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Abstract: In this paper, we aim to investigate the uniqueness of meromorphic functions that share
small functions on annuli. As a matter of fact, we give several uniqueness theorems about meromorphic
functions sharing four or three distinct small functions on the annulus A = {z : 1

R0
< |z| < R0}, where

1 < R0 ≤ +∞. To some extent, our theorems extend the previous work by T. B. Cao, H. X. Yi and H.
Y. Xu, and also generalize the work by N. Wu and Q. Ge.
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1. Introduction and main result

In this article, we assume that the readers are familiar with the basic results and the standard
notations of Nevanlinna’s value distribution theory [16, 18]. Let f and g be two non-constant
moromorphic functions, and let a be a complex number or a small function with respect to f and g.
Then, we say that f and g share a IM (or CM) provided that f − a and g − a have the same zeros
ignoring (or counting) multiplicities.

It is well known that R. Nevanlinna [11] proved the five-value theorem in 1926: For two non-
constant meromorphic functions f and g in the complex plane C, we have f ≡ g providing that f and
g share a j IM for j = 1, 2, 3, 4, 5, where a j( j = 1, 2, 3, 4, 5) are five distinct values. In 2000 and 2001,
Y. H. Li, J. Y. Qiao [9] and H. X. Yi [17] extended this very work to the case of sharing five small
functions, proving the five small functions theorem: Let f and g be two non-constant meromorphic
functions in the complex plane C, and a j( j = 1, 2, 3, 4, 5) be five distinct small functions with respect
to f and g. If f and g share a j( j = 1, 2, 3, 4, 5) IM in C, then f ≡ g. In 2003 and 2004, J. H.
Zheng [19, 20] proved the five value theorem in one angular domain. In 2011, H. F. Liu and Z. Q.
Mao [10] further gave the five small functions theorem in one angular domain.
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Next we will mainly discuss the uniqueness theory of meromorphic functions on annuli. For the
basic results and necessary notations as T0(r, f ),m0(r, f ),N0(r, f ), the readers can refer to [4–7,13–15].
Here, let f , g, α be meromorphic functions on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞.

Then, α is named as a small function with respect to f on A providing that T0(r, α) = o(T0(r, f )) as
r → ∞ except for the set 4r such that

∫
4r

rλ−1dr < +∞ for R0 = +∞, or T0(r, α) = o(T0(r, f )) as r → R0

except for the set 4
′

r such that
∫
4
′
r

dr
(R0−r)λ+1 < +∞ for R0 < +∞. For a nonconstant meromorphic function

f on the annulus A, it is called as a transcendental meromorphic function on the annulus A if

lim sup
r→∞

T0(r, f )
log r

= ∞, 1 < r < R0 = +∞

or
lim sup

r→R0

T0(r, f )
− log(R0 − r)

= ∞, 1 < r < R0 < +∞,

respectively. Therefore, for a transcendental meromorphic function on the annulus A,
S (r, f ) = o(T0(r, f )) holds for all 1 < r < R0 except for the set 4r such that

∫
4r

rλ−1dr < +∞ or the set

4
′

r such that
∫
4
′
r

dr
(R0−r)λ+1 < +∞, respectively. Additionally we denote by NC(r, α) (ND(r, α)) the

reduced counting function of common zeros (different zeros) of f − α and g − α on A. Then, it is
obvious that f and g share α IM if ND(r, α) = 0. Furthermore, we say f and g share α “IM” provided
that ND(r, α) = o(T0(r, f )) + o(T0(r, g)).

Recently, T. B. Cao, H. X. Yi and H. X. Xu [1, 2] obtained the following five-value theorem on the
annulus A:

Theorem A [1, 2] Let f and g be two transcendental or admissible meromorphic functions on the
annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let a j ( j = 1, 2, 3, 4, 5) be five distinct complex

numbers in C
⋃
{∞}. If f and g share a j IM for j = 1, 2, 3, 4, 5, then f ≡ g. (In fact, this result for the

case R0 = +∞ was proved by A. A. Kondratyuk and I. Laine [6]).

In 2015, N. Wu and Q. Ge [12] further proved the five small functions theorem on the annulus A as
follows:

Theorem B [12] Let f and g be two transcendental or admissible meromorphic functions on the
annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let a j( j = 1, 2, 3, 4, 5) be five distinct small

functions with respect to f and g on the annulus A. If f and g share a j IM for j = 1, 2, 3, 4, 5, then
f ≡ g.

Naturally, it is an interesting question to investigate whether Theorem B holds if f and g share less
than five small functions. In this paper, we mainly deal with this question, and propose the following
theorems, which partly generalize the five value theorem and the five small functions theorem on
annuli.

