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1. Introduction and preliminaries

Special functions appears in many branches of mathematics and applied sciences. One of the most
important special functions is Bessel function of the first kind Jν. The Bessel function of the first kind
Jν is a particular solution of the following homogeneous differential equation:

z2w′′(z) + zw′(z) +
(
z2 − ν2

)
w(z) = 0,

which is known as Bessel differential equation. Also, the function Jν has the following power series
representation:

Jν(z) =
∑
n≥0

(−1)n
(

z
2

)2n+ν

n!Γ(n + ν + 1)
,

where Γ(z) denotes Euler’s gamma function. Comprehensive information about the Bessel function
can be found in Watson’s treatise [1]. On the other hand, there are some q-analogues of the Bessel
functions in the literature. At the beginning of the 19 century, with the help of the q-calculus, famous
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English mathematician Frank Hilton Jackson has defined some functions which are known as Jackson’s
q-Bessel functions. The Jackson’s second and third q-Bessel functions are defined by (see [2–4])

J(2)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∑
n≥0

(−1)n
(

z
2

)2n+ν

(q; q)n(qν+1; q)n
qn(n+ν) (1.1)

and

J(3)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∑
n≥0

(−1)nz2n+ν

(q; q)n(qν+1; q)n
q

1
2 n(n+1), (1.2)

where z ∈ C, ν > −1, q ∈ (0, 1) and

(a; q)0 = 1, (a; q)n =

n∏
k=1

(
1 − aqk−1

)
, (a, q)∞ =

∏
k≥1

(
1 − aqk−1

)
.

Here we would like to say that Jackson’s third q-Bessel function is also known as Hahn-Exton q-
Bessel function due to their contributions to the theory of q−Bessel functions (see [5, 6]). In addition,
it is known from [2] that these q-analogues satisfy the following limit relations:

lim
q→1−

J(2)
ν ((1 − q)z; q) = Jν(z) and lim

q→1−
J(3)
ν ((1 − q)z; q) = Jν(2z).

Also, it is important to mention here that the notations (1.1) and (1.2) are from Ismail (see [3,7]) and
they are different from the Jackson’s original notations. Results on the properties of Jackson’s second
and third q-Bessel functions may be found in [2, 6–15] and the references therein, comprehensively.

This paper is organized as follow: The rest of this section is devoted to some basic concepts and
results needed for the proof of our main results. In Section 2, we deal with some geometric properties
including starlikeness and convexity of order α of normalized q-Bessel functions. Also, we present
some results regarding Hardy space of normalized q-Bessel functions.

Let U = {z ∈ C : |z| < 1} be the open unit disk andH be the set of all analytic functions on the open
unit disk U. We denote byA the class of analytic functions f : U→ C, normalized by

f (z) = z +
∑
n≥2

anzn. (1.3)

By S we mean the class of functions belonging toA which are univalent in U. Also, for 0 ≤ α < 1,
S?(α) and C(α) denote the subclasses of S consisting of all functions inA which are starlike of order
α and convex of order α in the open unit disk U, respectively. When α = 0, we denote the classes
S?(α) and C(α) by S? and C, respectively. The analytic characterizations of these subclasses can be
given as follows:

S?(α) =

{
f : f ∈ A and<

(
z f ′(z)
f (z)

)
> α for z ∈ U

}
(1.4)

and

C(α) =

{
f : f ∈ A and<

(
1 +

z f ′′(z)
f ′(z)

)
> α for z ∈ U

}
, (1.5)

respectively. In [16], for α < 1, the author introduced the classes:

P(α) = {p ∈ H : ∃η ∈ R such that p(0) = 1,<
[
eiη(p(z) − α)

]
> 0, z ∈ U} (1.6)
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and
R(α) = { f ∈ A : ∃η ∈ R such that<

[
eiη(p(z) − α)

]
> 0, z ∈ U}. (1.7)

When η = 0, the classes P(α) and R(α) will be denoted by P0(α) and R0(α), respectively. Also, for
α = 0 we denote P0(α) and R0(α) simply by P and R, respectively. In addition, the Hadamard product
(or convolution) of two power series

f1(z) = z +
∑
n≥2

anzn and f2(z) = z +
∑
n≥2

bnzn,

is defined by
( f1 ∗ f2)(z) = z +

∑
n≥2

anbnzn.

