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Abstract: Let m be a positive integer and C = {1, 2, . . . ,m} be a set of m colors. A polychromatic m-
coloring of a hypergraph is a coloring of its vertices in such a way that every hyperedge contains at least
one vertex of each color in C. This problem is a generalization of 2-colorings of hypergraphs and has
close relations with the longest lifetime problem for a wireless sensor network, cover decompositions
problem of hypergraphs and vertex cover problem of hypergraphs. In this paper, a main work is to find
the maximum m that a hypergraph H, with n hyperedges, admits a polychromatic m-coloring such that
each color appears at least k times on each hyperedge. A 2 ln n approximation to the number is obtained
when k is a fixed positive integer. For the case that k = O(n ln n), there exists an O(ln n) approximation
algorithm; for the case that k = ω(n ln n), there exists a (2 +

√
3)k approximation algorithm.

Keywords: hypergraph; polychromatic coloring; cover decomposition; balanced coloring;
probabilistic method
Mathematics Subject Classification: 05C15, 05C65

1. Introduction

This work is inspired by recent developments concerning hypergraph vertex cover, disjoint edge
cover of hypergraph, the longest lifetime problem for a wireless sensor network (WSN) with battery-
limited sensors. A hypergraph H = (V, E) consists of a ground set V of vertices and a collection
E of hyperedges, where each hyperedge f ∈ E is a subset of V . Let m be a positive integer. A
polychromatic m-coloring of a hypergraph H is a coloring of vertices of H with m colors such that
every hyperedge contains at least one vertex of each color. It is a generalization of 2-colorings of a
hypergraph. Obviously, in a polychromatic coloring of hypergraph H, each color class is exactly a
vertex cover of H. The polychromatic number of a hypergraph H is the maximum number m that H
admits a polychromatic m-coloring and is denoted by p(H).

The rank of a hypergraph H is R(H) = max f∈E | f |, the anti-rank of H is S (H) = min f∈E | f |. If
R(H) = S (H) = d, that is, the size of every hyperedge in H is d, we say that the hypergraph H is
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a d-uni f orm hypergraph. The degree of a vertex v ∈ V(H) is the number of hyperedges containing
v in H, and is denoted by dH(v) or simply by d(v). The maximum degree, minimum degree, of H is
∆(H) = maxv∈V(H) dH(v), δ(H) = minv∈V(H) dH(v), respectively. A hypergraph in which each vertex
has degree d is called a d-regular hypergraph. Throughout this paper, we denote the class of d-
regular d-uni f orm hypergraphs by Hd. Let f be a hyperedge in a hypergraph with anti-rank S .
The operation shrinking f means to replace it with some f ′ ⊂ f . This operation is useful when
considering polychromatic colorings of hypergraphs with the probabilistic method because it bounds
the dependence degree. We could shrink each hyperedge f j with | f j| > S to f ′j such that | f ′j | = S .
Clearly, undoing shrinking preserves the property of being a hyperedge containing m colors. (For each
hyperedge f ′j , its coloring is dependent on the colorings of its incident hyperedges. So its dependence
degree is at most S (∆ − 1).) Since each hypergraph H with anti-rank S = 1 has p(H) = 1, we focus on
the hypergraphs with anti-rank S ≥ 2 throughout this paper.

A subfamily Ei of E in a hypergraph H = (V, E) is called a cover in H if ∪ f∈Ei f = V . A cover
m-decomposition of a hypergraph H is a partition of E into m covers in H, i.e. E = ]m

i=1Ei and
∪ f∈Ei f = V . The maximum integer m such that the hypergraph H admits a cover m-decomposition
is called the cover-decomposition number of H and denoted by cd(H). The problem to determine
the cover decomposition numbers of hypergraphs is called the maximum disjoint set cover problem
(DSCP), which is NP-complete [8]. A hypergraph H can model a collection of sensors, with each
hyperedge f ∈ E corresponding to a sensor which can monitor the vertices (targets) in f ⊆ V . Since
monitoring all vertices (targets) of V takes a cover in H, cd(H) is exactly the longest lifetime for a
WSN corresponding to the hypergraph H if each sensor can only be turned on for a single time unit
([3, 7]).

