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1. Introduction

Numerical reckoning fixed points for nonlinear operators is nowadays an active research problem
of nonlinear analysis owing to its applications to: variational inequalities, equilibrium problems,
computer simulation, image encoding and much more. Mann [19], Ishikawa [17] and Halpern [12]
are the three basic iterative algorithms to approximate fixed points of nonexpansive mappings.
Following these study, several authors constructed numerous algorithms to approximate the fixed
points of different classes of nonlinear mappings mainly Noor iteration [20], Agarwal et al.
iteration [4], SP iteration [21], Normal-S iteration [23], Abbas and Nazir iteration [1], Thakur et al.
iterations [28, 29], Karakaya et al. iteration [18] and many others.

In 2008, Suzuki [26] introduced a new generalization of nonexpansive mappings and called the
defining condition as Condition (C) which is also referred as Suzuki generalized nonexpansive
mappings. A mapping T : K → K defined on a nonempty subset K of a Banach space E is said to
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satisfy the Condition (C) if

1
2
‖x − T x‖ ≤ ‖x − y‖ ⇒ ‖T x − Ty‖ ≤ ‖x − y‖

for all x and y ∈ K.
Suzuki proved that the mappings satisfying the Condition (C) is weaker than nonexpansive and

also obtained few results regarding the existence of fixed points for such mappings. In 2011,
Phuengrattana [22] used Ishikawa iteration to obtain some convergence results for mappings
satisfying Condition (C) in uniformly convex Banach spaces. In the last few years, many authors have
studied this particular class of mappings in various domain and have obtained many convergence
results (e.g. [2, 3, 9, 10, 28, 30, 31, 35]).

Recently, Ullah and Arshad [31] introduced a new algorithm namely M-iteration algorithm as
follows: 

d1 ∈ K

bn = (1 − αn)dn + αnTdn

cn = Tbn

dn+1 = Tcn

(1.1)

where {αn} is a sequence in (0, 1). They proved some convergence results for Suzuki generalized
nonexpansive mappings and showed that M-iteration converges faster than Picard-S [11] and
S-iteration [4].

To achieve a better rate of convergence, we introduce a new iterative algorithm for approximating
fixed points of Suzuki generalized nonexpansive mappings as follows:

x1 ∈ K

zn = T xn

yn = T ((1 − αn)zn + αnTzn)
xn+1 = Tyn

(1.2)

where {αn} is a sequence in (0, 1).
The aim of this paper is to prove that newly defined iterative algorithm (1.2) converges faster than

algorithm (1.1) for contractive-like mappings. Also, we prove some convergence results involving
algorithm (1.2) for Suzuki generalized nonexpansive mappings. Further, we provide a numerical
example to show that our iteration (1.2) converges faster than a number of existing iterative
algorithms in respect of Suzuki generalized nonexpansive mappings. In the last section, we use our
algorithm to find solution of a delay differential equation.

2. Preliminaries

For making our paper self contained, we collect some basic definitions and needed results.
Definition 2.1. A Banach space E is said to be uniformly convex if for each ε ∈ (0, 2] there is a δ > 0
such that for x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ > ε, we have∥∥∥∥ x + y

2

∥∥∥∥ < 1 − δ.
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Definition 2.2. A Banach space E is said to satisfy the Opial’s condition if for any sequence {xn} in E
which converges weakly to x ∈ E i.e. xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y , x.
Examples of Banach spaces satisfying this condition are Hilbert spaces and all lp spaces (1 < p < ∞).
On the other hand, Lp[0, 2π] with 1 < p , 2 fail to satisfy Opial’s condition.
A mapping T : K → E is demiclosed at y ∈ E if for each sequence {xn} in K and each x ∈ E, xn ⇀ x
and T xn → y imply that x ∈ K and T x = y.
Let K be a nonempty closed convex subset of a Banach E, and let {xn} be a bounded sequence in E.
For x ∈ E write:

r(x, {xn}) = lim sup
n→∞

‖x − xn‖.

The asymptotic radius of {xn} relative to K is given by

r(K, {xn}) = inf{r(x, {xn}) : x ∈ K},

and the asymptotic center A(K, {xn}) of {xn} is defined as:

A(K, {xn}) = {x ∈ K : r(x, {xn}) = r(K, {xn})}.

It is known that, in a uniformly convex Banach space, A(K, {xn}) consists of exactly one point.
The following definitions about the rate of convergence were given by Berinde [7].
Definition 2.3. Let {an} and {bn} be two real sequences converging to a and b respectively. Then, {an}

converges faster then {bn} if lim
n→∞

‖an−a‖
‖bn−b‖ = 0.

