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1. Introduction

The complex characterization of dynamic modelling has been the hot topic in diverse applications
of physics [1–3], mathematical biology [4–11], networks systems [12–18], etc. Especially the fractals
have received great attention in the literature. The notion of fractals occupies an important place in
understanding the structures of objects found in nature [19–21]. Benoit B. Mandelbrot defined fractals
as self-similar objects either deterministic or statistical. Fractals which have different scales of self-
similarity (statistical self-similarity) are examples of random fractals.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020202


3139

Cantor ternary set which was defined by George Cantor [22] in 1883 is an example of a classical
self-similar fractal. During the period 1879–1884, George Cantor published a series of papers [22–27]
in which he discussed many problems in the area of set theory. For detailed study of Cantor ternary set,
one may refer to Peitegen et al. [28], Devaney [29], Beardon [30], Falconar [31, 32]and the references
therein. Kumar et al. [33] introduced 5-adic Cantor one-fifth set and studied its application in string
theory. Furher, Ashish et al. [34] calculated the Hausdorff dimension of a self-similar Cantor middle
one half set and Cantor one-fifth set.

Recently, focus of the researchers is on random Cantor set which is an example of statistical self-
similar fractal. The construction and Hausdorff dimension of a random Cantor set have been discussed
in the books of Falconer [31, 32]. He proved some results on random fractals. In 2009, Pestana et
al. [35] computed Hausdorff dimension of a random Cantor set. In 2015, Islam et al. [36] showed that
generalized Cantor set is both measurable set and Borel set. Recently in 2017, Changhao Chen [37]
determined the almost sure Hausdorff, Packing, Box and Assouad dimensions of a class of random
Cantor sets.

In this paper, we give some basic definitions and lemmas in Section 2 that have been taken into
account during our study. Section 3 is dedicated to the construction of random Cantor one pth sets.
Some properties of random Cantor one pth set are driven in Section 4. We prove our main results in
Section 5. In Section 6, we find the general formula to calculate the Hausdorff dimension of random
Cantor one pth sets and show that Hausdorff dimension of these random Cantor sets is less than that of
Hausdorff dimension of the Cantor one pth sets. Finally, we summarize our findings in Section 7.

2. Preliminaries

This section deals with some definitions and lemmas which are prerequisite for further work.

Definition 2.1. (Random Cantor Set) [31] F =
⋂∞

i=1 Ii is a random Cantor set, where
[0, 1] = I0 ⊃ I1 ⊃ ... is a decreasing sequence of closed sets. The set Ii is the union of 2i disjoint closed
ith level sub-intervals with random length. We suppose that each ith level interval I consists two
(i + 1)th level intervals IL and IR, expressing the left and right hand ends of I, respectively. Now, we
impose statistical self-similarity by the requirement that the ratios |IL |

|I| have independent and identical
probability distribution for every basic interval I of the construction, and similarly for the ratios |IR |

|I| .
Thus obtained random Cantor set F is statistically self-similar, in that the distribution of the set F ∩ I
is same as that of F, but scaled by a factor |I|, for each interval I in the construction.

Definition 2.2. [38] The outer measure of a set K is denoted by m∗(K) and given by

m∗(K) = inf

 ∞∑
i=1

l(Ii)|K ⊆
∞⋃

i=1

Ii

 .
Definition 2.3. [38] A set A is said to be measurable if

m∗(K) = m∗(K ∩ A) + m∗(K ∩ Ac)

holds for any set K.

Definition 2.4. [38] A Borel set is the set that can be formed from open or closed sets by repeatedly
taking countable unions, countable intersections and relative complements.
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Definition 2.5. [32] µ is said to be a measure on R if µ assigns a non - negative number including ∞
to each subset of R and satisfy

(i) µ(φ) = 0,

(ii) C ⊆ D⇒ µ(C) ≤ µ(D),

(iii) if Ei, i = 1, 2, ... is a countable sequence of pairwise disjoint sets, then

µ

 ∞⋃
i=1

Ei

 =

∞∑
i=1

µ(Ei).

Here, µ(E) is the measure or size of the set E.

Definition 2.6. [32] The support of a measure µ is the smallest closed set Y for which µ(R \ Y) = 0
and it is denoted by spt µ.

Definition 2.7. [32] A mass distribution is a measure µ defined on Rn which satisfy 0 < µ(R) < ∞.
Also, µ(E) is called the mass of the set E.

Let Hi be a collection of disjoint Borel subsets of a set I with I = H0, and for each i = 1, 2, ..., we
construct Hi in such a way that each set E in Hi contains a finite number of sets of Hi+1 and itself is
contained in one of the sets of Hi−1. Let Ii be the union of sets in Hi for i = 1, 2, ... . Moreover, the
collection of the sets that are contained in Hi together with subsets of (Rn \ Ii) for some i is denoted
by H.

Lemma 2.8. ( [32], Proposition 1.7) Consider µ, defined on a collection of sets H as described above,
then the definition of µ can be extended to all subsets of Rn so that µ becomes a measure. If K is a Borel
set, then the value of µ(K) is uniquely determined. Also, the support of µ, i.e. spt µ ⊂ I∞ =

⋂∞
i=1 Īi.

Definition 2.9. [39] An experiment is known as a random experiment if the outcomes cannot be
predicted with certainty.

Definition 2.10. [39] The collection of all possible outcomes of a random experiment is said to be a
sample space, denoted by Ω.

Definition 2.11. [39] An event A is a subset of the sample space Ω which belongs to a collection D
of subsets of Ω and satisfy

(a) Ω ∈ D,

(b) A ∈ D =⇒ D \ A ∈ D,

(c) A j ∈ D =⇒
⋃∞

j=1 A j ∈ D, for 1 ≤ j < ∞.

