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Abstract: In this study, a comparison between the modified homotopy analysis transform method
(MHATM) and residual power series method (RPSM) have been given for solving time-fractional
coupled shallow water equations (SWEs). The time-fractional coupled SWEs are a system of PDEs that
describe the flow below a pressure surface in a fluid is considered. Rigorous convergence analysis and
error estimated have been exhibited for both the featured methods. The results obtained by MHATM
and RPSM are then compared with well-known exact solutions. To show the effectiveness and
advantage of the featured techniques the numerical simulation of coupled SWEs has been represented
graphically with tabulated data. However, the results indicate that MHATM provides more accurate
value than RPSM for solving fractional coupled SWEs.

Keywords: fractional shallow water equation; fractional power series; RPSM; HATM; homotopy
polynomials; optimal value
Mathematics Subject Classification: 26A33, 34A08, 46M22

1. Introduction

Recent research focused on the applications of the Fractional Calculus (FC) in various fields which
includes the modeling and analysis of complex real-world problems. Very recently, numerous papers
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appeared with the various type of applications of fractional calculus [1-22]. Further, computational
aspects of various problems can be found in [23-26].

The SWEs are a system of PDEs that illustrate the flow below a pressure surface in a fluid, the
motion of water bodies and flow in vertically well-mixed water bodies. The general characteristics
of shallow water flows are that the vertical dimension is much smaller than the typical horizontal
scale, the fluid is homogeneous and incompressible, the flow is steady, and the pressure distribution is
hydrostatic. The SWEs can be utilized to model the hydrodynamics of lakes, ocean currents, tidal flats,
coastal zones and to study dredging feasibility. Differently, it can also be used to investigate several
physical phenomena [27]. Many geophysical flows are modelled by variants of the SWEs.

The popular form of SWEs can be derived from the Benny system.

The Benny equations are characterized as [28]

W + u(x’ y, t)(?u(;;y,t) _ 6u(g),)y,t) Oy Bu(g;',t)dT + % — O,

Ohx,H) | 9 (¥ duxb) —
ot +6xf0 dy dr =0,

(1.1)

where h(x, 1), u(x, y, t) denotes the free surface and the horizontal velocity component respectively and
y is the rigid bottom. If the horizontal velocity component u is independent of the height 4 the (1.1)
reduced to the equation system in the classical water theory corresponding to the case of irrational
motion. The Equivalent wave motion is the coupled SWEs as

D,h(x,t) + u(x, t)Dh(x, t) + h(x, )D,u(x, t) = 0,

Du(x,t) + u(x,t)Du(x,t) + Dh(x,t) =0, (1.2)
subject to the ICs
h(x,0) = f(x), u(x,0) = g(x). (1.3)
In this article, let us suppose the time-fractional order coupled SWEs of the form
Dh(x, 1) + u(x, )D,h(x, £) + h(x, )Du(x, 1) = 0, (1.4)
DPu(x, ) + u(x, )Du(x, 1) + Dyh(x, t) = 0. ‘
subject to the initial conditions
h(x,0) = f(x), u(x,0) = g(x). (1.5)

Here 0 < 4 < 1and 0 < 8 < 1 are the parameters representing the orders of the fractional time
derivative. The fractional derivative is considered in the Caputo sense [29,30].

Recently, Kumar [31] gave the solutions of time-fractional nonlinear SWEs by using the HPM.
The essential target of this work is to present a comparative study between the HATM [32-34] with
modification and RPSM [35-39] through the solution of fractional SWEs (1.4). The MHATM is a
combination of LTM and the HAM [40-44] with homotopy polynomials [45]. Where as RPSM is an
analytical method based on power series expansion without linearization, perturbation or discretization.
The benefits of the RSPM as compared to the other classical power series techniques is that the RPSM
does not require any conversion while switching from the low-order to the higher-order. Also, it can
switch from simple linearity to complex nonlinearity. This means that the RSPM can apply directly to
the problems by considering a suitable initial guess approximation.
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2. RPSM for time-fractional SWEs