Let H p (0 < p ≤ ∞) denote the Hardy space of all analytic functions f (z) in U, and define the
integral means Mp(r, f ) by

Mp(r, f ) =


(

1
2π

∫ 2π

0

∣∣∣ f (reiθ)
∣∣∣p dθ

) 1
p
, if 0 < p < ∞

sup0≤θ<2π

∣∣∣ f (reiθ)
∣∣∣ , if p = ∞.

(1.8)

An analytic function f (z) in U, is said to belong to the Hardy space H p where 0 < p ≤ ∞, if the set
{Mp(r, f ) : r ∈ [0, 1)} is bounded. It is important to remind here that H p is a Banach space with the
norm defined by (see [17])

|| f ||p = lim
r→1−

Mp(r, f )

for 1 ≤ p ≤ ∞. On the other hand, we know that H∞ is the class of bounded analytic functions in U,
while H2 is the class of power series

∑
anzn such that

∑
|an|

2 < ∞. In addition, it is known from [17]
thatHq is a subset ofH p for 0 < p ≤ q ≤ ∞. Also, two well-knonw results about the Hardy spaceH p

are the following (see [17]):

< f ′(z) > 0⇒

 f ′ ∈ Hq, ∀q < 1
f ∈ H

q
1−q , ∀q ∈ (0, 1).

(1.9)

In the recent years, the authors in [18–20] proved several interesting results involving univalence,
starlikeness, convexity and close-to-convexity of functions f ∈ A. Later on, many authors investigated
geometric properties of some special functions such as Bessel, Struve, Lommel, Mittag-Leffler and
Wright by using the above mentioned results. Furthermore, Eenigenburg and Keogh determined some
conditions on the convex, starlike and close-to-convex functions to belong to the Hardy space H p

in [21]. On the other hand, the authors in [16,22–27] studied the Hardy space of some special functions
(like Hypergeometric, Bessel, Struve, Lommel and Mittag-Leffler) and analytic function families.

Motivated by the above studies, our main aim is to determine some conditions on the parameters
such that Jackson’s second and third q−Bessel functions are starlike of order α and convex of order α,
respectively. Also, we find some conditions for the hadamard products h(2)

ν (z; q)∗ f (z) and h(3)
ν (z; q)∗ f (z)

to belong toH∞ ∩ R, where h(k)
ν (z; q) are Jackson’s normalized q-Bessel functions which are given by

(2.1) and (2.2) for k ∈ {2, 3}, and f is an analytic function in R. Morever, we investigate the Hardy
space of the mentioned q−Bessel functions.

The next results will be used in order to prove several theorems.
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Lemma 1. [19] Let f is of the form (1.3). If

∞∑
n=2

(n − α) |an| ≤ 1 − α, (1.10)

then the function f (z) is in the class S?(α).

Lemma 2. [19] Let f is of the form (1.3). If

∞∑
n=2

n (n − α) |an| ≤ 1 − α, (1.11)

then the function f (z) is in the class C(α).

Lemma 3. [21] Let α ∈ [0, 1). If the function f ∈ C(α) is not of the form f (z) = k + lz
(
1 − zeiθ

)2α−1
, α , 1

2

f (z) = k + l log
(
1 − zeiθ

)
, α = 1

2

(1.12)

for some k, l ∈ C and θ ∈ R, then the following statements hold:

a. There exist δ = δ( f ) > 0 such that f ′ ∈ Hδ+ 1
2(1−α) .

b. If α ∈
[
0, 1

2

)
, then there exist τ = τ( f ) > 0 such that f ∈ Hτ+ 1

1−2α .

c. If α ≥ 1
2 , then f ∈ H∞.

Lemma 4. [28] P0(α) ∗ P0(β) ⊂ P0(γ), where γ = 1 − 2(1 − α)(1 − β). The value of γ is the best
possible.

In addition to the above Lemmas, in proving our assertions we will use some inequalities and series
sums. It is easy to see that the following inequalites

q(n−1)(n−1+ν) ≤ q(n−1)ν, (1.13)

q
1
2 (n−1)n ≤ q

1
2 (n−1), (1.14)

(q; q)n−1 =

n−1∏
k=1

(1 − qk) > (1 − q)n−1, (1.15)

and

(qν+1; q)n−1 =

n−1∏
k=1

(1 − qν+k) > (1 − qν)n−1 (1.16)

hold true for n ≥ 2, q ∈ (0, 1) and ν > −1. Furthermore, it can be easily shown that the following series
sums ∑

n≥2

rn−1 =
r

1 − r
, (1.17)

∑
n≥2

nrn−1 =
r(2 − r)
(1 − r)2 , (1.18)
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n≥2

n2rn−1 =
r(r2 − 3r + 4)

(1 − r)3 (1.19)

and ∑
n≥2

rn

n
= log

1
1 − r

− r (1.20)

hold true for |r| < 1.