Definition 2.4. Let {un} and {vn} be two fixed point iteration processes converging to the same fixed
point p. If {an} and {bn} are two sequences of positive numbers converging to zero such that
‖un − p‖ ≤ an and ‖vn − p‖ ≤ bn for all n ≥ 1, then we say that {un} converges faster than {vn} to p if
{an} converges faster then {bn}.
The following lemma due to Schu [24] is very useful in our subsequent discussion.
Lemma 2.1. Let E be a uniformly convex Banach space and {tn} be any sequence such that
0 < p ≤ tn ≤ q < 1 for some p, r ∈ R and for all n ≥ 1. Let {xn} and {yn} be any two sequences of E
such that lim sup

n→∞
‖xn‖ ≤ r, lim sup

n→∞
‖yn‖ ≤ r and lim sup

n→∞
‖tnxn + (1 − tn)yn‖ = r for some r ≥ 0. Then,

lim
n→∞
‖xn − yn‖ = 0.

Now, we list few lemmas involving Suzuki generalized nonexpansive mappings.
Lemma 2.2. ( [26]) Let K be a nonempty subset of a Banach space E and T : K → K be any
mapping. Then,
(i) If T is nonexpansive then T is Suzuki generalized nonexpansive mapping.
(ii) If T is Suzuki generalized nonexpanisve mapping such that F(T ) , ∅, then T is a
quasi-nonexpansive mapping.
(iii) If T is a Suzuki generalized nonexpansive mapping, then ‖x − Ty‖ ≤ 3‖x − T x‖ + ‖x − y‖ for all x
and y ∈ K.
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Lemma 2.3. ( [27]) Let T be a Suzuki generalized nonexpansive mapping defined on a subset K of a
Banach space E with the Opial property. If a sequence {xn} converges weakly to z and
lim
n→∞
‖T xn − xn‖ = 0, then I − T is demiclosed at zero.

Lemma 2.4. ( [26]) If T is a Suzuki generalized nonexpansive mapping defined on a compact convex
subset K of a uniformly convex Banach space E then, T has a fixed point.

In 1972, Zamfirescu [34] introduced Zamfirescu mappings which serves as an important
generalization for Banach contraction principle [5]. In 2004, Berinde [6] gave a more general class of
mappings known as quasi-contractive mappings. Following this, Imoru and Olantiwo [16] gave the
following definition:
Definition 2.5. A mapping T : K → K is known as contractive-like mapping if there exists a strictly
increasing and continuous function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 and a constant δ ∈ [0, 1) such
that for all x, y ∈ K, we have

‖T x − Ty‖ ≤ δ‖x − y‖ + ϕ(‖x − T x‖).

Clearly, the class of contractive-like mappings is wider than the class of quasi-contractive mappings.

3. Rate of convergence

In this section, first we show that our algorithm (1.2) converges faster than the M-iteration (1.1) for
contractive-like mappings.
Theorem 3.1. Let T be a contractive-like mapping defined on a nonempty closed convex subset K of
a Banach space E with F(T ) , ∅. If {xn} is a sequence defined by (1.2), then {xn} converges faster than
the iterative algorithm (1.1).
Proof. From (1.1), for any p ∈ F(T ), we have

‖bn − p‖ = ‖(1 − αn)dn + αnTdn − p‖
≤ (1 − αn)‖dn − p‖ + αnδ‖dn − p‖
= (1 − (1 − δ)αn)‖dn − p‖

and
‖cn − p‖ = ‖Tbn − p‖

≤ δ‖bn − p‖
≤ δ(1 − (1 − δ)αn)‖dn − p‖.

As, {αn} is a sequence in (0, 1), we can find a constant α ∈ R such that αn ≤ α < 1 for all n ∈ N. So,

‖dn+1 − p‖ = ‖Tcn − p‖
≤ δ‖cn − p‖
≤ δ2(1 − (1 − δ)αn)‖dn − p‖
≤ δ2(1 − (1 − δ)α)‖dn − p‖
.

.

.

≤ δ2n(1 − (1 − δ)α)n‖d1 − p‖.
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Now, from (1.2) we get
‖zn − p‖ = ‖T xn − p‖

≤ δ‖xn − p‖

and
‖yn − p‖ = ‖T ((1 − αn)zn + αnTzn) − p‖

≤ δ‖(1 − αn)zn + αnTzn − p‖
≤ δ((1 − αn)‖zn − p‖ + αn‖Tzn − p‖)
≤ δ((1 − αn)‖zn − p‖ + αn‖zn − p‖)
= δ(1 − (1 − δ)αn)‖zn − p‖
≤ δ2(1 − (1 − δ)αn)‖xn − p‖.

So,
‖xn+1 − p‖ = ‖Tyn − p‖

≤ δ‖yn − p‖
≤ δ3(1 − (1 − δ)αn)‖xn − p‖
≤ δ3(1 − (1 − δ)α)‖xn − p‖
.

.

.

≤ δ3n(1 − (1 − δ)α)n‖x1 − p‖.

Let bn = δ3n(1 − (1 − δ)α)n‖x1 − p‖ and an = δ2n(1 − (1 − δ)α)n‖d1 − p‖, then

bn
an

=
δ3n(1−(1−δ)α)n‖x1−p‖
δ2n(1−(1−δ)α)n‖d1−p‖

→ 0 as n→ ∞.

Hence, {xn} converges faster than {dn}.
Now, we present a example of a contractive-like mapping which is not a contraction.
Example 1: Let E = R and K = [0, 6]. Let T : K → K be a mapping defined as

T x =

 x
5 x ∈ [0, 3)
x

10 x ∈ [3, 6].