The collectionD is said to be an event space.

Definition 2.12. [32] Consider a δ-cover {Ui} of a Borel set K which covers K, i.e., K ⊂ ∪iUi, where
0 < |Ui| ≤ δ. Define

Hr
δ(K) = inf

 ∞∑
i=1

|Ui|
r : Ui is open, 0 < |Ui| ≤ δ and K ⊂ ∪iUi

 ,
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for each δ > 0 and r ≥ 0. Then, the r-dimensional Hausdorff measure Hr(K) is given by the relation

Hr(K) = lim
δ→0

Hr
δ(K).

Moreover, the Hausdorff dimension of set K is defined by

dimH(K) = sup {r : Hr(K) > 0} .

Definition 2.13. [32] For t ≥ 0, the t-potential at a point x of Rn resulting from the mass distribution
µ on Rn is defined as

φs(x) =

∫
dµ(y)
|x − y|t

.

The t-energy of mass distribution µ is given by

Is(µ) =

∫
φs(x)dµ(x) =

∫
dµ(y)dµ(x)
|x − y|t

.

Definition 2.14. [32] A transformation T : Rn → Rn is a similarity of ratio λ > 0 if |T (x) − T (y)| =
λ |x−y| for all x, y ∈ Rn, i.e. a similarity transforms sets into geometrically similar ones with all lengths
multiplied by the factor λ.

Lemma 2.15. ( [32], Theorem 4.13) Let K be a subset of Rn. If there is a mass distribution µ on K
with t-energy of µ less than∞, i.e. It(µ) < ∞, then Ht(K) = ∞ and dimHK ≥ t.

Lemma 2.16. ( [32], Theorem 9.3) Suppose that the similarities S k onRn satisfy the open set condition,
i.e., there exists a non empty bounded open set V such that

m⋃
k=1

S k(V) ⊂ V,

and ratios 0 < rk < 1 for 1 ≤ k ≤ m. If F is given by the relation

F =

m⋃
k=1

S k(F),

with iterated function system {S 1, S 2, ..., S m}, then dimHF = s, where s satisfy the equation

m∑
k=1

rs
k = 1.

3. Construction of random Cantor one pth set

In this section, we construct random Cantor one 5th set, random Cantor one 7th set and in general
random Cantor one pth set. Throughout the paper, we consider p as an odd number greater than 1, i.e.,
p = 3, 5, 7, ... .
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3.1. Random Cantor one 5th Set

Let us consider constants a, b and c such that 0 < a ≤ b ≤ c < 1
3 . Let Ω be the collection of all

decreasing sequences of sets [0, 1] = H0 ⊃ H1 ⊃ H2 ⊃ ... . Here, the set Hi contains 3i disjoint closed
intervals Ek1,k2,...ki , where k j = 1 or 2 or 3 (1 ≤ j ≤ i) as shown in Figure 1. We see that the interval
Ek1,k2,...ki of Hi consists the three sub - intervals Ek1,k2,...ki,1, Ek1,k2,...ki,2 and Ek1,k2,...ki,3 of Hi+1 in such a way
that left hand ends of Ek1,k2,...ki and Ek1,k2,...ki,1 remain same. Similarly, the right hand ends of Ek1,k2,...ki

and Ek1,k2,...ki,3 coincide. Let us suppose that Mk1,k2,...,ki =
|Ek1 ,k2 ,...ki |

|Ek1 ,k2 ,...ki−1 |
and a ≤ Mk1,k2,...,ki ≤ c,∀ k1, k2, ..., ki.

Here, the ratios Mk1,k2,...,ki are taken as random independent variables. Now, we impose statistical self
similarity on our construction by considering that the length ratios |Ek1 ,k2 ,...ki ,1 |

|Ek1 ,k2 ,...ki |
and |Ek1 ,k2 ,...ki ,2 |

|Ek1 ,k2 ,...ki |
have the same

statistical distribution as do the ratios |Ek1 ,k2 ,...ki ,3 |

|Ek1 ,k2 ,...ki |
for each k1, k2, ...ki. Thus, from above construction, we

say that random Cantor one 5th set F 1
5

has statistical self-similarity and is given by

F 1
5

=

∞⋂
i=1

Hi. (3.1)

Figure 1. Random Cantor one 5th set.

3.2. Random Cantor one 7th Set

Now consider [0, 1] = H0 ⊃ H1 ⊃ H2 ⊃ ... as a decreasing sequence of closed intervals. Hi is the
union of 4i disjoint closed ith level intervals. Then, random Cantor one 7th set is defined as follows

F 1
7

=

∞⋂
i=1

Hi, (3.2)

where each ith-level interval Hi contains 4i disjoint closed intervals Ek1,k2,...ki , where
k j = 1 or 2 or 3 or 4 (1 ≤ j ≤ i) as shown in Figure 2. We take the length of each interval random and
for every interval Ek1,2,...i we impose the same statistical self-similarity as imposed in the construction
of random Cantor one 5th set.
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Figure 2. Random Cantor one 7th set.

3.3. Random Cantor one pth Set

By analogue we construct random Cantor one pth set F 1
p

and impose the same statistical
self-similarity as imposed in above constructions. Let [0, 1] = H0 ⊃ H1 ⊃ H2 ⊃ ... be a decreasing
sequence of closed intervals. Here, Hi is the union of ( p+1

2 )i disjoint closed intervals of ith level
intervals. The random Cantor one pth set is given by

F 1
p

=

∞⋂
i=1

Hi,

where each ith-level interval Hi contains ( p+1
2 )i disjoint closed intervals Ek1,k2,...ki ,

k j = 1 or 2 or ... or p+1
2 (1 ≤ i ≤ p+1

2 ) and p = 3, 5, 7, ... as shown in Figure 3. The length of each
interval is taken random.