Let us assume the time-fractional SWEs (1.4) with the ICs

2
h(x,0) = (x —2x+1) and u(x,0)= F1-x. (2.1)
In this case, the exact solution of Eq (1.4) for standard motion, i.e. 4 = 1 and 8 = 1, is given by [28]
(x—1)? 2(x—-1)
h(x,t) = —— d ,1) = . 2.2
(x,1) ou—1p M u(x, 1) 3= 1) (2.2)

Further, starting with the ICs

fo(x)Zh(x,O)Zé(x2—2x+1 , 23)
Qo) = u(x,0) = u(x, 1) = 221 &

and with the k" and k' residual functions for SWEs as
P b2,k =1,2,3,..,

33uk2 19uk1 (9hkl
Reskz(x,t)— W + U, —— EP + , ky=1,2,3,....

h
Resk (X, 1) = 1 + gy, —, (2.4)

In addition, taking into account those forms of fy(x) and go(x) and using (2.4), the k" truncated
series of the multiple FPS expansion of A(x, t) and u(x, t) at ¢t = O should be

/l n/l

X Zf,,() k=2,3,4,.

h(x, 1) = f(x) + fi(x) o’

(2.5
B

¢
(.0 = 60 + S Zgnu Ty k23

respectively. To ascertain the first unknown coefﬁments, f1(x) and g{(x), in the expansion of (2.5),
substitute the 1% truncated series /;(x) and u;(x) into the 1-st residual functions given in (2.4), to

obtain

A
Res!(x,7) = 8+ uy 20 + y 94,

Res!(x,7) = 214 4 u, 6”1 Ty

(2.6)

But since /i (x,7) = f(x) + fi(X)rsg and u(x,1) = g(x) + gl(x)miw). Then Eq (2.6) leads to the
following result:

£ @+ fi)rss)
(1 + ,8)) dx

A 0(8() + g1 E)
(1 + /l)) Ox ’ (2.7)
£\ 0(e) + 21 (Wrt)
fip) ox

Res!(x,1) = fi(x) + (g(x) + g1(x)

+(f() + filx)

Res(x.1) = 1(x) + (8(0) + &1(0)
/l

+(fo + Ao ﬁ))
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Now, based on the result of (2.5) for n = 1, the substitution of # = 0 through (2.7) yields

_2_ 22
MO =59 +5% (2.8)
3

Therefore, the 1% RPS approximate solution of (1.4) can be represented as

1 2 4x 22, A
men =g (=204 1)+ (5 -5 + %)r(ltJr D’
2 2x, A 2.9)
e t)__(l_ -G

In a similar way, the second unknown coefficients f,(x) and g,(x) can be obtained by substituting the
2" truncated series hy(x, 1) = f(xX)+fi(X) i +(0) g and ta(x, 1) = g(0)+81(0) i+ (N risg;
of (2.5) into 2-nd residual functions Res(x, ) = ‘?:ﬁz +uy 5> 6’” +hy 52 ‘?”2 and Res5(x, 1) = ‘9631,”32 +uy G2
of (2.4) to get the following discretized form:

('Juz + (')hz

A

T+ 1)
24
T +22)
tZﬁ , , l./l+ﬁ
T(1+28) +(s1fi + fig1 () T+ )01 + )
2048 , , 428
T+ 20T+ ) (8211 + fig>) T+ DI +28)
t2/l+2ﬁ

+ (225 + S (0) SIS (2.10)

Resh(x, 1) = fi(x) + g0)f'(x) + g (0 (%) + (H(x) + g1 (%) + fig(x)

+ (2@ + fig1(0) =———= + (¢ WHX) + Hr(0)g (1)

' +(
T(1+p)
+ (820f () + f(0g) =———=

+ (818 + 1281 ()