Proof: Clearly x = 0 is the fixed point of T. First, we prove that T is a contractive-like mapping but
not a contraction. Since T is not continuous at x = 3 ∈ [0, 6], so T is not a contraction. We show that
T is a contractive-like mapping. For this, define ϕ : [0,∞) → [0,∞) as ϕ(x) = x

8 . Then, ϕ is a strictly
increasing as well as continuous function. Also, ϕ(0) = 0.
We need to show that

‖T x − Ty‖ ≤ δ‖x − y‖ + ϕ(‖x − T x‖) (A)

for all x, y ∈ [0, 6] and δ is a constant in [0, 1).
Before going ahead, let us note the following. When x ∈ [0, 3), then

‖x − T x‖ =
∥∥∥∥x −

x
5

∥∥∥∥ =
4x
5

and
ϕ(

4x
5

) =
x

10
. (3.1)
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Similarly, when x ∈ [3, 6], then

‖x − T x‖ =
∥∥∥∥x −

x
10

∥∥∥∥ =
9x
10

and
ϕ(

9x
10

) =
9x
80
. (3.2)

Consider the following cases:
Case A: Let x, y ∈ [0, 3), then using (3.1) we get

‖T x − Ty‖ = ‖ x
5 −

y
5‖

≤ 1
5‖x − y‖

≤ 1
5‖x − y‖ + x

10
= 1

5‖x − y‖ + ϕ(4x
5 )

= 1
5‖x − y‖ + ϕ(‖x − T x‖).

So (A) is satisfied with δ = 1
5 .

Case B: Let x ∈ [0, 3) and y ∈ [3, 6] then using (3.1) we get

‖T x − Ty‖ = ‖ x
5 −

y
10‖

= ‖ x
10 + x

10 −
y

10‖

≤ 1
10‖x − y‖ +

∥∥∥∥ x
10

∥∥∥∥
≤ 1

5‖x − y‖ + ϕ(4x
5 )

= 1
5‖x − y‖ + ϕ(‖x − T x‖).

So (A) is satisfied with δ = 1
5 .

Case C: Let x ∈ [3, 6] and y ∈ [0, 3) then using (3.2) we get

‖T x − Ty‖ = ‖ x
10 −

y
5‖

= ‖ x
5 −

x
10 −

y
5‖

≤ 1
5‖x − y‖ +

∥∥∥∥ x
10

∥∥∥∥
≤ 1

5‖x − y‖ +
∥∥∥∥ 9x

80

∥∥∥∥
= 1

5‖x − y‖ + ϕ(‖x − T x‖).

So (A) is satisfied with δ = 1
5 .

Case D: Let x, y ∈ [3, 6] then using (3.2) we get

‖T x − Ty‖ = ‖ x
10 −

y
10‖

≤ 1
10‖x − y‖ +

∥∥∥∥ 9x
80

∥∥∥∥
≤ 1

5‖x − y‖ +
∥∥∥∥ 9x

80

∥∥∥∥
= 1

5‖x − y‖ + ϕ(‖x − T x‖).

So (A) is satisfied with δ = 1
5 .

Consequently, (A) is satisfied for δ = 1
5 and ϕ(x) = x

8 in all the possible cases. Thus, T is a contractive-
like mapping.
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Now, using T , we show that our iterative algorithm (1.2) has a better rate of convergence. Set αn =

βn = γn = n
n+1 for each n ∈ N. Then, we get the following Table 1, Table 2, Figure 1 and Figure 2 with

the initial value 4.5.

Table 1. Sequences generated by Agarwal, Abbas, Thakur New, M and New Iteration.

Step Agarwal Iteration Abbas Iteration Thakur New M Iteration New Iteration

1 4.5 4.5 4.5 4.5 4.5
2 0.4725 0.29475 0.06975 0.099 0.0108
3 0.0609 0.02087266667 0.001798 0.001848 0.00004032
4 0.006699 0.001367159667 0.000039556 0.000029568 1.29024 × 10−7

5 0.0006538224 0.00008408578814 7.7213312 × 10−7 4.257792 × 10−7 3.7158912 × 10−10

6 0.00005811754667 4.92057575 × 106 1.372681102 × 10−8 5.677056 × 10−9 9.9090432 × 10−13

7 4.791732419 × 10−6 2.766998982 × 10−7 2.263523124 × 10−10 7.1368704 × 10−11 2.491416576 × 10−15

8 3.713592625 × 10−7 1.506285071 × 10−8 3.508460842 × 10−12 8.56424448 × 10−13 5.979399782 × 10−18

Table 2. Sequences generated by Noor, Picard S, Thakur, M∗ and New Iteration.