Figure 3. Random Cantor one pth set.

Now, we describe this construction in terms of probability. Let us consider constants a1, a2, ..., a p+1
2

such that 0 < a1 ≤ a2 ≤ ... ≤ a p−1
2
< a p+1

2
. Let Ω be the collection of all decreasing sequences of sets

[0, 1] = H0 ⊃ H1 ⊃ H2 ⊃ ... . Here, the set Hi contains ( p+1
2 )i disjoint closed intervals Ek1,k2,...ki , where

k j = 1 or 2 or 3 ... or p+1
2 (1 ≤ j ≤ i) as shown in Figure 3. We see that the interval Ek1,k2,...ki of Hi
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comprises ( p+1
2 ) sub - intervals Ek1,k2,...ki,1, Ek1,k2,...ki,2, ..., Ek1,k2,...ki,

p+1
2

of Hi+1 in such a way that left hand
ends of Ek1,k2,...ki and Ek1,k2,...ki,1 remain same. Similarly, the right hand ends of Ek1,k2,...ki and Ek1,k2,...ki,

p+1
2

coincide. Let us suppose that Mk1,k2,...,ki =
|Ek1 ,k2 ,...ki |

|Ek1 ,k2 ,...ki−1 |
and a1 ≤ Mk1,k2,...,ki ≤ a p+1

2
,∀ k1, k2, ..., ki. Here, the

ratios Mk1,k2,...,ki are considered as random independent variables. Now, we impose some statistical self

similarity on our construction by considering that the length ratios |Ek1 ,k2 ,...,ki ,1 |

|Ek1 ,k2 ,...,ki |
, |Ek1 ,k2 ,...,ki ,2 |

|Ek1 ,k2 ,...,ki |
, ...,

|E
k1 ,k2 ,...,ki ,

p−1
2
|

|Ek1 ,k2 ,...,ki |

have the same statistical distribution as do the ratios
|E

k1 ,k2 ,...,ki ,
p+1

2
|

|Ek1 ,k2 ,...,ki |
for each k1, k2, ...ki. In this way, we

obtain a random Cantor one pth set F 1
p

given by

F 1
p

=

∞⋂
i=1

Hi. (3.3)

4. Properties of random Cantor one pth set

4.1. Random Cantor one pth set is disconnected and contains no intervals

The random Cantor one pth set F 1
p

is disconnected, since in its construction it contains only points
and no intervals.

4.2. Random Cantor one pth set is nowhere dense

A set K is said to be nowhere dense if closure of K has empty interior, i.e., there are no open sets in
its closure. The closure of K is the union of itself and the set of its limit points. Since random Cantor
one pth set has every point as a limit point. So, the closure of random Cantor one pth set is the set itself.
The random Cantor one pth set has empty interior. Thus, random Cantor one pth set is nowhere dense.

4.3. Random Cantor one pth set is both a Borel set and a measurable set

Since, arbitrary intersection of closed sets is closed set. Then, by our construction F 1
p

=
∞⋂

i=1
Hi is a

closed set. Thus, by the definition of Borel set F 1
p

is a Borel set. Also, every Borel set is measurable
set. Hence, random Cantor one pth set is both a Borel set and a measurable set.

5. Main results

Before proving the Theorem 5.1, let Ω be the collection of all decreasing sequences of sets
[0, 1] = H0 ⊃ H1 ⊃ H2 ⊃ ... . Here, the set Hi contains ( p+1

2 )i disjoint closed intervals Ek1,k2,...ki , where
k j = 1 or 2 or 3 ... or p+1

2 (1 ≤ j ≤ i) as shown in Figure 3. The interval Ek1,k2,...ki of Hi comprises ( p+1
2 )

sub - intervals Ek1,k2,...ki,1, Ek1,k2,...ki,2, ..., Ek1,k2,...ki,
p+1

2
of Hi+1 in such a way that left hand ends of Ek1,k2,...ki

and Ek1,k2,...ki,1 remain same. Similarly, the right hand ends of Ek1,k2,...ki and Ek1,k2,...ki,
p+1

2
coincide. Let us

suppose that Mk1,k2,...,ki =
|Ek1 ,k2 ,...ki |

|Ek1 ,k2 ,...ki−1 |
with k j = 1 or 2 or 3 ... or p+1

2 (1 ≤ j ≤ i). Here, the ratios Mk1,k2,...,ki

are considered as independent random variables. Now, we impose some statistical self similarity on
our construction by considering that for each n = 1, 2, ..., p+1

2 , the variables Mk1,k2,...,ki,n =
|Ek1 ,k2 ,...,ki ,n |

|Ek1 ,k2 ,...,ki |
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have the same statistical distribution, where p = 3, 5, 7, ..., p+1
2 , e.i. the length ratios |Ek1 ,k2 ,...,ki ,1 |

|Ek1 ,k2 ,...,ki |
,

|Ek1 ,k2 ,...,ki ,2 |

|Ek1 ,k2 ,...,ki |
, ...,

|E
k1 ,k2 ,...,ki ,

p−1
2
|

|Ek1 ,k2 ,...,ki |
have the same statistical distribution as do the ratios

|E
k1 ,k2 ,...,ki ,

p+1
2
|

|Ek1 ,k2 ,...,ki |
for every

sequence k1, k2, ...ki, where k j = 1 or 2 or 3 ... or p+1
2 (1 ≤ j ≤ i) (see Subsection 3.3 and Figure 3).