Theorem 1.1. Let f and g be two transcendental meromorphic functions on the annulus A = {z : 1
R0
<

|z| < R0}, where 1 < R0 ≤ +∞. Let ai ≡ ai(z)(i = 1, 2, 3, 4, 5) be five distinct small functions with
respect to f and g on A. If f and g share ai(i = 1, 2, 3, 4) “IM” and

NC(r, a5) , S (r, f ),
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then f ≡ g, where NC(r, a5) is the reduced counting function of the common zeros of f − a5 and g − a5

(ignoring multiplicities) on A.

Theorem 1.2. Let f and g be two transcendental meromorphic functions on the annulus A = {z : 1
R0
<

|z| < R0}, where 1 < R0 ≤ +∞. Let ai ≡ ai(z)(i = 1, 2, 3, 4, 5) be five distinct small functions with
respect to f and g on A. If f and g share ai(i = 1, 2, 3) “IM” and

NC(r, a5) − ND(r, a4) , S (r, f ),

then f ≡ g, where ND(r, a j) are the reduced counting functions of the different zeros of f −a j and g−a j

on A.

2. Preliminaries

In 2005, A. Y. Khrystiyanyn and A. A. Kondratyuk [4, 5] proposed the following properties of
meromorphic functions on annuli:

Lemma 2.1. [4] Let f be a non-constant meromorphic function on the annulus A = {z : 1
R0
< |z| < R0},

where 1 < r < R0 ≤ +∞, then the following properties always hold:

(i) T0(r, f ) = T0

(
r, 1

f

)
,

(ii) max{T0(r, f1 · f2),T0(r, f1/ f2),T0(r, f1 + f2)} ≤ T0(r, f1) + T0(r, f2) + O(1),
(iii) T0

(
r, 1

f−a

)
= T0(r, f ) + O(1), f or every f ixed a ∈ C.

Lemma 2.2. [5] Let f be a non-constant meromorphic function on the annulus A = {z : 1
R0
< |z| < R0},

where R0 ≤ +∞, and let λ ≥ 0. Then

(i) if R0 = +∞, then m0

(
r, f ′

f

)
= O(log(rT0(r, f ))) for R ∈ (1; +∞) except for the set 4r such that∫

4r
rλ−1dr < +∞;

(ii) if R0 < +∞, then m0

(
r, f ′

f

)
= O

(
log

(
T0(r, f )
R0−r

))
for r ∈ (1; R0) except for the set 4

′

r such that∫
4
′
r

dr
(R0−r)λ+1 < +∞.

In addition, A. Y. Khrystiyanyn and A. A. Kondratyuk [5] proved the second fundamental theorem
on annuli. Furthermore, T. B. Cao, H. X. Yi and H. Y. Xu [2] provided another form of the second
fundamental theorem on the the annulus A:

Lemma 2.3. [2] Let f be a non-constant meromorphic function on the annulus A = {z : 1
R0
< |z| < R0}

in which 1 < R0 ≤ +∞. Let a1, a2, . . . , aq be q distinct complex numbers in the extended complex
plane C. Then

(q − 2)T0(r, f ) <
q∑

j=1

N0

(
r,

1
f − a j

)
+ S (r, f ).

Motivated and inspired by the ideas of [3, 8, 17], we propose the following lemmas.

Lemma 2.4. Let f be a transcendental meromorphic function on A = {z : 1
R0
< |z| < R0} in which

1 < R0 ≤ +∞, and let a1 ≡ a1(z) and a2 ≡ a2(z) be two distinct small functions with respect to f on A.
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Set

L( f , a1, a2) =

∣∣∣∣∣∣∣∣∣
f f ′ 1

a1 a′1 1
a2 a′2 1

∣∣∣∣∣∣∣∣∣ ,
then, we have

m0

(
r,

L( f , a1, a2) f k

( f − a1)( f − a2)

)
= S (r, f ),

where k=0,1.

Proof. It follows from the determinant nature that

L( f , a1, a2)
( f − a1)( f − a2)

=
f ′ − a′2
f − a2

−
f ′ − a′1
f − a1

.

This implies

m0

(
r,

L( f , a1, a2)
( f − a1)( f − a2)

)
= S (r, f )

by applying Lemma 2.2.

Next we can deduce

L( f , a1, a2) f
( f − a1)( f − a2)

= (a′1 − a′2) + a2
f ′ − a′2
f − a2

− a1
f ′ − a′1
f − a1

by some simple computing. It follows that

m0

(
r,

L( f , a1, a2) f
( f − a1)( f − a2)

)
= S (r, f ).