Step Noor Iteration Picard S Iteration Thakur Iteration M∗ Iteration New Iteration

1 4.5 4.5 4.5 4.5 4.5
2 2.49975 0.0945 0.3735 0.0999 0.0108
3 0.9650886667 0.002436 0.03574533333 0.00158064 0.00004032
4 0.2861487897 0.000053592 0.002645154667 0.000019599936 1.29024 × 10−7

5 0.06902366645 1.04611584 × 10−6 0.0001606561138 2.019577405 × 10−7 3.7158912 × 10−10

6 0.0140603765 1.859761493 × 10−8 8.330317014 × 10−6 1.795179916 × 10−9 9.9090432 × 10−13
7 0.002482824734 3.066708748 × 10−10 3.790658541 × 10−7 1.412696685 × 10−11 2.491416576 × 10−15

8 0.0003874758351 4.75339856 × 10−12 1.544693355 × 10−8 1.003014646 × 10−13 5.979399782 × 10−18

9 0.00005424449084 6.995124794 × 10−14 5.724476775 × 10−10 6.518356911 × 10−16 1.381905727 × 10−20

10 6.89295594 × 10−6 9.84913571 × 10−16 1.952733517 × 10−11 3.921443518 × 10−18 3.09546883 × 10−23

Figure 1. Graph corresponding to Table 1.
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Figure 2. Graph corresponding to Table 2.

Clearly, our algorithm (1.2) converges at a faster rate for contractive-like mappings.

4. Convergence results

First, we prove few lemmas which will be useful in obtaining convergence results.
Lemma 4.1. Let T be a Suzuki generalized nonexpansive mapping defined on a nonempty closed
convex subset K of a Banach space E with F(T ) , ∅. Let {xn} be the iterative sequence defined by the
algorithm (1.2). Then, lim

n→∞
‖xn − p‖ exists for all p ∈ F(T ).

Proof. Let p ∈ F(T ) and z ∈ K. Since T is a Suzuki generalized nonexpansive mapping,
1
2‖p − T p‖ = 0 ≤ ‖p − z‖ implies that ‖T p − Tz‖ ≤ ‖p − z‖.
Now we have,

‖zn − p‖ = ‖T xn − p‖
≤ ‖xn − p‖

(4.1)

and
‖yn − p‖ = ‖T ((1 − αn)zn + αnTzn) − p‖

≤ (1 − αn)‖zn − p‖ + αn‖Tzn − p‖
≤ ‖zn − p‖
≤ ‖xn − p‖.

(4.2)

Using (4.1) and (4.2), we get
‖xn+1 − p‖ = ‖Tyn − p‖

≤ ‖yn − p‖
≤ ‖xn − p‖

Thus, {‖xn − p‖} is bounded and decreasing sequence of reals and hence lim
n→∞
‖xn − p‖ exists.

Lemma 4.2. Let T be a Suzuki generalized nonexpansive mapping defined on a nonempty closed
convex subset K of a uniformly convex Banach space E. Let {xn} be the iterative sequence defined by
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the algorithm (1.2). Then, F(T ) , ∅ if and only if {xn} is bounded and lim
n→∞
‖T xn − xn‖ = 0.

Proof. Suppose F(T ) , ∅ and let p ∈ F(T ). Then, by Lemma 4.1, lim
n→∞
‖xn−p‖ exists. Let lim

n→∞
‖xn−p‖ =

c.
From Eqs (4.1) and (4.2), we have

lim sup
n→∞

‖yn − p‖ ≤ c (4.3)

and
lim sup

n→∞
‖zn − p‖ ≤ c. (4.4)

Now,
c = lim

n→∞
‖xn+1 − p‖ = lim

n→∞
‖Tyn − p‖,

and
‖Tyn − p‖ ≤ ‖yn − p‖.

So,
c ≤ lim inf

n→∞
‖yn − p‖

which along with Eq (4.3) implies
lim
n→∞
‖yn − p‖ = c. (4.5)

Since T is a Suzuki generalized nonexpansive mapping, we get

‖Tzn − p‖ ≤ ‖zn − p‖.

From Eq (4.4), we obtain
lim sup

n→∞
‖Tzn − p‖ ≤ c. (4.6)

Consider,
lim
n→∞
‖yn − p‖ = lim

n→∞
‖T ((1 − αn)zn + αnTzn) − p‖

≤ lim
n→∞
‖(1 − αn)(zn − p) + αn(Tzn − p)‖.

Using Lemma 2.3, from Eqs (4.4), (4.5) and (4.6), we get

lim
n→∞
‖zn − Tzn‖ = 0. (4.7)

Now, consider
‖yn − Tzn‖ = ‖T ((1 − αn)zn + αnTzn) − Tzn‖

≤ ‖(1 − αn)zn + αnTzn − zn‖

= αn‖Tzn − zn‖

which on using Eq (4.7) gives
lim
n→∞
‖yn − Tzn‖ = 0. (4.8)

Since,
‖zn − yn‖ ≤ ‖zn − Tzn‖ + ‖Tzn − yn‖,

this together with Eqs (4.7) and (4.8) yields that

lim
n→∞
‖zn − yn‖ = 0. (4.9)
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Now, using Eqs (4.8) and (4.9), we have

‖T xn+1 − xn+1‖ = ‖T xn+1 − Tyn‖

≤ ‖xn+1 − yn‖

= ‖Tyn − yn‖

= ‖Tyn − Tzn + Tzn − yn‖

≤ ‖Tyn − Tzn‖ + ‖Tzn − yn‖

≤ ‖yn − zn‖ + ‖Tzn − yn‖

Hence,
lim
n→∞
‖T xn − xn‖ = 0.