Resj(x.1) = g1(2) + 8 (00 + f () + (200 + 8810 + 818’ ) r 5

A 24 128

FAOT T+ RO 7 * (84 8180 + 08 0) 5 s
8

F(l 36) (1 +4p)
38 48

+ QW0 + 2AXg ) (’ 35 PR

+ (185 + gzg; (@) == + (828:(0) =—=

Now, operating D! one time on both sides of (2.7) gives the A — th time fractional derivative of
Resg(x, t) and Res}(x, r). Then, from (2.5) when n = 2, substituting ¢ = 0 through (2.10) yields

242

5 2.11)

4x
3

dx
3

JS2(x)
&x) =
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Hence, the 2™ RPS approximate solution of (1.4) of the form

1, 2 4x 247 lA
hy(x,1) = §(x —2x+ 1)+(§ “9 " T)m + 1)
N 2 4x .\ 2x? 1 (2.12)
373 T3 ta+ 2 |
2 2 2x\ P 4 4x\ &
,[:—1— 7 A 3 3 T(1 +28)
us(x, 1) 3( x) (3 3)F(1+ﬁ)+(3 3)F(1+2ﬁ)
By applying the same steps for n = 3, we get following form of f3(x) and g5(x)
Al =3 -
: 2.13
) =5 - |

In fact, from (2.13) and based on Preceding results for fy(x), go(x), f1(x), g1(x), f2(x) and g,(x) the
3 RPS approximation solution of Eq (1.4) will be ready to summarized as follows

1, 2 4x 22, o
h3(x,t):§(x —2X+1)+(§—?+7)r(1+ﬁ)
2 4x  2x? 124 20 40x  20x? i
N+t —— =5 + (— - + ) ,
3 3 3 )T +22) 9 9 9 /T'(1+31)

2 2x) ’ (4 i 4x) P 19

2

wn=30-0-(3-F )55 5 ) mvm
N 32 32x) ¥
(3_ 9 )T +38)

Continuing in this approach, the rest of the components of f,(x) and g,(x) for n > 4, can be
completely acheived and the series solution is thus completely determined. Finally, the solution of
Eq (1.4) is given by

N had tn/l s tnﬁ 515
t = n =1 N0 H) t = n -1 . .
(x,1) ;f(x)m e ) Z;g T (2.15)

Convergence study and error estimate

Theorem 1. Let us take the coupled fractional differential equation (1.4) with the initial conditions
given by (2.1) and assume that D!h(x,t) and Df u(x,t) be the Caputo derivative with
th(x, 1), Dfu(x, t) € C([0, M] x [0, L]), where C([0, M] X [0, L]) be the set of all continuous functions
over the interval [0, M] X [0, L], then the approximate solutions h(x,t) and i(x,t) of the coupled
fractional differential equation (1.4) are

N N
h(x, 1) = ZA,,zM and i(x,f) = Z B,
n=0 n=0

where
3 D" h(x, ty)

" T(md+ 1)

_ D"u(x, 1)

and B, = ———.
T(nB+ 1)
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Furthermore, I value 6, where 0 < 6 < t so that the errors E}V(x t) and E? v(x, 1) on the Banach
space (C[0, M] x [0, L1, ||.|) for the approximate solutions h(x, t) and i(x, t) have the form

DWN+Dp(x, 0+) i

TN+ hiel) |4

”E]]V(x’ t)” = Sup 0<x<M, 0<r<L

DW+DBy(x,0+)

Pk
I'(N+1)B+1)

||E12V(x, t)” = Sup o<x<m, 0<i<L respectively,if 6 — 0+

Proof. First part of the proof is follows for the approximate solution A(x, 7).
In this case, the error term:

EN(x, 1) = h(x, ) = h(x, 1),
where

S\ DMp(x, 0) s Y DA, 0)
h,f)= Y — 22 and h(x,f) = Y ——— g,
0= 2 T 0= 2T

For O <a <1,

JADMR(x, 1) — JUTAD D (e, 1)
= JP(Dyh(x, 6 — I DD h(x, 1)
= Ji (D h(x, 0)),

_ D"p(x,0) "
T Tma+ 1)