Theorem 5.1. The random Cantor one pth set F 1
p
, constructed in Subsection 3.3 has Hausdorff

dimension r i.e., dimHF 1
p

= r, where r is the solution of the expectation equation

E(Mr
1 + Mr

2 + ... + Mr
( p+1

2 )
) = 1. (5.1)

Also, F 1
p

has probability 1.

Proof. For E ∈ Hi, we mean that the interval E is the ith -level interval Ek1,k2,...ki of Hi. For such type
of intervals, we take random variables EL1 = Ek1,k2,...ki,1, EL2 = Ek1,k2,...ki,2 and EL p+1

2

= Ek1,k2,...ki,
p+1

2
.

Also, let E(Y |Di) be the conditional expectation of a random variable Y givenDi (independent random
variables), where Di = Mk1,k2,...k j for all sequences k1, k2, ...k j with j ≤ i; i = 1, 2, ..., p+1

2 . Let Ek1,k2,...ki

be an interval of Hi. Then for r > 0

E(|Ek1,k2,...,ki,1|
r + |Ek1,k2,...,ki,2|

r + ... + |Ek1,k2,...,ki,
p+1

2
|r
∣∣∣Di)

= E(Mr
k1,k2,...ki,1 + Mr

k1,k2,...,ki,2 + ... + Mr
k1,k2,...,ki,

p+1
2

)|Ek1,k2,...,ki |
r

= E(Mr
1 + Mr

2 + ... + Mr
p+1

2
)|Ek1,k2,...,ki |

r.

Taking summation over all the intervals in Hi, since ratios are identically distributed, we have

E

 ∑
E∈Hi+1

|E|r
∣∣∣Di

 =
∑
E∈Hi

|E|rE(Mr
1 + Mr

2 + ... + Mr
p+1

2
). (5.2)

Thus, the unconditional expectation satisfy

E

 ∑
E∈Hi+1

|E|r
 = E

∑
E∈Hi

|E|r
 E(Mr

1 + Mr
2 + ... + Mr

p+1
2

). (5.3)

As r is the solution of (5.1), (5.2) reduces to

E

 ∑
E∈Hi+1

|E|r
∣∣∣Di

 =
∑
E∈Hi

|E|r. (5.4)

(5.4) gives that the sequence given by
Yi =

∑
E∈Hi

|E|r, (5.5)

of random variables is a martingale with respect to Hi. Thus Yi converges to a random variable Y
with probability 1 as i → ∞ satisfying E(Y) = E(Y0) = E(1r) = 1. Particularly, 0 ≤ Y < ∞ with
probability 1 and Y = 0 with probability q, where q < 1. But Y = 0 iff all the ( p+1

2 ) sums
∑

E∈Hi∩E1
|E|r,∑

E∈Hi∩E2
|E|r and

∑
E∈Hi∩E p+1

2

|E|r converge with probability 1 as i → ∞ to 0, where E1, E2, ...., E p+1
2

AIMS Mathematics Volume 5, Issue 4, 3138–3155.
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are closed intervals of H1. Also, this happens with probability q
p+1

2 due to our statistical self-similar
construction. Hence, q = q

p+1
2 ⇒ q = 0. Thus, 0 < Y < ∞ with probability 1. Thus, there exists

random numbers N1,N2,..., N p+1
2

such that

0 < N1 ≤ N2 ≤ ... ≤ N p−1
2
≤ Yi =

∑
E∈Hi

|E|r ≤ N p+1
2
< ∞ ∀ i. (5.6)

We get

|E| ≤ (
p + 1

2
)−i f or all E ∈ Hi.

So, Hr
δ(F p+1

2
) ≤

∑
E∈Hi
|E|r ≤ N p+1

2
if ( p+1

2 )
−i
< δ⇒ −i log p+1

2 < log δ.

i.e. i > − log δ
log p+1

2
which gives Hr(F) ≤ N p+1

2
.

Thus, dimHF p+1
2
≤ r, with probability 1.

To prove the reverse inequality, a random mass distribution µ on random set F 1
p

is introduced. Let us
consider a random variable µ(E) for E ∈ Hi as follows:

µ(E) = lim
j→∞

{∑
|K|r : K ∈ H j and K ⊂ E

}
Also, from (5.5), this limit exists, where 0 < µ(E) < ∞ having probability 1. Further, if E ∈ Hi,

E(µ(E)|Di) = |E|r. (5.7)

Then, µ = µ(EL1) + µ(EL2) + ... + µ(EL p+1
2

), i.e. µ is additive on ith - level intervals for all i. By using

Lemma 2.8, the mass distribution µ can be extended to a mass distribution with support contained in
∩∞i=0Hi = F 1

p
.

Now, we estimate the expectation of the t-energy of µ and fix 0 < t < r. For x1, x2, ..., x p+1
2
∈ F p+1

2
, let

x1∧x2∧...∧x p+1
2

be an ith-level common interval of x1, x2, ..., x p+1
2

for some greatest integer i. The (i+1)th-
level sub-intervals EL1 , EL2 , ..., EL p+1

2

of an ith-level interval E are set apart with a distance of at least

d|E| with d = 1− ( p+1
2 )a p+1

2
, where a1, a2, ..., a p+1

2
are constants such that 0 < a1 ≤ a2 ≤ ... ≤ a p+1

2
< p+1

2 .

Thus,∫ ∫
...