Lemma 2.4 is proved. �

Lemma 2.5. Let f and g be two transcendental meromorphic functions on A, and let a1 = 0, a2 = 1,
a3 = ∞, a4 = a(z) be four distinct small functions respect to f and g on A, in which a(z) . 0, 1,∞. Set

H ≡
L( f , 0, 1)( f − g)L(g, 1, a)

f ( f − 1)(g − 1)(g − a)
−

L(g, 0, 1)( f − g)L( f , 1, a)
g(g − 1)( f − 1)( f − a)

.

Then we get

T0(r,H) ≤
4∑

i=1

ND(r, ai) + S (r, f ) + S (r, g),

where ND(r, ai) is the reduced counting function of the different zeros of f − ai and g − ai on A.

Proof. Here, we consider the counting function N0(r,H). It is obvious that the poles of H only come
from the zeros, 1-points, poles of f or g, and the zeros of f −a or g−a onA. Firstly, let z4 be a common
zero of f − a and g − a on A with multiplicity p and q respectively, satisfying that a(z4) , 0, 1,∞.
Applying the determinate nature, we have

H ≡ ( f − g)
[(

f ′

f − 1
−

f ′

f

) (
g′ − a′

g − a
−

g′

g − 1

)
−

(
g′

g − 1
−

g′

g

) (
f ′ − a′

f − a
−

f ′

f − 1

)]
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≡ ( f − g)
[

f ′

f − 1
g′ − a′

g − a
+

g′

g
f ′ − a′

f − a
+

f ′

f
g′

g − 1
−

g′

g − 1
f ′ − a′

f − a
−

f ′

f
g′ − a′

g − a
−

g′

g
f ′

f − 1

]
.

It follows that H(z4) , ∞ since z4 is a zero of ( f − g), and a simple pole or an analytic point of[
f ′

f − 1
g′ − a′

g − a
+

g′

g
f ′ − a′

f − a
+

f ′

f
g′

g − 1
−

g′

g − 1
f ′ − a′

f − a
−

f ′

f
g′ − a′

g − a
−

g′

g
f ′

f − 1

]
. (2.1)

Secondly, let z3 (resp. z1, z2) be a common pole (resp. zero, 1-points) of f and g on A with multiplicity
p and q respectively, satisfying that a(z4) , 0, 1,∞ (resp. a(z1) , 0, 1,∞, a(z2) , 0, 1,∞). Without
loss of generality, assume that p ≥ q. By simple computation, we can write H as

a(a − 1) f ′g′( f − g)2

f ( f − 1)( f − a)g(g − 1)(g − a)
+

a′( f − g)[ f ( f − 1)(g − a)g′ − g(g − 1)( f − a) f ′]
f ( f − 1)( f − a)g(g − 1)(g − a)

. (2.2)

Noting that z3 is a pole of a(a − 1) f ′g′( f − g)2 with multiplicity 3p + q + 2 at most, a pole of a′( f −
g)[ f ( f − 1)(g − a)g′ − g(g − 1)( f − a) f ′] with multiplicity 3p + 2q + 1 at most, and a pole of f ( f −
1)( f − a)g(g − 1)(g − a) with multiplicity 3p + 3q, we obtain H(z3) , ∞. In the same manner, we
can get H(z1) , ∞,H(z2) , ∞. Therefore, the poles of H only come from the different zeros of
f , g, f − 1, g − 1, f − a, g − a and the different poles of f , g on A. In order to analyze these different
zeros and different poles, we distinguish the following distinct cases.

Case 1. Let ζ1 be a zero of f , which is neither a zero of g, a, and a − 1 nor a pole of a. Then, from
(2.1) and (2.2) we find that ζ1 is a pole of H with multiplicity at most 1 if g(ζ1) , 1,∞, a(ζ1); and
otherwise ζ1 is a pole of H with multiplicity at most 2.

Case 2. Let ζ2 be a zero of f − 1, which is neither a zero of g − 1, a, and a − 1 nor a pole of a. By
(2.1) and (2.2) we know that ζ2 is a pole of H with multiplicity at most 1 if g(ζ2) , 0,∞, a(ζ2); and
otherwise ζ2 is a pole of H with multiplicity at most 2.

Case 3. Let ζ3 be a pole of f , which is neither a pole of g and a nor a zero of a and a − 1. Then, it
is clear that ζ3 is a pole of H with multiplicity at most 1 if g(ζ3) , 0, 1, a(ζ3); and otherwise ζ3 is a pole
of H with multiplicity at most 2.

Case 4. Let ζ4 be a zero of f − a, which is neither a zero of g − a, a, and a − 1 nor a pole of a. It is
obvious that that ζ4 is a pole of H with multiplicity at most 1 if g(ζ4) , 0, 1,∞; and otherwise ζ4 is a
pole of H with multiplicity at most 2.