The N-th order approximation for A(x, t) is
o D"h(x,0) o
F(n/l + l)
N

Z JADMh(x, 1) = J"T D D (x, 1), using above
=0

= h(x,t) — Z AR ) Rl TE))

n=0

Therefore, we have the following error term
Ejlv(x’ l) = h(x’ t) - il(x’ t)7

N

n=0
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— Jt(N+1)/1D§N+1)/lh(x’ t)

~ 1 tD(N+1)/1h(x’ é«) g
TN+ D) Jo =)=+
D(N+1)/lh 6 ! d
= s (1’;’/0) I} = {)1{(N+1)/1’ In view of the integral mean value theorem
_ D(N+1)/lh(x, (5) N+DA
TN + D)

Now, the error term on the Banach space (C[0, M] X [0, L], ||.|) s

|ENGE D) = Sup gerens omrer |PCx, 1) = A, D)|

D(N+l)/lh(x 5) Vil
— > A
= Sup 0<x<M, 0<t<L N+

T(N + D)A)
DV D(x, 0+4)
= Sup 0<x<M, 0<t<L F((N + 1)/1) N+DA as 6 - 0 + s
As N — oo, ||Ep(x, t)|| — 0, hence h(x, f) can be approximate as
>y D", 0) Y D"h(x,0) 3
hx,t)= y ———— =) ——— == (x,1),
(1) Z:; Tl + 1) Z:;; T(nd+ 1) (1)

with the error term ||E}v(x, t)|| )
Following the similar argument, for the approximate solution #i(x,f) we can also find the error
|EX . 0)|| = e, 1) = e, D] O

3. Modified homotopy analysis transform method

3.1. The analytical technique

Here, we consider a general fractional partial differential equation for the discussion of MHATM
method as

Dh(x,t) + R[x]h(x,t) + N[x]h(x,t) = g(x,1), t>0, xeR, 0<A<l, 3.1

where R[x], N[x], g(x, ) and h(x, 1) is defined as above.
Now methodology discussed in [32,33], applied to Eq (3.1) we obtained the mth-order deformation
equation

(1) = O + Wy = B = x) 520 #RDO) + AL (EL(Rp 1 [V (1)
+ 205 Pellos b hw) = g(x,1),)) (3.2)

where P, are the homotopy polynomial.
The expression in nonlinear operator form has been modified in homotopy analysis transforms

method for the convenience. That is, the nonlinear term N[x, f]h(x, t) is expanded in terms of homotopy
polynomials as

AIMS Mathematics Volume 5, Issue 4, 3035-3055.
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E

N[h(x,1)] = ( B, t) ith’".
m=0

k

I
[«

(3.3)

Next, from the Eq (3.2), we find the various #,,(x, t) for m > 1 and the series solution of Eq (3.1) is

thus entirely determined
B 1) = > (1),
m=0

3.2. Implementation of the MHATM to time-fractional SWEs

Applying the Laplace transform (LT) on both the sides of (1.4), we get

s'L[h(x, )] — s*'h(x, 0) + L[2uh, — hu,] = 0,
SSLIu(x,t)] — 8 'u(x,0) + Lluu, + h,] =0

After some simplification and applying the inverse Laplace transform on (3.5), we have

hx ) = 3 (x* = 2x+ 1) + L7 (s L{uh, + hu,]),
u(x,t) = @ + L1 (s‘ﬁL[uux + hx]).

Next, for this case the system of nonlinear operator as follows:

Nig(x.1:q)] = LIp(x. 1:q)] = § (x> = 2x + 1) + s L[ D, + ],
NI®(x,1;q)] = [¢<x )] — 252 + sPLR2DD), + ¢, ].