Conversely, suppose that {xn} is bounded and lim
n→∞
‖xn − T xn‖ = 0. Let p ∈ A(K, {xn}), we have

r(T p, {xn}) = lim sup
n→∞

‖xn − T p‖

≤ lim sup
n→∞

(3‖T xn − xn‖ + ‖xn − p‖)

= lim sup
n→∞

‖xn − p‖

= r(p, {xn}).

This implies that T p ∈ A(K, {xn}). Since E is uniformly convex, A(K, {xn}) is singleton, therefore we
get T p = p.
Theorem 4.1. Let T be a Suzuki generalized nonexpansive mapping defined on a nonempty closed
convex subset K of a Banach space E which satisfies the Opial’s condition with F(T ) , ∅. If {xn} is
the iterative sequence defined by the iterative algorithm (1.2), then {xn} converges weakly to a fixed
point of T .
Proof. Let p ∈ F(T ). Then, from Lemma 4.1 lim

n→∞
‖xn − p‖ exists. In order to show the weak

convergence of the algorithm (1.2) to a fixed point of T , we will prove that {xn} has a unique weak
subsequential limit in F(T ). For this, let {xn j} and {xnk} be two subsequences of {xn} which converges
weakly to u and v respectively. By Lemma 4.1, we have lim

n→∞
‖T xn − xn‖ = 0 and using the Lemma 2.3,

we have I − T is demiclosed at zero. So u, v ∈ F(T ).
Next, we show the uniqueness. Since u, v ∈ F(T ), so lim

n→∞
‖xn − u‖ and lim

n→∞
‖xn − v‖ exists. Let u , v.

Then, by Opial’s condition, we obtain

lim
n→∞
‖xn − u‖ = lim

j→∞
‖xn j − u‖

< lim
j→∞
‖xn j − v‖

= lim
n→∞
‖xn − v‖

= lim
k→∞
‖xnk − v‖

< lim
k→∞
‖xnk − u‖

= lim
n→∞
‖xn − u‖

which is a contradiction, so u = v. Thus, {xn} converges weakly to a fixed point of T .
Next, we establish some strong convergence results for iterative algorithm (1.2).
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Theorem 4.2. Let T be a Suzuki generalized nonexpansive mapping defined on a nonempty compact
convex subset K of a uniformly convex Banach space E. If {xn} is the iterative sequence defined by the
iterative algorithm (1.2), then {xn} converges strongly to a fixed point of T .
Proof. Using Lemma 2.4 , we get F(T ) , ∅. So, by Lemma 4.2, we have lim

n→∞
‖T xn − xn‖ = 0. Since

K is compact, there exists a subsequence {xnk} of {xn} such that {xnk} converges strongly to p for some
p ∈ K. From Lemma 2.2(iii), we have

‖xnk − T p‖ ≤ 3‖T xnk − xnk‖ + ‖xnk − p‖

for all n ≥ 1. Letting k → ∞, we get that {xnk} converges to T p. This implies that T p = p, i.e.,
p ∈ F(T ). Further, lim

n→∞
‖xn − p‖ exists by Lemma 4.1. So, p is the strong limit of the sequence {xn}.

A mapping T : K → K is said to satisfy the Condition (A) ( [25]) if there exists a nondecreasing
function f : [0,∞) → [0,∞) with f (0) = 0 and f (r) > 0 for all r ∈ (0,∞) such that
‖x − T x‖ ≥ f (d(x, F(T ))) for all x ∈ K, where d(x, F(T )) = in f {‖x − p‖ : p ∈ F(T )}.

Theorem 4.3. Let T be a Suzuki generalized nonexpansive mapping defined on a nonempty closed
convex subset K of a uniformly convex Banach space E such that F(T ) , ∅ and {xn} be the sequence
defined by (1.2). If T satisfies Condition (A), then {xn} converges strongly to a fixed point of T .
Proof. By Lemma 4.1, lim

n→∞
‖xn − p‖ exists and ‖xn+1 − p‖ ≤ ‖xn − p‖ for all p ∈ F(T ).

We get
inf

p∈F(T )
‖xn+1 − p‖ ≤ inf

p∈F(T )
‖xn − p‖,

which yields
d(xn+1, F(T )) ≤ d(xn, F(T )).

This shows that the sequence {d(xn, F(T ))} is decreasing and bounded below, so lim
n→∞

d(xn, F(T )) exists.
Let lim

n→∞
‖xn − p‖ = r for some r ≥ 0. If r = 0 then the result follows. Assume r > 0. Also, by

Lemma 4.2 we have lim
n→∞
‖xn − T xn‖ = 0.