∫
x1∧x2∧...∧x p+1

2
=E︸                        ︷︷                        ︸

p+1
2

(|x1 − x2|
−t + |x2 − x3|

−t + ... + |x p−1
2
− x p+1

2
|−t)dµ(x1)dµ(x2)...dµ(x p+1

2
)

=
p + 1

2

∫
x1∈EL1

∫
x2∈EL2

|x1 − x2|
−tdµ(x1)dµ(x2) + · · ·

+
p + 1

2

∫
x p−1

2
∈EL p−1

2

∫
x p+1

2
∈EL p+1

2

|(x p−1
2
− x p+1

2
|−tdµ(x p−1

2
)dµ(x p+1

2
)

≤
p + 1

2
d−t|E|−tµ(EL1)µ(EL2) +

p + 1
2

d−t|E|−tµ(EL2)µ(EL3) + · · · +
p + 1

2
d−t|E|−tµ(EL p−1

2

)µ(EL p+1
2

)
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=
p − 1

2
d−t|E|−t[µ(EL2){µ(EL1)+µ(EL3)}+µ(EL4){µ(EL3)+µ(EL5)}+ · · ·+µ(EL p−1

2

){µ(EL p−3
2

)+µ(EL p+1
2

)}]

If I ∈ Hi,

E[
∫ ∫

...

∫
x1∧x2∧...∧x p+1

2
=E︸                        ︷︷                        ︸

p+1
2

(|x1 − x2|
−t + |x2 − x3|

−t + ... + |x p−1
2
− x p+1

2
|−t)dµ(x1)dµ(x2)...dµ(x p+1

2
)|Di+1]

≤
p + 1

2
d−t|E|−t{E(µ(EL1)|Di+1)E(µ(EL2)|Di+1) + E(µ(EL2)|Di+1)E(µ(EL3)|Di+1) + · · ·

+E(µ(EL p−1
2

)|Di+1)E(µ(EL p+1
2

)|Di+1)}

≤
p + 1

2
d−t|E|−t{|EL1 |

r|EL2 |
r + |EL2 |

r|EL3 |
r + · · · + |EL p−1

2

|r|EL p+1
2

|r}

=
p + 1

2
d−t|E|−t{|EL2 |

r(|EL1 |
r + |EL3 |

r) + |EL4 |
r(|EL3 |

r + |EL5 |
r) + · · · + |EL p−1

2

|r(|EL p−3
2

|r + |EL p+1
2

|r)}

=
p + 1

2
d−t|E|−t

(
p − 1

2
|E|2r

)

=
p2 − 1

4
d−t|E|2r−t.

Using (5.7), since expectation is independent from Di and using unconditional property of
expectation, we have the inequality

E{
∫ ∫

...

∫
x1∧x2∧...∧x p+1

2
=E︸                        ︷︷                        ︸

p+1
2

(|x1 − x2|
−t + |x2 − x3|

−t + ... + |x p−1
2
− x p+1

2
|−t)dµ(x1)dµ(x2)...dµ(x p+1

2
)}

≤
p2 − 1

4
d−tE(|E|2r−t).

Taking summation over E ∈ Hi,

E{
∫ ∫

...

∫
x1∧x2∧...∧x p+1

2
=E︸                        ︷︷                        ︸

p+1
2

(|x1 − x2|
−t + |x2 − x3|

−t + ... + |x p−1
2
− x p+1

2
|−t)dµ(x1)dµ(x2)...dµ(x p+1

2
)}

≤
p2 − 1

4
d−tE

∑
E∈Hi

|E|2r−t


=

p2 − 1
4

d−tδi,
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where δ = E(M2r−t
1 + M2r−t

2 + ... + M2r−t
p+1

2

). Then, by using repeatedly (5.3), we have δ < 1. Then,

E{
∫ ∫

...

∫
x1∧x2∧...∧x p+1

2
=E︸                        ︷︷                        ︸

p+1
2

(|x1 − x2|
−t + |x2 − x3|

−t + ... + |x p−1
2
− x p+1

2
|−t)dµ(x1)dµ(x2)...dµ(x p+1

2
)}

= E{
∞∑

i=0

∑
E∈Hi

∫ ∫
...

∫
x1∧x2∧...∧x p+1

2
=E︸                        ︷︷                        ︸

p+1
2

(|x1− x2|
−t + |x2− x3|

−t + ...+ |x p−1
2
− x p+1

2
|−t)dµ(x1)dµ(x2)...dµ(x p+1

2
)}

≤
p2 − 1

4
d−t

∞∑
i=0

∑
E∈Hi

δi < ∞.

Thus, with probability 1, µ has finite t-energy. Also, since 0 < µ(F 1
p
) = µ([0, 1]) and has probability

1, therefore, using Lemma 2.15, we have dimHF 1
p
≥ t. This gives dimHF 1

p
≥ r with probability 1.

Hence, Hausdorff dimension of random Cantor one pth set is r, i.e., dimHF 1
p

= r with probability
1. �

Corollary 5.2. If the random ratios M1,M2, ...,M p+1
2

are constants instead of variables, then (5.1)
reduces to

E(Mr
1 + Mr

2 + ... + Mr
p+1

2
) = Mr

1 + Mr
2 + ... + Mr

p+1
2

= 1, (5.8)

which is similarity dimension formula for a self-similar fractal.

Corollary 5.3. For p = 5, the random cantor one 5th set F 1
5

given by (3.1) satisfy dimHF 1
5

= r, where
r is the solution of the expectation equation

E(Mr
1 + Mr

2 + Mr
3) = 1,

with probability 1.

Corollary 5.4. Let P be the probability measure defined on a family of subsets of ω in such a way that
the ratios Mk1,k2,...,ki =

|Ek1 ,k2 ,...ki |

|Ek1 ,k2 ,...ki−1 |
, with k j = 1 or 2 or... or p+1

2 , 1 ≤ i ≤ p+1
2 are random variables. We

take V for random number of positive ratios M1,M2, ...,M p+1
2

. If q is the probability of being empty of
random cantor set F 1

p
described above, then the polynomial equation

h(t) =

p+1
2∑

i=0

P(V = i)ti = t, (5.9)

has t = q as its smallest non - negative solution.