2. Main results

In this section we present our main results. Due to the functions defined by (1.1) and (1.2) do not
belong to the classA, we consider following normalized forms of the q-Bessel functions:

h(2)
ν (z; q) = 2νcν(q)z1− ν2 J(2)

ν (
√

z; q) = z +
∑
n≥2

(−1)n−1q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1
zn (2.1)

and

h(3)
ν (z; q) = cν(q)z1− ν2 J(3)

ν (
√

z; q) = z +
∑
n≥2

(−1)n−1q
1
2 (n−1)n

(q; q)n−1(qν+1; q)n−1
zn, (2.2)

where cν(q) = (q; q)∞
/
(qν+1; q)∞. As a result, these functions are in the class A. Now, we are ready to

present our main results related to the some geometric properties and Hardy class of Jackson’s second
and third q-Bessel functions.

Theorem 1. Let α ∈ [0, 1), q ∈ (0, 1), ν > −1 and

4(1 − q)(1 − qν) − qν > 0. (2.3)

The following assertions are true:

a. If the inequality

α ≥
q2ν + 8(1 − q)2(1 − qν)2 − 8qν(1 − q)(1 − qν)
q2ν + 8(1 − q)2(1 − qν)2 − 6qν(1 − q)(1 − qν)

(2.4)

holds, then the normalized q−Bessel function z 7→ h(2)
ν (z; q) is starlike of order α in U.

b. If the inequality

α ≥
2q3ν − 24q2ν(1 − q)(1 − qν) + 112qν(1 − q)2(1 − qν)2 − 64(1 − q)3(1 − qν)3

2q3ν − 24q2ν(1 − q)(1 − qν) + 80qν(1 − q)2(1 − qν)2 − 64(1 − q)3(1 − qν)3 (2.5)

holds, then the normalized q−Bessel function z 7→ h(2)
ν (z; q) is convex of order α in U.

Proof. a. By virtue of the Silverman’s result which is given in Lemma 1, in order to prove the
starlikeness of order α of the function, z 7→ h(2)

ν (z; q) it is enough to show that the following
inequality

κ1 =
∑
n≥2

(n − α)

∣∣∣∣∣∣ (−1)n−1q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1

∣∣∣∣∣∣ ≤ 1 − α (2.6)
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holds true under the hypothesis. Considering the inequalities (1.13), (1.15) and (1.16) together
with the sums (1.17) and (1.18), we may write that

κ1 =
∑
n≥2

(n − α)

∣∣∣∣∣∣ (−1)n−1q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1

∣∣∣∣∣∣
=

∑
n≥2

(n − α)
q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1

≤
∑
n≥2

(n − α)
q(n−1)ν

4n−1(1 − q)n−1(1 − qν)n−1

=
∑
n≥2

(n − α)
[

qν

4(1 − q)(1 − qν)

]n−1

=
∑
n≥2

n
[

qν

4(1 − q)(1 − qν)

]n−1

− α
∑
n≥2

[
qν

4(1 − q)(1 − qν)

]n−1

=
qν (8(1 − q)(1 − qν) − qν)
(4(1 − q)(1 − qν) − qν)2 − α

qν

4(1 − q)(1 − qν) − qν
.

The inequality (2.4) implies that the last sum is bounded above by 1 − α. As a result, κ1 ≤ 1 − α
and so the function z 7→ h(2)

ν (z; q) is starlike of order α in U.
b. It is known from the Lemma 2 that to prove the convexity of order α of the function z 7→ h(2)

ν (z; q),
it is enough to show that the following inequality

κ2 =
∑
n≥2

n(n − α)

∣∣∣∣∣∣ (−1)n−1q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1

∣∣∣∣∣∣ ≤ 1 − α (2.7)

is satisfied under our assumptions. Now, if we consider the inequalities (1.13), (1.15) and (1.16)
together with the sums (1.18) and (1.19) then we may write that