It follows from Condition (A) that

lim
n→∞

f (d(xn, F(T ))) ≤ lim
n→∞
‖xn − T xn‖ = 0,

so that lim
n→∞

f (d(xn, F(T ))) = 0.
Since f is a non decreasing function satisfying f (0) = 0 and f (r) > 0 for all r ∈ (0,∞), therefore
lim
n→∞

d(xn, F(T )) = 0. So, we have a subsequence {xnk} of {xn} and a sequence {yk} ⊂ F(T ) such that

‖xnk − yk‖ <
1
2k

for all k ∈ N. Using (4.4), we obtain

‖xnk+1 − yk‖ < ‖xnk − yk‖ <
1
2k .

Therefore,

‖yk+1 − yk‖ ≤ ‖yk+1 − xk+1‖ + ‖xk+1 − yk‖

≤ 1
2k+1 + 1

2k

< 1
2k−1 → 0 as n → ∞.
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This implies that {yk} is a cauchy sequence in F(T ). Since F(T ) is closed, so {yk} converges to a point
p ∈ F(T ). Then, {xnk} converges strongly to p. Since lim

n→∞
‖xn − p‖ exists, we get xn → p ∈ F(T ). This

completes the proof.

5. Numerical example

In this section, first we will construct an example of a Suzuki generalized nonexpansive mapping
which is not a nonexpansive mapping. Then, using that example, we will show that our iteration
scheme (1.2) has a better speed of convergence than number of existing iteration schemes.
Example 2: Define a mapping T : [0, 1]→ [0, 1] by

T x =

1 − x x ∈ [0, 1
12 )

x+11
12 x ∈ [ 1

12 , 1].

First we show that T is not a nonexpansive map. For this, take x = 8
100 and y = 1

12 . Then,

‖T x − Ty‖ =
∥∥∥∥(1 − x) − (

y + 11
12

)
∥∥∥∥ =

52
14400

and

‖x − y‖ = |x − y| =
4

1200
.

Clearly, ‖T x − Ty‖ > ‖x − y‖ which proves that T is not a nonexpansive mapping.
Now, we show that T satisfies the condition K. For this, consider the following cases:
Case-I: Let x ∈ [0, 1

12 ), then 1
2‖x− T x‖ = 1

2 |2x− 1| = 1
2 (1− 2x). For 1

2‖x− T x‖ ≤ ‖x− y‖, we must have
1
2 (1 − 2x) ≤ ‖x − y‖, i.e., 1

2 (1 − 2x) ≤ |x − y|. Here note that the case y < x is not possible. So, we are
left with only one case when y > x, which gives 1

2 (1 − 2x) ≤ y − x, which yields y ≥ 1
2 . So, y ∈ [1

2 , 1].
Now, we have x ∈ [0, 1

12 ) and y ∈ [1
2 , 1]. So,

‖T x − Ty‖ =
∥∥∥∥(1 − x) −

y + 11
12

∥∥∥∥ =
∣∣∣∣12x + y − 1

12

∣∣∣∣ < 1
12

and

‖x − y‖ = |x − y| >
5
12
.

Hence,
1
2
‖x − T x‖ ≤ ‖x − y‖ ⇒ ‖T x − Ty‖ ≤ ‖x − y‖.

Case-II: Let x ∈ [ 1
12 , 1], then 1

2‖x − T x‖ = 1
2 |x −

x+11
12 | =

11−11x
24 . For 1

2‖x − T x‖ ≤ ‖x − y‖, we must have
11−11x

24 ≤ ‖x − y‖, i.e., 11−11x
24 ≤ |x − y|. Here we have two possibilities.

A: When x < y, we get 11−11x
24 ≤ y − x, i.e., y ≥ 11+13x

24 . So, y ∈ [ 145
288 , 1] ⊂ [ 1

12 , 1], which gives
‖T x − Ty‖ = 1

12‖x − y‖ ≤ ‖x − y‖. Hence,

1
2
‖x − T x‖ ≤ ‖x − y‖ ⇒ ‖T x − Ty‖ ≤ ‖x − y‖.
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B: When x > y, then 11−11x
24 ≤ x− y, i.e. y ≤ 35x−11

24 which gives y ∈ [0, 1]. Also, 24y+11
35 ≤ x which yields

x ∈ [ 11
35 , 1]. Here, for x ∈ [11

35 , 1] and y ∈ [ 1
12 , 1] Case IIA can be used. So, we only need to verify when

x ∈ [ 11
35 , 1] and y ∈ [0, 1

12 ). For this,

‖T x − Ty‖ =
∣∣∣∣ x + 11

12
− (1 − y)

∣∣∣∣ =
1

12
|12y + x − 1| ≤

1
12

and

‖x − y‖ = |x − y| >
97

420
.

So, ‖T x − Ty‖ ≤ ‖x − y‖. Thus, mapping T satisfies the Condition (C) for all the possible cases.
Now, using above example, we will show that iteration algorithm (1.2) converges faster than Thakur
New, M and M∗ iteration. Let αn = βn = n

n+10 for all n ∈ N and x1 = 0.02, then we get the following
Table 3 of iteration values and Figure 3.

Table 3. Comparison of the new method to other methods for Suzuki generalized
nonexpansive mapping.

