +
|tk − tk−1|

(1 − α)3

)
≥ M1M2|tk − tk−1|

3
2 ,

where

M1 = C1(α)µ inf
k>N
| f ′(tk−1)| ,M2 ≤

1√
3(1 − α)3

.

On the other hand, we have the inequality

|tk+1 − tk−1| ≤ |tk+1 − t∗| + |t∗ − tk−1| < 2ε.

Choosing ε < 1
2(M1 M2)2 yields M1M2 > |tk+1− tk|

−1
2 , which implies that |tk+1− tk| > |tk− tk−1|, contradicting

the assumption that the sequence (tk) is convergent.
�

3. Conclusion

In this paper, we defined a new sigmoidal fractional derivative, which is compatible with certain
weakly differentiable functions. We showed that this fractional derivative satisfies some forms of
classical properties and is compatible with the `1 norm by a sigmoidal approximation. For further
research, we will investigate this operator in optimization and machine learning. We note that the
left-sigmoidal fractional derivative can be applied in the context of gradient descent, which has
applications in optimization and machine learning [7, 8]. Recently, backpropagation and convolution
neural networks have been studied in the context of fractional derivatives, typically of the
Caputo-type are being used for gradient descent. This idea is still novel and needs to see
improvements. For example, the gradient descent method has been handled by Sheng et al. [20, 21],
Wang et al. [19], Wei et al. [9] and Bao et al [16]. These methods are still early in development. The
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following topics still need to be fully addressed: convergence to an extreme point, extending the
available range of fractional order, more complicated neural networks, loss function compatibility and
the usage of the chain rule.
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