Which leads to the mth—order deformation equations as

L[hm(xa t) _thm—] ()C, Z‘)] = hRm(hj)n—] s Xy t),
L[um(X, l) ~ XmUm-1 (X, t)] = hRm(u_r)n—l s Xy t)-

Applying the inverse Laplace transform to both sides of (3.8) yields
hn(%, 1) = Xonhi1 (x,1) + g L™ Ry (e, %, )1,
(6, 1) = Yonthno1 (X, 1) + gL (Rt X, 1)1,

where

Ry(lin1, %,1) = Ly 1 (x,0)] = (1 —xm)é (2 -2x+1)
+s'[2P, + P!],
2
Rm(u_;n—l’ X, t) = L[um—l(xa t)] - (1 _Xm)§ (1 - X)
+ s_'B[(Pi + (um—l)x]»

AIMS Mathematics Volume 5, Issue 4,
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P,., P!, and P? are the homotopy polynomials given as

a}’ﬂ 7
P, = T [ —~N[(qD(x,1;9)(gP(x, t; )|
m | dq lg=0
I~ " . . _
Pm - Fm |:6qm N[(‘]QS(X, t9 (]))(qq)(x, t9 (]))x] 40 s (31 1)
o" |
P, = Tm [—mN [(q@(x, ;@) (gDP(x, t;9).|
m | dg Jg=0

P(t;9) = o+ qd1 + o + 3 + ...,

q)(t; q) = (Do + q(Dl + q2q)2 + q3(D3 + .... (312)
The solutions of mth—order deformation Eq (3.8) becomes
1/,
(6, 1) = O+ Mo = (L= x) g (2 = 23+ 1)
+ BL7 Y (sTP,, + PL ),
(™1 ml) (3.13)

2
t(X,1) = O+ Wty = (1= xo) 3 (1 = )
+ BL7 (sPL(PE + (1))

By putting the initial approximation (2.1) into the iterative scheme (3.13), we successively obtain

o
1 r(1h+tﬂ)§(x_ D?,

”1:r<_1h+ﬁﬁ>§(1_”’
h2=_7;((11—:?;%@—1)%%%@-1)%%%@-1)2,
uzz%%(1-@+%§(1—@+%%(1—@.

Similarly way the remaining term of the series h,,(x, ) and u,,(x, t), for m > 3 can be completely
achieved. Finally, the solution of Eq (1.4) can be given in the form

()

h(x,t) = Z ho(x,0),  u(x,1) = Z (X, 1), (3.14)
m=0

m=0

3.3. Convergence study and error estimate

In this subsection, we examine the convergence analysis and error estimate of the MHATM for (1.4)
with respect to the initial condition (2.1)

AIMS Mathematics Volume 5, Issue 4, 3035-3055.
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Theorem 2. Suppose that h,,(x,t), u,,(x,1), h(x,t) and u(x,t) be defined in Banach space (C[0, 11, ||.|]).
Then the series solution {h,,(x, 1)}, _, and {u,(x,1)},._, given by (3.14) convergence to the solutions of
(1.4), if there exist 0 < u < 1, such that ||h,.1|| < ||h,|| and ||ups1|l < @llugll, for n € N.

Proof. We have (C|0, 1], |.]|) is the Banach space of all continuous functions on [0, 1] with the norms,
lA(x, DIl = maxyy eqo,1) [A(x, 1) and |lu(x, 1)l = maxy. epo,1) [u(x, 1.
Define that {S,,} is the sequence of partial sum as,

So = ho(x, 1),
Sl = hO(xa t) + hl(x9 t)9
Sy = ho(x, 1) + hi(x, 1) + ha(x, 1),

Sm=ho(x, 1) + hi(x, 1) + ho(x, 1) + ... + hy(x, ).