Step Thakur New Iteration M Iteration M∗ Iteration New Iteration

1 0.02 0.02 0.02 0.02
2 0.9976721763085 0.9938005050505 0.9937661654423 0.9998726851852
3 0.9999842461778 0.999963525348 0.9999634151701 0.9999999375787
4 0.9999998959391 0.9999998002857 0.999999800716 0.9999999999715
5 0.9999999993314 0.9999999989763 0.9999999989872 1.0000000000000
6 0.9999999999958 0.9999999999951 0.9999999999952 1.0000000000000
7 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000

Figure 3. Graph corresponding to Table 3.

It is evident from above table and graph that our algorithm (1.2) converges at a better speed than the
above mentioned schemes.
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6. Application

In this section, we show that our iterative algorithm can be used to find a solution of a delay
differential equation.

Many physical problems arising in various fields can be easily modeled with the help of ordinary
differential equations. Later, it was recognized that a phenomena may have a delayed effect in a
differential equation, leading to the development of concept of delay differential equations. Following
this, numerous methods have been obtained to solve various kinds of delay differential equations (
e.g. [13–15, 32, 33]).

In this paper, we consider the following delay differential equation

x′(t) = f (t, x(t), x(t − τ)), t ∈ [t0, b] (6.1)

with initial condition
x(t) = ψ(t), t ∈ [t0 − τ, t0]. (6.2)

Now, we will show that the sequence generated by our iteration scheme (1.2) converges strongly to
the solution of (6.1).
It is well known that (C([a, b]), ||.||∞) is a Banach space where C([a, b]) denotes the space of all
continuous real valued functions on a closed interval [a, b] and ||.||∞ is a Chebyshev norm
||x − y||∞ = max

t∈[a,b]
|x(t) − y(t)|.

Assume that the following conditions are satisfied
(A1) t0, b ∈ R, τ > 0;
(A2) f ∈ C([t0, b] × R2,R);
(A3) ψ ∈ C([t0 − τ, b],R);
(A4) there exists L f > 0 such that

| f (t, u1, u2) − f (t, v1, v2)| ≤ L f

2∑
i=1
|ui − vi|, ∀ui, vi ∈ R, i = 1, 2, t ∈ [t0, b];

(A5) 2L f (b − t0) < 1.
We notice that the solution of (6.1)-(6.2) if it exists is of the following form

x(t) =

ψ(t), t ∈ [t0 − τ, t0]
ψ(t0) +

∫ t

t0
f (s, x(s), x(s − τ))ds, t ∈ [t0, b].

Here, x ∈ C([t0 − τ, b],R) ∩C1([t0, b],R).

Coman et al. [8] established the following results.
Theorem 6.1. Assume that conditions (A1)−(A5) are satisfied. Then Problem (6.1)−(6.2) has a unique
solution, say p ∈ C([t0 − τ, b],R) ∩C1([t0, b],R) and

p = lim
n→∞

T n(x) f or any x ∈ C([t0 − τ, b],R).

Now, we prove the following result using our iterative process (1.2).
Theorem 6.2. Suppose that conditions (A1) − (A5) are satisfied. Then the problem (6.1) − (6.2) has a
unique solution say p ∈ C([t0 − τ, b],R) ∩C1([t0, b],R) and sequence generated by the algorithm (1.2)
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converges to p.
Proof. Let {xn} be a iterative sequence generated by (1.2) for the following operator:

T x(t) =

ψ(t), t ∈ [t0 − τ, t0]
ψ(t0) +

∫ t

t0
f (s, x(s), x(s − τ))ds, t ∈ [t0, b],

where αn ∈ (0, 1) for all n ∈ N such that
∑∞

n=0 αn = ∞. Denote by p the fixed point of T. We will show
that xn → p as n→ ∞.
For t ∈ [t0 − τ, t0], it is easy to see that xn → p as n→ ∞.
For t ∈ [t0, b], we have

‖zn − p‖∞ = ‖T xn − T p‖∞

= max
t∈[t0−τ,b]

|T xn(t) − T p(t)|

= max
t∈[t0−τ,b]

∣∣∣∣ψ(t0) +

∫ t

t0
f (s, xn(s), xn(s − τ)ds − ψ(t0) −

∫ t

t0
f (s, p(s), p(s − τ))ds

∣∣∣∣
≤ max

t∈[t0−τ,b]

∫ t

t0
| f (s, xn(s), xn(s − τ)) − f (s, p(s), p(s − τ))|ds

≤ max
t∈[t0−τ,b]

∫ t

t0
L f (|xn(s) − p(s)| + |xn(s − τ) − p(s − τ)|)ds

≤

∫ t

t0
L f

(
max

t∈[t0−τ,b]
|xn(s) − p(s)| + max

t∈[t0−τ,b]
|xn(s − τ) − p(s − τ)|

)
ds

≤

∫ t

t0
L f (‖xn − p‖∞ + ‖xn − p‖∞)ds

≤ 2L f (b − t0)‖xn − p‖∞, (6.3)

‖yn − p‖∞ = ‖T ((1 − αn)zn + αnTzn) − T p‖∞

= max
t∈[t0−τ,b]

|T ((1 − αn)zn + αnTzn)(t) − T p(t)|

= max
t∈[t0−τ,b]