Proof. We prove this corollary by combining the Theorem 5.1 and Lemma 2.16. We see that if there is
positive probability that V = 0, then there is a positive probability that H1 = φ and therefore, we have
F 1

p
= φ. This emptiness happens if each of the component sets in H1 becomes empty. By the statistical

self similarity of the construction, if the probability of this happening is q, then q = h(q). Moreover,
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if q is any non negative solution of (5.9), then by induction q ≥ P(Hi = φ) ∀ i. This happened only
when i = 0 and if it holds for some i, then as h is increasing, q = h(q) ≥ h(P(Hi = φ)) = P(Hi+1 = φ).
If F 1

p
= φ, then Hi = φ for some i, so q ≥ P(F 1

p
= φ), thus the probability of being empty of random

Cantor set is the least non-negative solution of q = h(q). �

Before moving on the next result, let us consider that the interval [0, 1] is divided into p sub intervals
each of length 1

p , p = 3, 5, 7, ... . Now, we construct the random Cantor one pth set F 1
p

by tossing a
unbiased coin and including the interval if head appears on the coin. Let u be the probability of getting
head.

Theorem 5.5. The probability of an empty random Cantor one pth set which is constructed by tossing
a unbiased coin and including the interval if head appears on the coin is 1. i.e.,

P(F 1
p

= φ) = 1.

Proof. The random Cantor one pth set F 1
p

is empty i.e., F 1
p

= φ if following ( p+1
2 + 1) events happen :

A0 : None of the intervals [0, 1
p ], [ 2

p ,
3
p ], · · · , [ p−1

p , 1] is included.
A1 : Exactly one interval is included and F 1

p
is eventually empty below that interval.

A2 : Exactly two of them are included and F 1
p

is eventually empty below both of them.

· · ·

· · ·

· · ·

A p+1
2

: All ( p+1
2 ) intervals are included and F 1

p
is eventually empty below all of them.

As u is the probability of getting head and random Cantor one pth set is constructed by including the
intervals if coin shows head. Let v be the probability of being empty of random Cantor one pth set. i.e.,
P(F 1

p
= φ) = v.

The above events have following probabilities:
P(A0) = (1 − u)

p+1
2 ,

P(A1) =

( p+1
2

1

)
u1(1 − u)( p+1

2 −1)v,

P(A2) =

( p+1
2

2

)
u2(1 − u)( p+1

2 −2)v2,

· · ·

· · ·

· · ·

P(A p+1
2

) =

( p+1
2

p+1
2

)
u

p+1
2 (1 − u)( p+1

2 −
p+1

2 )v
p+1

2 ,

i.e.,

P(A p+1
2

) =

( p+1
2

n

)
un(1 − u)( p+1

2 −n)vn; n = 0, 1, 2, ...,
p + 1

2
,
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where p is an odd number greater than 1.
From Corollary 5.4, v = P(F 1

p
= φ) is the solution of the equation

t = (1 − u)
p+1

2 +

( p+1
2

1

)
u1(1 − u)( p+1

2 −1)t + · · · + u
p+1

2 t
p+1

2

or

t =

p+1
2∑

n=0

( p+1
2

n

)
un(1 − u)( p+1

2 −n)tn. (5.10)

Now, we find the nature of solutions of (5.10).
For p = 3, solutions of (5.10) are 1 and (1−u

u )2. In this case, ( 1−u
u )2 > 1 for some u ∈ [0, 1] which is not

possible since v a probability. i.e., 0 ≤ v ≤ 1. Only possible solution is 1.
Now, for p = 5, solutions of (5.10) are 1, u(2u−3)+

√
4u−3u2

2u2 and u(2u−3)−
√

4u−3u2

2u2 . For u < 1
2 ,

u(2u−3)+
√

4u−3u2

2u2 > 1

and u(2u−3)−
√

4u−3u2

2u2 < −1 Thus, in this case also, the only possible solution is 1.
For p = 7 and u = 1

5 ; we obtain the real roots of (5.10) as 1, 1.755. Again, the only possible solution
is 1. For p = 9 and u = 1

6 ; we obtain the real roots of (5.10) as 1,−15.362 and 1.548. Thus, the only
possible solution is 1.
Hence, in general, we can say that the only possible solution of (5.10) is 1 for any p. This implies that

P(F 1
p

= φ) = 1.

Also, we see P(F 1
p

= φ)→ 0 as u→ 1. �

6. Hausdorff dimension of random Cantor one pth set

Since any empty random set is dimensionless. So, we calculate the Hausdorff dimension of a non
empty random Cantor one pth set. We divide the unit interval [0, 1] into p equal sub-intervals and
construct random Cantor one pth set by including intervals randomly. Here, we construct our random
Cantor one pth set by tossing a unbiased coin and including the interval if head appears on the coin.

Theorem 6.1. The Hausdorff dimension r of a nonempty random Cantor one pth set F 1
p

which is
constructed by tossing a unbiased coin and including the interval if head appears on the coin, given

by r =
log( p+1

2 u)
log p . i.e.,

dimH(F 1
p
) =

log( p+1
2 u)

log p
, (6.1)

where u is the probability of getting head.

Proof. Let u be the probability of getting head. Each interval has length 1
p i.e. constant. To construct

random Cantor one pth set, following p+1
2 events happen :

A1 : Exactly one interval from [0, 1
p ], [ 2

p ,
3
p ], · · · , [ p−1

p , 1] is included.
A2 : Exactly two of them are included.