It is sufficient to show that {S,,},._, is a Cauchy sequence in Banach space (C[0, 1], ||.|[). For m,n €
N, m > n, we have

IS = Sall = 1Sm = Sm-1) + St =Sm2) + e + (S = Sl
SNSm = Sm-DI NS -1 = Sl + o + (S = Sl
= 1A Cx, DI + ey O, DI+ o+ N (x, D
< 1" g (e, DI + "It Cx, DIl + o 4+ 1™zt Cx, D

=—%——WMWMQJW-
- U

Since 0 < u < 1, we have 1 — /"™ < 1; then,

n+1

1S — Sall < £
l—p

max [[uo(x, D) -

Since ||ugp(x, t)|| is bounded,

lirnm,n—mo IS =S4l = 0.

Therefore {S,,},._, is a Cauchy sequence in the Banach space (C[O0, 1], ||.||), so the series solution defined
in (3.14), converges. Similarly, we can show for u(x, f) case. This completes the proof. O

Theorem 3. The maximum absolute truncation error of the series solution Eq (3.14) for Eq (1.4) w.r.to
the initial conditions 2.1 is estimated to be

m

u(x,t) — Z u;(x, 1)

i=0

n+l n+1

u

<
l—u

7o (x, DI and < {J lluo(x, DI -

h(x0) = Y hi(x, 1)
i=0

AIMS Mathematics Volume 5, Issue 4, 3035-3055.
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Proof. From theorem 4.1 , for m > n we have

1 =
1S = Sull = —H—
u

" o D).

Now, as m — oo then S,, — u(x, ). So,

n+l1

u(x,1) = S| < f‘—u"“ lito(x, D)
—-u

Since 0 < i < 1, we have 1 — u™" < 1. Therefore the above inequality becomes,

m n+1
. 0) = ) i 0 < T ho(x. Dl
i=0
Similarly we can show the inequality
m n+l1
u(x, ) - ZO (e, 0| < T lluo(x D).

This complete the proof.

4. Numerical simulations and discussions

(3.15)

(3.16)

In this section, comparison of RPSM and MHATM are made in a systematic fashion through

different graphical representation and tabulated data.

4.1. Comparison of the approximate solution obtained by RPSM and MHATM method regarding to

the exact solution

The geometrical behaviour of the obtained solutions of Eq (1.4) are compare by depicted through
3D Figures 1-5 of the 5" order MHATM, 5% order RPSM and the exact solution represented by the
Eq (2.2). The scenario of subfigures reveals that their surface graphic and profile are almost the same
even if for different values of @. Figure 6 explore the comparison of the approximate solution received
by RPSM and MHATM method with consideration to exact solutions at time instance ¢t = 0.5 when
A = B = 1. Figures indicate that a high level of accuracy has been attained between the exact solution

and the solutions obtained by MHATM and RPSM.

AIMS Mathematics Volume 5, Issue 4, 3035-3055.
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(b) By RPSM

(a) By MHATM

8
3
)
8
o]

(¢) Exact solution

,t) by MHATM,

(b) the numerical approximate solution of 4(x, r) by RPSM and (c) the exact solution of a(x, 1)

The surfaces show (a) the numerical approximate solution of A(x

Figure 1.

Approximate Solution u(x, t)

z
-
c
S
3
Q
ksf
£
g
a
=%
-2

(b) By RPSM

(a) By MHATM

3
3
§
3

(¢) Exact solution

f) by MHATM,

(b) the numerical approximate solution of u(x, r) by RPSM and (c) the exact solution of u(x, f)

The surfaces show (a) the numerical approximate solution of u(x,

2

Figure

B=1.

when A =1,
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0.3

0.3 . . N
Approximate Solution h(x, t) Approximate Solution h(x,t) (.2

1.0
Approximate Solution u(x, t) Approximate Solution u(x, t) 05

(c) By MHATM (d) By RPSM

Figure 3. The surfaces show (a) the numerical approximate solution of A(x, #) by MHATM,
(b) the numerical approximate solution of A(x, t) by RPSM, (c) the numerical approximate
solution of u(x, ) by MHATM and (d) the numerical approximate solution of u(x, r) by RPSM
when 4 =0.9,8 =0.9.