κ2 =
∑
n≥2

n(n − α)

∣∣∣∣∣∣ (−1)n−1q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1

∣∣∣∣∣∣
=

∑
n≥2

n(n − α)
q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1

≤
∑
n≥2

(n2 − nα)
q(n−1)ν

4n−1(1 − q)n−1(1 − qν)n−1

=
∑
n≥2

(n2 − nα)
[

qν

4(1 − q)(1 − qν)

]n−1

=
∑
n≥2

n2
[

qν

4(1 − q)(1 − qν)

]n−1

− α
∑
n≥2

n
[

qν

4(1 − q)(1 − qν)

]n−1

=
qν

(
64(1 − q)2(1 − qν)2 − 12qν(1 − q)(1 − qν) + q2ν

)
(4(1 − q)(1 − qν) − qν)3 − α

qν (8(1 − q)(1 − qν) − qν)
(4(1 − q)(1 − qν) − qν)2 .
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The inequality (2.5) implies that the last sum is bounded above by 1 − α. As a result, κ2 ≤ 1 − α
and so the function z 7→ h(2)

ν (z; q) is convex of order α in U.
�

Theorem 2. Let α ∈ [0, 1), q ∈ (0, 1), ν > −1 and

(1 − q)(1 − qν) −
√

q > 0. (2.8)

The next two assertions are hold:

a. If the inequality

α ≥
2
√

q(1 − q)(1 − qν) − q −
(
(1 − q)(1 − qν) −

√
q
)2(

(1 − q)(1 − qν) −
√

q
) (

2
√

q − (1 − q)(1 − qν)
) (2.9)

holds, then the normalized q−Bessel function z 7→ h(3)
ν (z; q) is starlike of order α in U.

b. If the inequality

α ≥
4
√

q(1 − q)2(1 − qν)2 − 3q(1 − q)(1 − qν) + q
√

q −
(
(1 − q)(1 − qν) −

√
q
)3

(
(1 − q)(1 − qν) −

√
q
) (

2
√

q(1 − q)(1 − qν) − q −
(
(1 − q)(1 − qν) −

√
q
)2
) (2.10)

holds, then the normalized q−Bessel function z 7→ h(3)
ν (z; q) is convex of order α in U.

Proof. a. By virtue of the Silverman’s result which is given in Lemma 1, in order to prove the
starlikeness of order α of the function, z 7→ h(3)

ν (z; q) it is enough to show that the following
inequality

κ3 =
∑
n≥2

(n − α)

∣∣∣∣∣∣ (−1)n−1q
1
2 n(n−1)

(q; q)n−1(qν+1; q)n−1

∣∣∣∣∣∣ ≤ 1 − α (2.11)

holds true under the hypothesis. Considering the inequalities (1.14), (1.15) and (1.16) together
with the sums (1.17) and (1.18), we may write that

κ3 =
∑
n≥2

(n − α)

∣∣∣∣∣∣ (−1)n−1q
1
2 n(n−1)

(q; q)n−1(qν+1; q)n−1

∣∣∣∣∣∣
=

∑
n≥2

(n − α)
q

1
2 n(n−1)

(q; q)n−1(qν+1; q)n−1

≤
∑
n≥2

(n − α)
q

1
2 (n−1)

(1 − q)n−1(1 − qν)n−1

=
∑
n≥2

n
[ √

q
(1 − q)(1 − qν)

]n−1

− α
∑
n≥2

[ √
q

(1 − q)(1 − qν)

]n−1

=
2
√

q(1 − q)(1 − qν) − q(
(1 − q)(1 − qν) −

√
q
)2 − α

√
q

(1 − q)(1 − qν) −
√

q

The inequality (2.9) implies that the last sum is bounded above by 1 − α. As a result, κ3 ≤ 1 − α
and so the function z 7→ h(3)

ν (z; q) is starlike of order α in U.
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b. It is known from the Lemma 2 that to prove the convexity of order α of the function z 7→ h(3)
ν (z; q),

it is enough to show that the following inequality

κ4 =
∑
n≥2

n(n − α)

∣∣∣∣∣∣ (−1)n−1q
1
2 n(n−1)

(q; q)n−1(qν+1; q)n−1

∣∣∣∣∣∣ ≤ 1 − α (2.12)

is satisfied under the assumptions of Theorem 2. Now, if we consider the inequalities (1.14),
(1.15) and (1.16) together with the sums (1.18) and (1.19) then we may write that