· · ·

· · ·
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· · ·

A p+1
2

: All ( p+1
2 ) intervals are included.

As u is the probability of getting head and random Cantor one pth set is constructed by including the
intervals if coin shows head. The above events have following probabilities:

P(A1) =

( p+1
2

1

)
u1(1 − u)( p+1

2 −1),

P(A2) =

( p+1
2

2

)
u2(1 − u)( p+1

2 −2),

· · ·

· · ·

· · ·

P(A p+1
2

) =

( p+1
2

p+1
2

)
u

p+1
2 (1 − u)( p+1

2 −
p+1

2 ),

i.e.,

P(A p+1
2

) =

( p+1
2

n

)
un(1 − u)( p+1

2 −n); n = 1, 2, ...,
p + 1

2
.

Let r be the Hausdorff dimension of random Cantor one pth set. Then by Theorems 5.1 and 5.5, r
satisfy the equation

E(Ar
1 + ... + Ar

( p+1
2 )

) = 1, (6.2)

where {An, n = 1, 2, ..., p+1
2 } are the events. Using expectation properties and Corollary 5.4, (6.2)

reduces to
p−rP(A1) + 2p−rP(A2) + 3p−rP(A3) + · · · + (

p + 1
2

)p−rP(A p+1
2

) = 1.

This implies

p−r{

( p+1
2

1

)
u1(1 − u)

p+1
2 −1 + 2

( p+1
2

2

)
u2(1 − u)( p+1

2 −2) + 3.
( p+1

2

3

)
u3(1 − u)( p+1

2 −3)

+ · · · + (
p + 1

2
)u

p+1
2 (1 − u)0} = 1. (6.3)

(6.3) reduces to

p−r (p + 1)
2

u{(1 − u)
p+1

2 −1 +
(p − 1)

2
u1(1 − u)( p+1

2 −2) +
(p − 1)(p − 3)

23 u2(1 − u)( p+1
2 −3) + · · · + u

p−1
2 } = 1.

By solving this, we have

p−r (p + 1)
2

u = 1

⇒
(p + 1)

2
u = pr
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⇒ r log p = log(
(p + 1)

2
u)

⇒ r =
log( (p+1)

2 u)
log p

. (6.4)

Hence, Hausdorff dimension r of a random Cantor one pth set F 1
p

where p = 3, 5, 7, ... . is given
by (6.4). �

6.1. Hausdorff dimension of random Cantor set

Put p = 3 in (6.3), we have
3−r

{
2u(1 − u) + 2u2

}
= 1

⇒ 3−r2u = 1

⇒ r =
log(2u)
log 3

.

For u = 2
3 , we have r = 0.2619 which is Hausdorff dimension of a random Cantor set.

To obtain the Hausdorff dimension of classical Cantor set, we take u = 1. Then r =
log(2)
log 3 = 0.6309.

6.2. Hausdorff dimension of random Cantor one 5th set

Substituting p = 5 in (6.3), we have

5−r
{
3u(1 − u)2 + 6u2(1 − u) + 3u3

}
= 1

5−r3u
{
(1 − u)2 + 2u(1 − u) + u2

}
= 1

⇒ 5−r3u = 1

⇒ r =
log(3u)
log 5

.

Now, for u = 3
5 , r = 0.3652. For u = 1, we have r =

log(3)
log 5 = 0.6826 which is Hausdorff dimension of

Cantor one 5th set.

Remark 6.2. The Subsections 6.1 and 6.2 show that the Hausdorff dimension of a random Cantor one
pth set is less than that of the Hausdorff dimension of a Cantor one pth set.

7. Conclusions

In this paper, we construct random Cantor one pth sets. Some properties, results and Hausdorff
dimension of random Cantor one pth sets have been obtained. The following conclusions are drawn
out from our paper:

1. We generalize the random Cantor set and construct random Cantor one pth set.

2. Similar like Cantor one pth set, the random Cantor one pth set is connected, nowhere dense, Borel
and measurable set.
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3. Theorem 1 may be used to obtain the Hausdorff dimension for random fractals, i.e., random
Seirpinski Gasket, random Koch Curve etc.

4. An empty random Cantor one pth set has probability 1.

5. We have obtained a general formula log( p+1
2 u)

log p to compute the Hausdorff dimension of random
Cantor one pth set, where u is the probability of getting head (see, Section 6).

6. Hausdorff dimension of a random Cantor one pth set is less than that of Hausdorff dimensions of
the corresponding Cantor one pth set.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. J. Wang, C. Huang, L. Huang, Discontinuity-induced limit cycles in a general planar piecewise
linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162–178.

2. H. Hu, X. Zou, Existence of an extinction wave in the fisher equation with a shifting habitat, Proc.
Amer. Math. Soc., 145 (2017), 4763–4771.

3. H. Hu, T. Yi, X. Zou, On spatial-temporal dynamics of Fisher-KPP equation with a shifting
environment, Proc. Amer. Math. Soc., 148 (2020), 213–221.

4. H. Hu, X. Yuan, L. Huang, et al. Global dynamics of an SIRS model with demographics and
transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019),
5729–5749.

5. Y. Tan, C. Huang, B. Sun, et al. Dynamics of a class of delayed reaction-diffusion systems with
Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115–1130.

6. C. Huang, X. Long, L. Huang, et al. Stability of almost periodic Nicholson’s blowflies model
involving patch structure and mortality terms, Canad. Math. Bull., 2019.

7. C. Huang, H. Zhang, J. Cao, et al. Stability and Hopf bifurcation of a delayed prey-predator model
with disease in the predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950091.