In view of the discussion above, we deduce that

N0(r,H) ≤
4∑

i=1

ND(r, ai) + N0(r,
1
a

) + N0(r,
1

a − 1
) + N0(r, a) =

4∑
i=1

ND(r, ai) + S (r, f ).

Moreover, it is a direct consequence of Lemma 2.4 that m0(r,H) = S (r, f ) + S (r, g), which implies that

T0(r,H) = m0(r,H) + N0(r,H) ≤
4∑

i=1

ND(r, ai) + S (r, f ) + S (r, g).

Lemma 2.5 is proved. �
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3. The proof of theorem 1.1

By Lemma 2.1 and Lemma 2.3, we derive that T0(r, f ) ≤ 3T0(r, g)+S (r, f ) and T0(r, g) ≤ 3T0(r, f )+
S (r, g) noting that f and g share ai(i = 1, 2, 3, 4) “IM”. Then, it is obvious that S (r, f ) = S (r, g).

By applying the quasi-Möbius transformation

f − a1

f − a3

a2 − a3

a2 − a1
,

we can assume that a1(z) = 0, a2(z) = 1, a3(z) = ∞, a4(z) = a(z), a5(z) = b(z), where a, b are two
distinct small functions of f and g on A satisfying a, b . 0, 1,∞. As in Lemma 2.5, we set

H ≡
L( f , 0, 1)( f − g)L(g, 1, a)

f ( f − 1)(g − 1)(g − a)
−

L(g, 0, 1)( f − g)L( f , 1, a)
g(g − 1)( f − 1)( f − a)

.

Since f and g share 0, 1,∞, a “IM”, we can deduce T0(r,H) = S (r, f ) by the virtue of Lemma 2.5.

It is obvious that a common zero of f − b and g − b must be a zero of H when it is not a zero of
b, b − 1, b − a. We assume that H . 0, then, we get

NC(r, b) ≤ N0

(
r,

1
H

)
+ S (r, f ) ≤ T0(r,H) + S (r, f ) = S (r, f ).

This contradict NC(r, b) , S (r, f ). It follows that H ≡ 0.

In the following we assume that f . g. From H ≡ 0 we have

L( f , 0, 1)L(g, 1, a)
f (g − a)

≡
L(g, 0, 1)L( f , 1, a)

g( f − a)
.

It follows that
f ′

f

[
a′ − (a − 1)

g′ − a′

g − a

]
≡

g′

g

[
a′ − (a − 1)

f ′ − a′

f − a

]
. (3.1)

If a is a constant, then from (3.1) we get

f ′

f

[
−(a − 1)

g′

g − a

]
≡

g′

g

[
−(a − 1)

f ′

f − a

]
,

which further yields f ≡ g. This is a contradiction, we consequently have a′ . 0. Note that the
equation (3.1) can be written as

f ′[a′(g − a) − (a − 1)(g′ − a′)]
g′[a′( f − a) − (a − 1)( f ′ − a′)]

− 1 =
f (g − a)
g( f − a)

− 1.

This implies
f ′ − g′

f − g
=

g′

g − 1
−
−a[a′( f − a) − (a − 1)( f ′ − a′)]

a′g(g − 1)( f − a)
. (3.2)

Since NC(r, b) , S (r, f ), there exist a point z0 satisfying that z0 is a common zero of f −b and g−b,
but not a zero or pole of a, a′, b, b − 1, b − a. It follows that z0 is a simple pole of the left side of (3.2),
but not a pole of the right side of (3.2), which is impossible. Hence Theorem 1.1 is proved.
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4. The proof of theorem 1.2

To the contrary, we suppose that f . g. Similarly to the proof of Theorem 1.1, we can get

T0(r,H) ≤ ND(r, a) + S (r, f )

by utilizing Lemma 2.5. If H . 0, then we have

NC(r, b) ≤ N0

(
r,

1
H

)
+ S (r, f ) ≤ T0(r,H) + S (r, f ) ≤ ND(r, a) + S (r, f ),

which contradict NC(r, b) − ND(r, a) , S (r, f ). We consequently obtain H ≡ 0, and then the equations
(3.1) and (3.2) still hold.

Note that NC(r, b)−ND(r, a) , S (r, f ) implies NC(r, b) , S (r, f ). So there exists a point z0 satisfying
that z0 is a common zero of f − b and g − b, but not a zero or pole of a, a′, b, b − 1, b − a. Clearly, z0

is a simple pole of the left side of (3.2), but not a pole of the right side of (3.2). This is impossible.
Therefore we have proved Theorem 1.2.
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