κ4 =
∑
n≥2

n(n − α)

∣∣∣∣∣∣ (−1)n−1q
1
2 n(n−1)

(q; q)n−1(qν+1; q)n−1

∣∣∣∣∣∣
=

∑
n≥2

n(n − α)
q

1
2 n(n−1)

(q; q)n−1(qν+1; q)n−1

≤
∑
n≥2

(n2 − nα)
(
√

q)n−1

(1 − q)n−1(1 − qν)n−1

=
∑
n≥2

n2
[ √

q
(1 − q)(1 − qν)

]n−1

− α
∑
n≥2

n
[ √

q
(1 − q)(1 − qν)

]n−1

=
4
√

q(1 − q)2(1 − qν)2 − 3q(1 − q)(1 − qν) + q
√

q(
(1 − q)(1 − qν) −

√
q
)3 − α

2
√

q(1 − q)(1 − qν) − q(
(1 − q)(1 − qν) −

√
q
)2 .

The inequality (2.10) implies that the last sum is bounded above by 1 − α. As a result, κ4 ≤ 1 − α
and so the function z 7→ h(3)

ν (z; q) is convex of order α in U.
�

Theorem 3. Let α ∈ [0, 1), q ∈ (0, 1) and ν > −1. The following assertions hold true:

a. If the inequality (2.3) is satisfied and

α <
4(1 − q)(1 − qν) − 2qν

4(1 − q)(1 − qν) − qν
, (2.13)

then the function h(2)
ν (z;q)

z is in the class P0(α).
b. If the inequality (2.8) is satisfied and

α <
(1 − q)(1 − qν) − 2

√
q

(1 − q)(1 − qν) −
√

q
, (2.14)

then the function h(3)
ν (z;q)

z is in the class P0(α).

Proof. a. In order to prove h(2)
ν (z;q)

z ∈ P0(α), it is enough to show that <
(

h(2)
ν (z;q)

z

)
> α. For this

purpose, consider the function p(z) = 1
1−α

(
h(2)
ν (z;q)

z − α
)
. It can be easly seen that |p(z) − 1| < 1
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implies <
(

h(2)
ν (z;q)

z

)
> α. Now, using the inequalities (1.13), (1.15), (1.16) and the well known

geometric series sum, we have

|p(z) − 1| =

∣∣∣∣∣∣∣ 1
1 − α

1 +
∑
n≥2

(−1)n−1q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1
zn−1 − α

 − 1

∣∣∣∣∣∣∣
≤

1
1 − α

∑
n≥2

(
qν

4(1 − q)(1 − qν)

)n−1

=
qν

4(1 − α)(1 − q)(1 − qν)

∑
n≥0

(
qν

4(1 − q)(1 − qν)

)n

=
qν

(1 − α)
[
4(1 − q)(1 − qν) − qν

] .
It follows from the inequality (2.13) that |p(z) − 1| < 1, and hence h(2)

ν (z;q)
z ∈ P0(α).

b. Similarly, let define the function t(z) = 1
1−α

(
h(3)
ν (z;q)

z − α
)
. By making use of the inequalities (1.14),

(1.15), (1.16) and the geometric series sum, we can write that

|t(z) − 1| =

∣∣∣∣∣∣∣ 1
1 − α

1 +
∑
n≥2

(−1)n−1q
1
2 n(n−1)

(q; q)n−1(qν+1; q)n−1
zn−1 − α

 − 1

∣∣∣∣∣∣∣
≤

1
1 − α

∑
n≥2

( √
q

(1 − q)(1 − qν)

)n−1

=

√
q

(1 − α)(1 − q)(1 − qν)

∑
n≥0

( √
q

(1 − q)(1 − qν)

)n

=

√
q

(1 − α)
[
(1 − q)(1 − qν) −

√
q
] .

But, the inequality (2.14) implies that |t(z) − 1| < 1. Therefore, we get h(3)
ν (z;q)

z is in the class P0(α),
and the proof is completed.