∣∣∣∣ψ(t0) +

∫ t

t0
f (s, ((1 − αn)zn + αnTzn)(s), ((1 − αn)zn + αnTzn)(s − τ))ds

− ψ(t0) −
∫ t

t0
f (s, p(s), p(s − τ))ds

∣∣∣∣
≤ max

t∈[t0−τ,b]

∫ t

t0
| f (s, ((1 − αn)zn + αnTzn)(s), ((1 − αn)zn + αnTzn)(s − τ))

− f (s, p(s), p(s − τ))|ds

≤ max
t∈[t0−τ,b]

∫ t

t0
L f (|((1 − αn)zn + αnTzn)(s) − p(s)|

+ |((1 − αn)zn + αnTzn)(s − τ) − p(s − τ)|)ds

≤

∫ t

t0
L f

(
max

t∈[t0−τ,b]
|((1 − αn)zn + αnTzn)(s) − p(s)|

+ max
t∈[t0−τ,b]

|((1 − αn)zn + αnTzn)(s − τ) − p(s − τ)|
)
ds

≤

∫ t

t0
L f (‖((1 − αn)zn + αnTzn) − p‖∞ + ‖((1 − αn)zn + αnTzn) − p‖∞)ds

≤ 2L f (b − t0)‖((1 − αn)zn + αnTzn) − p‖∞, (6.4)
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‖(1 − αn)zn + αnTzn − p‖∞ = ‖(1 − αn)zn + αnTzn − T p‖∞
≤ (1 − αn)‖zn − p‖∞ + αn‖Tzn − T p‖∞

= (1 − αn)‖zn − p‖∞ + αn max
t∈[t0−τ,b]

∣∣∣∣ψ(t0) +

∫ t

t0
f (s, zn(s), zn(s − τ))ds

− ψ(t0) −
∫ t

t0
f (s, p(s), p(s − τ))ds

∣∣∣∣
≤ (1 − αn)‖zn − p‖∞

+ αn max
t∈[t0−τ,b]

∫ t

t0
| f (s, zn(s), zn(s − τ)) − f (s, p(s), p(s − τ))|ds

≤ (1 − αn)‖zn − p‖∞ + αn max
t∈[t0−τ,b]

∫ t

t0
L f (|zn(s) − p(s)|

+ |(zn(s − τ) − p(s − τ)|)ds

≤ (1 − αn)‖zn − p‖∞ + αn

∫ t

t0
L f (‖zn − p‖∞ + ‖zn − p‖∞)ds

≤ (1 − αn)‖zn − p‖∞ + 2αnL f (b − t0)‖zn − p‖∞

=
[
1 − αn(1 − 2L f (b − t0))

]
‖zn − p‖∞, (6.5)

‖xn+1 − p‖∞ = ‖Tyn − T p‖∞

= max
t∈[t0−τ,b]

∣∣∣∣ ∫ t

t0
[ f (s, yn(s), yn(s − τ)) − f (s, p(s), p(s − τ))]

∣∣∣∣
≤ max

t∈[t0−τ,b]

∫ t

t0
L f (|yn(s) − p(s)| + |yn(s − τ) − p(s − τ)|)ds

≤ 2L f (b − t0)‖yn − p‖∞ (6.6)

Using (6.3), (6.4), (6.5) and (6.6) we get

‖xn+1 − p‖∞ ≤ 8L3
f (b − t0)3

[
1 − αn(1 − 2L f (b − t0))

]
‖xn − p‖∞.

On using assumption (A5), we have

‖xn+1 − p‖∞ ≤
[
1 − αn(1 − 2L f (b − t0))

]
‖xn − p‖∞.

Therefore, inductively we get

‖xn+1 − p‖∞ ≤
n∏

k=0

[
1 − αk(1 − 2L f (b − t0))

]
‖x0 − p‖∞.

Since αn ∈ [0, 1], for all n ∈ N, assumption (A5) yields

1 − αn(1 − 2L f (b − t0)) < 1.
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Using the fact that e−x ≥ 1 − x for all x ∈ [0, 1], we have

‖xn+1 − p‖∞ ≤ ‖x0 − p‖∞e−(1−2L f (b−t0))
∑n

k=0 αk ,

which gives lim
n→∞
‖xn − p‖∞ = 0.

From the above theorem, we can say that our method will definitely converge to the unique solution of
(6.1) which is a main advantage over the other methods available for the same.

7. Conclusion

In this study a new fixed iteration process (1.2) has been obtained which is utilized to approximate
fixed point of Suzuki generalized nonexpansive mappings. Further, We show that our iteration process
(1.2) converges faster than the recent M-iteration process (1.1) for contractive-like mappings. It must be
noted here that Ullah and Arshad [31] did not give the rate of convergence of their process analytically.
They claimed just by an example. However, we not only give the proof analytically but also validate
with an example. Further, we performed convergence analysis and a non trivial example has been given
to illustrate the convergence behaviour. In the last section, we applied our iteration process to find the
solution of delay differential equation.
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