0.4
Approximate Solution h(x, t) Approximate Solution h(x, t) 02

.
Approximate Solution u(x, t) 1.0 i.\:é
05

(c) By MHATM (d) By RPSM

Figure 4. The surfaces show (a) the numerical approximate solution of i(x, r) by MHATM,
(b) the numerical approximate solution of A(x, ) by RPSM, (c) the numerical approximate
solution of u(x, ) by MHATM and (d) the numerical approximate solution of u(x, r) by RPSM
when 4 =0.8,8 =0.8.
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" . 0.4
\pproximate Solution u(x, t) Approximate Solution h(x, t) 02

(¢) By MHATM (d) By RPSM

Figure 5. The surfaces show (a) the numerical approximate solution of A(x, #) by MHATM,
(b) the numerical approximate solution of A(x, f) by RPSM, (c) the numerical approximate
solution of u(x, ) by MHATM and (d) the numerical approximate solution of u(x, r) by RPSM
when 4 =0.7,5 =0.7.

Comparison of Solutions
Comparison of Solutions

(a) (b)

Figure 6. The surfaces show (a) comparison of five term MHATM solution and five term
RPSM solution with regard to exact solution of A(x,?) at time instance ¢t = 0.5 and (b)
comparison of five term MHATM solution and five term RPSM solution with regard to exact
solution of u(x, t) at time instance ¢ = 0.5.
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4.2. Comparison of absolute error for RPSM and MHATM solutions

Figure 7 indicating the numerical simulations for comparison of the absolute error for RPSM and
MHATM solutions. Even if both the present methods are reliable and efficient, Figure 6 guarantee
plausibility to consider MHATM give more accurate than RPSM solutions for fractional SWEs.

Absolute Error 0.0006
0.

0.0010
Absolute Error

(c) By MHATM (d) By RPSM

Figure 7. The surfaces show (a) absolute error Es(h) = |h(x,t) — hs(x,t)] by MHATM,
(b) absolute error Es(h) = |h(x,t) — hs(x,t)] by RPSM, (c) absolute error Es(u) =
|u(x, t) — us(x, r)] by MHATM and (d) absolute error Es(u) = |u(x, t) — us(x, t)| by RPSM.

4.3. Comparison of approximate solution for different values of A and 3

Figure 8 shows the comparison of the approximate analytical solutions acheived by RPSM and
MHATM for 4 =0.7,A=0.8,A =09 and 1 = 1. Alsoforthe 5 =0.7,5=0.8,8=09 and 8 = 1.

The comparison of results between proposed methods RPSM and MHATM at different points of x
and ¢ using the parameters ¢ = %, k=-1,b=9andh = —1 presented in Table 1.
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Approximate Solution

o < <
8
—

Figure 8. The surfaces show (a) plot of hs(x, r) versus time ¢ for different values of A using
MHATM, (b) plot of hs(x, t) versus time ¢ for different values of A using RPSM, (c) plot of
us(x, t) versus time ¢ for different values of 8 using MHATM and (d) Plot of us(x, ) versus

(¢) By MHATM

o
o
)

Approximate Solution
o
2
S

=4
9
2

Approximate Solution

(d) By RPSM

time ¢ for different values of 5 using RPSM when 72 = —1.

Table 1. The comparison of the absolute error in the solution of fractional SWEs using five
term approximation for MHATM and RPSM at different points of x and ¢ with ¢ = %, k =

-I,b=9andhi=-1forda=1,=1.

x,0

Ihexact - hHA ™ |

Iuexact — UHA TM|

|hexact - hRPSMl

|uexact — URps Ml

(0.1,0.1)
(0.1,0.2)
(0.1,0.3)
(0.2,0.1)
(0.2,0.2)
(0.2,0.3)
(0.3,0.1)
(0.3,0.2)
(0.3,0.3)