�

Setting α = 0 and α = 1
2 in the Theorem 3, respectively, we have:

Corollary 1. Let q ∈ (0, 1) and ν > −1. The next claims are true:

i. If 2(1 − q)(1 − qν) − qν > 0, then h(2)
ν (z;q)

z ∈ P.

ii. If (1 − q)(1 − qν) − 2
√

q > 0, then h(3)
ν (z;q)

z ∈ P.

iii. If 4(1 − q)(1 − qν) − 3qν > 0, then h(2)
ν (z;q)

z ∈ P0

(
1
2

)
.

vi. If (1 − q)(1 − qν) − 3
√

q > 0, then h(3)
ν (z;q)

z ∈ P0

(
1
2

)
.

Theorem 4. Let α ∈ [0, 1), q ∈ (0, 1), ν > −1. If the inequalities (2.3) and (2.5) are satisfied, then
h(2)
ν (z; q) ∈ H

1
1−2α for α ∈

[
0, 1

2

)
and h(2)

ν (z; q) ∈ H∞ for α ∈
(

1
2 , 1

)
.
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Proof. It is known that Gauss hypergeometric function is defined by

2F1(a, b, c; z) =
∑
n≥0

(a)n(b)n

(c)n

zn

n!
. (2.15)

Now, using the equality (2.15) it is possible to show that the function z 7→ h(2)
ν (z; q) can not be

written in the forms which are given by (1.12) for corresponding values of α. More precisely, we can
write that the following equalities:

k +
lz

(1 − zeiθ)1−2α = k + l
∑
n≥0

(1 − 2α)n

n!
eiθnzn+1 (2.16)

and
k + l log (1 − zeiθ) = k − l

∑
n≥0

1
n + 1

eiθnzn+1 (2.17)

hold true for k, l ∈ C and θ ∈ R. If we consider the series representation of the function z 7→ h(2)
ν (z; q)

which is given by (2.1), then we see that the function z 7→ h(2)
ν (z; q) is not of the forms (2.16) for α , 1

2
and (2.17) for α = 1

2 , respectively. On the other hand, the part b. of Theorem 1 states that the function
z 7→ h(2)

ν (z; q) is convex of order α under hypothesis. Therefore, the proof is completed by applying
Lemma 3. �

Theorem 5. Let α ∈ [0, 1), q ∈ (0, 1), ν > −1. If the inequalities (2.8) and (2.10) are satisfied, then
h(3)
ν (z; q) ∈ H

1
1−2α for α ∈

[
0, 1

2

)
and h(3)

ν (z; q) ∈ H∞ for α ∈
(

1
2 , 1

)
.

Proof. From the power series representation of the function z 7→ h(3)
ν (z; q) which is given by (2.2) it can

be easily seen that this function is not of the forms (2.16) for α , 1
2 and (2.17) for α = 1

2 , respectively.
Also, we know from the second part of Theorem 2 that the function z 7→ h(3)

ν (z; q) is convex of order α
under our asumptions. As consequences, by applying Lemma 3 we have the desired results. �

Theorem 6. Let q ∈ (0, 1), ν > −1 and f (z) ∈ R be of the form (1.3). The following statements are
hold:

a. If 4(1 − q)(1 − qν) − 3qν > 0, then the hadamard product u(z) = h(2)
ν (z; q) ∗ f (z) ∈ H∞ ∩ R.

b. If (1 − q)(1 − qν) − 3
√

q > 0, then the hadamard product v(z) = h(3)
ν (z; q) ∗ f (z) ∈ H∞ ∩ R.

Proof. a. Suppose that the function f (z) is in R. Then, from the definition of the class R we can
say that the function f ′(z) is in P. On the other hand, from the equality u(z) = h(2)

ν (z; q) ∗ f (z)
we can easily see that u′(z) =

h(2)
ν (z;q)

z ∗ f ′(z). It is known from part iii. of the Corollary 1 that the

function h(2)
ν (z;q)

z ∈ P0

(
1
2

)
. So, it follows from Lemma 4 that u′(z) ∈ P. This means that u(z) ∈ R

and< (u′(z)) > 0. If we consider the result which is given by (1.9), then we have u′(z) ∈ H p for
p < 1 and u(z) ∈ H

q
1−q for 0 < q < 1, or equivalently, u(z) ∈ H p for all 0 < p < ∞.