8. C. Huang, Y. Qiao, L. Huang, et al. Dynamical behaviors of a food-chain model with stage structure
and time delays, Adv. Differential Equations, 186 (2018), 1–26.

9. C. Huang, H. Zhang, Periodicity of non-autonomous inertial neural networks involving
proportional delays and non-reduced order method, Int. J. Biomath., 12 (2019) 1950016.

10. C. Huang, Z. Yang, T. Yi, et al. On the basins of attraction for a class of delay differential equations
with non-monotone bistable nonlinearities, J. Differential Equations, 256 (2014), 2101–2114.

11. C. Huang, H. Zhang, L. Huang, Almost periodicity analysis for a delayed Nicholson’s blowflies
model with nonlinear 433 density-dependent mortality term, Commun. Pure Appl. Anal., 18
(2019), 3337–3349.

AIMS Mathematics Volume 5, Issue 4, 3138–3155.



3154

12. G. Rajchakit, A. Pratap, R. Raja, et al. Hybrid control scheme for projective Lag synchronization
of Riemann-Liouville sense fractional order memristive BAM neural networks with mixed delays,
Mathematics, 7 (2019), 759.

13. C. Huang, R. Su, J. Cao, et al. Asymptotically stable high-order neutral cellular neural networks
with proportional delays and D operators, Math. Comput. Simul., 171 (2020), 127–135.

14. C. Song, S. Fei, J. Cao, et al. Robust synchronization of fractional-order uncertain chaotic systems
based on output feedback sliding mode control, Mathematics, 7 (2019), 599.

15. X. Long, S. Gong, New results on stability of Nicholson’s blowflies equation with multiple pairs of
time-varying delays, Appl. Math. Lett., 100 (2020), 1–6.

16. C. Huang, B. Liu, New studies on dynamic analysis of inertial neural networks involving non-
reduced order method, Neurocomputing, 325 (2019), 283–287.

17. C. Huang, B. Liu, X. Tian, L. Yang and X. Zhang, Global convergence on asymptotically almost
periodic SICNNs with nonlinear decay functions, Neural Process. Lett., 49 (2019), 625–641.

18. X. Yang, S. Wen, Z. Liu, et al. Dynamic properties of foreign exchange complex network,
Mathematics, 7 (2019), 832.

19. S. Kumari, R. Chugh, J. Cao, et al. Multi fractals of generalized multivalued iterated function
systems in b-Metric spaces with applications, Mathematics, 7 (2019), 967.

20. S. Kumari, M. Kumari, R. Chugh, Dynamics of superior fractals via Jungck SP orbit with s-
convexity, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 46 (2019), 344–365.

21. S. Kumari, M. Kumari, R. Chugh, Graphics for complex polynomials in Jungck-SP orbit, IAENG
Int. J. Appl. Math., 49 (2019), 568–576.

22. G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 5, Math Ann., 21 (1883), 545–
591.

23. G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 6, Math Ann., 23 (1884), 453–
488.

24. G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 1, Math Ann., 15 (1879), 1–7.

25. G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 2, Math Ann., 17 (1880), 355–
358.

26. G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 3, Math Ann., 20 (1882), 113–
121.

27. G. Cantor, Uber unendliche lineare Punktmannichfaltigkeiten. Part 4, Math Ann., 21 (1883), 51–
58.

28. H. O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New Frontiers of Science, 2 Eds. New
York: Springer Verlag, 2004.

29. R. L. Devaney, A First Course in Chaotic Dynamical Systems, Addison Wesley Pub. Company, Inc,
Holland, 1992.

30. A. F. Beardon, On the Hausdorff dimension of general Cantor sets, Proc. Camb. Phil. Soc., 61
(1965), 679–694.

AIMS Mathematics Volume 5, Issue 4, 3138–3155.



3155

31. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2 Eds., John Wiley
and Sons, Chichester, 1990.

32. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 3 Eds., John Wiley
and Sons, Chichester, 2014.

33. A. Kumar, M. Rani, R. Chugh, New 5-adic Cantor sets and fractal string, SpringerPlus, 2 (2013),
1–7.

34. Ashish, M. Rani, R. Chugh, Study of Variants of Cantor Sets Using Iterated Function System, Gen.
Math. Notes, 23 (2014), 45–58.

35. D. D. Pestana, S. M. J. Aleixo, L. Rocha, HausdorffDimension of the Random Middle Third Cantor
Set, Proceedings of the ITI 2009 31st Int. Conf. on Information Technology Interfaces, June 22–25,
Cavtat, Croatia, 2009.

36. M. J. Islam, M. S. Islam, Lebesgue Measure of Generalized Cantor Set, Ann. Pure Appl. Math., 10
(2015), 75–87.

37. C. Chen. A class of random Cantor sets, Real Anal Exchange, 42 (2017), 79–120.

38. H. L. Royden, P. M. Fitzpatrick, Real Analysis, 4 Eds., Pearson Education, Inc, China, 2010.

39. P. Sahoo, Probability and Mathematical Statistics, University of Louisville, USA, 2013.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 4, 3138–3155.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Construction of random Cantor one pth set
	Random Cantor one 5th Set
	 Random Cantor one 7th Set
	 Random Cantor one pth Set

	Properties of random Cantor one pth set
	 Random Cantor one pth set is disconnected and contains no intervals
	Random Cantor one pth set is nowhere dense
	 Random Cantor one pth set is both a Borel set and a measurable set

	Main results
	Hausdorff dimension of random Cantor one pth set
	Hausdorff dimension of random Cantor set
	Hausdorff dimension of random Cantor one 5th set

	Conclusions