7.11111 x 1077
5.22000 x 107
6.96269 x 10~
5.61866 x 10~
4.12444 x 107
5.50139 x 107
430178 x 107’
3.15778 x 1073
4.21200 x 107

6.66667 x 1077
4.80000 x 107
6.24857 x 10~*
5.92593 x 107’
4.26667 x 107
5.55429 x 10~
5.18519 x 107’
3.73333 x 1073
4.86000 x 107

8.27052 x 107>
9.40010 x 10~
4.66383 x 1073
6.53415 x 107>
7.42537 x 107
3.68358 x 1073
5.00213 x 1073
5.68320 x 107
2.88188 x 1073

9.15580 x 107>
1.02467 x 107*
4.95146 x 1073
7.97169 x 107
8.83779 x 10~
4.26263 x 1073
6.78757 x 107>
7.42887 x 1074
3.57380 x 1073
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4.4. Optimal values of h in MHATM

At the mth-order of approximation, the exact square residual error are:
1l
AL
0o Jo
L plf [ ]
A, = f f N u(x, 0| dxdt 4.1)
0o Jo Z ]

L i=0

hi(x,t)|| dxdt

| Ms’

I
o

where N [h(x, )] = 28 + 4% + h% and N [u(x,0)] = 2¢ + ud + 2.

Next, for the convenience point of view, we also introduced the averaged residual error defined
by [47]

O
\—/
S

ki ki
_ k2 ( Z hi(jAx, IAt)
1 =1 L

o 12
E" = é > (N Z ui(jAx, IAF) ) 4.2)

where Ax = 40k — At = 40k ——,k; = ky = 5 for SWEs. The optimal value of 7 can be achieved by means
of minimizing the so called averaged residual error E,, defined by (4.2), Equivalent to the nonlinear
algebraic equatlons = (0 and BE'" =0.

Tables 2 and 3 dlsplay the comparison of the averaged residual error for the optimal value of 7 with
a different order of approximation. Also, the accuracy and validity of the MHATM technique can be
demonstrated using the averaged residual error.

Table 2. Optimal value of 7 for A(x, t).

Order of Optimal value Optimal value value of E, for value of E,, for

approx. offiford=1 of hford = A=1 1=0.9

0.9
1 -1.0472 -0.722061 2.95623 x 10~ 1.78708 x 107’
2 -0.99085 -0.989655 5.28515x 1071 6.73821 x 10710
3 -0.98990 -0.827603 6.32161 x 1071 3.20375x 1077
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Table 3. Optimal value of 7 for u(x, 7).

Order of Optimal value Optimal value value of E, for value of E, for

approx. offaforf=1 of aforpg = B=1 B =09

0.9
1 -1.03090 -0.710627 1.20212 x 1078 1.83569 x 107°
2 -1.02271 -1.04991 1.21163 x 1071 2.45324 x 10°°
3 -1.06235 -1.03767 1.13253 x 1071*  2.48388 x 107°

5. Conclusions

In this work, we have fruitfully applied MHATM and RPSM for solving time-fractional coupled
SWEs. There are various features assumed for this equation are summarized as follows:
(1) The key procedure of the new adaption in MHATM has decomposed the non-linear term N(u) into
the sum of homotopy polynomial P,,, which helps for obtaining the rapid convergent of the series
solution.
(i) Further, the fractional coupled SWEs have been solved by using two independent analytic
methods such as MHATM and RPSM.
(ii1) We compare these two methods and show that the results of the MHATM method are in excellent
agreement with results of the RPSM method and the obtained numerical solutions are present
graphically which approves the validity of the MHATM and RPSM.
(iv) From the obtained results, it can be noted that, although both the featured techniques are reliable
and efficient to handle the different nonlinear problems appearing in science and engineering,
MHATM provides highly accurate numerical solution of fractional SWEs, in comparison with RPSM.
The paper is concluded by observing that, MHATM is more efficient and accurate for solving the
fractional coupled SWEs.
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