Now, from the known upper bound for the Caratreodory functions (see [29]), we have that, if the
function f (z) ∈ R, then n |an| ≤ 2 for n ≥ 2. Using this fact together with the inequalities (1.13),
(1.15), (1.16) and the sum (1.20) we get

|u(z)| =
∣∣∣h(2)
ν (z; q) ∗ f (z)

∣∣∣ =

∣∣∣∣∣∣∣z +
∑
n≥2

(−1)n−1q(n−1)(n−1+ν)

4n−1(q; q)n−1(qν+1; q)n−1
anzn

∣∣∣∣∣∣∣
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≤ 1 +
2
ρ1

∑
n≥2

ρn
1

n
= 1 +

2
ρ1

(
log

1
1 − ρ1

− ρ1

)
,

where ρ1 =
qν

4(1−q)(1−qν) . This means that the function z 7→ u(z) is convergent absolutely for |z| = 1
under the hypothesis. On the other hand, we know from [17] that u′(z) ∈ Hq implies the function
u(z) is continuous in U, where U is closure of U. Since U is a compact set, u(z) is bounded in U,
that is, u(z) ∈ H∞.

b. If f (z) ∈ R, then f ′(z) ∈ P. Also, v(z) = h(3)
ν (z; q) ∗ f (z) implies v′(z) =

h(3)
ν (z;q)

z ∗ f ′(z). We known

from part vi. of the Corollary 1 that the function h(3)
ν (z;q)

z ∈ P0

(
1
2

)
. So, by applying Lemma 4 we

get v′(z) ∈ P. That is, v(z) ∈ R and < (v′(z)) > 0. Now, from (1.9), we have that v′(z) ∈ H p

for p < 1 and v(z) ∈ H
q

1−q for 0 < q < 1, or equivalently, v(z) ∈ H p for all 0 < p < ∞. Using
the well-known upper bound for the Caratreodory functions together with the inequalities (1.14),
(1.15), (1.16) and the sum (1.20) we have

|v(z)| =
∣∣∣h(3)
ν (z; q) ∗ f (z)

∣∣∣ =

∣∣∣∣∣∣∣z +
∑
n≥2

(−1)n−1q
1
2 n(n−1)

(q; q)n−1(qν+1; q)n−1
anzn

∣∣∣∣∣∣∣
≤ 1 +

2
ρ2

∑
n≥2

ρn
2

n
= 1 +

2
ρ2

(
log

1
1 − ρ2

− ρ2

)
,

where ρ2 =
√

q
(1−q)(1−qν) . So, we can say that the function z 7→ v(z) is convergent absolutely for |z| = 1

under the stated conditions. Also, it is known from [17] that v′(z) ∈ Hq implies the function v(z)
is continuous in U. Since U is a compact set, we may write that v(z) is bounded in U. Hence
v(z) ∈ H∞ and the proof is completed.

�

Theorem 7. Let α ∈ [0, 1), β < 1, γ = 1 − 2(1 − α)(1 − β), q ∈ (0, 1) and ν > −1. Suppose that the
function f (z) of the form (1.3) is in the class R0(β). The following statements hold true:

a. If the inequalities (2.3) and (2.13) are hold, then u(z) = h(2)
ν (z; q) ∗ f (z) ∈ R0(γ).

b. If the inequalities (2.8) and (2.14) are hold, then v(z) = h(3)
ν (z; q) ∗ f (z) ∈ R0(γ).

Proof. a. If f (z) ∈ R0(β), then this implies that f ′(z) ∈ P0(β). We know from the first part of
Theorem 3 that the function h(2)

ν (z;q)
z is in the class P0(α). Since u′(z) =

h(2)
ν (z;q)

z ∗ f ′(z), taking into
acount the Lemma 4 we may write that u′(z) ∈ P0(γ). This implies that u(z) ∈ R0(γ).

b. Similarly, f (z) ∈ R0(β) implies that f ′(z) ∈ P0(β). It is known from the second part of Theorem 3
that the function h(3)

ν (z;q)
z is in the class P0(α). Using the fact that v′(z) =

h(3)
ν (z;q)

z ∗ f ′(z) and Lemma
4, we have v′(z) ∈ P0(γ). As a result, v(z) ∈ R0(γ).

�

3. Conclusions

In this paper, some geometric properties like starlikeness and convexity of order α of Jackson’s
second and third q-Bessel functions are investigated. Also, some immediate applications of convexity
involving Jackson’s second and third q-Bessel functions associated with the Hardy space of analytic
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functions are presented. In addition, some conditions for the mentioned functions to belong to the class
of bounded analytic functions are obtained.
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