Let H = (V, E) be a hypergraph with V = {x1, x2, . . . , xn} and E = ( f1, f2, ..., fm). The dual of H is a
hypergraph H∗ whose vertices f̂1, f̂2, ..., f̂m correspond to the hyperedges of H, and whose hyperedges
x̂i = { f̂ j| xi ∈ f j in H}, i = 1, 2, . . . , n. Clearly, (H∗)∗ = H and ∆(H∗) = R(H), δ(H∗) = S (H),
R(H∗) = ∆(H), S (H∗) = δ(H).

Let pk(H∗) denote the maximum m such that H∗ admits a polychromatic m-coloring satisfying that
each color appears at least k times on each hyperedge and cdk(H) denote the maximum m such that
H has a cover m-decomposition satisfying that each cover contains at least k incident edges of each
vertex. Clearly cdk(H) = pk(H∗).

Early in the 1970s, Erdős and Lovász [10] considered the existence of polychromatic colorings of
hypergraphs and showed that, for each integer m ≥ 2, every hypergraph with anti-rank S ≥ m and
each of whose hyperedges intersecting at most mS−1/(4(m−1)S ) other hyperedges is polychromatic m-
colorable. (The original version is formed on S -uniform hypergraphs. Via the operation “shrinking”,
it is easy to see that it could be stated with a slight generalization as above.) Moreover, for lattice point
hypergraphs, Erdős and Lovász [10] gave a stronger version in which the existence of polychromatic
colorings with high balance is guaranteed: For ε > 0,m > 2, n > 1, there is an r0 = r0(m, ε) such that
if T is any set of lattice points in the n-dimensional space with |T | = S > r0 then the lattice points can
be m-colored so that each set T + a obtained by translating T with an integer vector a contains at least
(1 − ε) S

m points of any given color.
Henning and Yeo [13] considered polychromatic colorings of hypergraphs inHd and showed every

hypergraph H ∈ Hd (d ≥ 2) has a polychromatic m-coloring for each m ≤ d
ln(d3) . Using a randomized

algorithm, Bagaria, Pananjady and Vaze [3] gave a ln n approximation result in polynomial time that
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each hypergraph H with n hyperedges and anti-rank S has p(H) ≥ S (1 − o(1))/ ln n. For hypergraphs
H with maximum degree at most ∆ and anti-rank at least S , Li and Zhang [17] gave a lower bound
bS/ln(c∆S 2)c for the polychromatic number of hypergraphs, where 0 < c = c(∆, S ) < 1.5582 < e, and,
for polychromatic colorings with high balance, they showed that H has a polychromatic m-coloring
such that every hyperedge in H contains at least bln(e∆S 2)c vertices of each color for each m ≤ S

ln(e∆S 2) .
Given a plane graph G, a f ace hypergraph F (G) based on G is one whose vertex set is V(G) and

whose hyperedges are the vertex sets of G’s faces. By virtue of the four-color theorem, Mohar and
Škrekovski [19] proved that every simple plane graph is polychromatic 2-colorable. Later Bose et
al. [6] proved this result without the use of the four-color theorem. For a familyH of face hypergraphs
with anti-rank S , Alon et al. [1] showed that b 3S−5

4 c ≤ minH∈H {p(H)} ≤ b3S +1
4 c. A f actor hypergraph

HF (G) based on G is one whose vertex set is E(G) and whose hyperedges are the edge sets of G’s F-
factors. Axenovich et al. [2] determined the polychromatic number for the 1-factor hypergraphH1(Kn)
and bounded the polychromatic number for the 2-factor hypergraph H2(Kn) and the Hamilton-cycle-
factor hypergraphHCn(Kn).

On 2-colorings of hypergraphs, Vishwanathan [21] showed that, for each integer d ≥ 4, every
hypergraph in Hd is 2-colorable. The bound for d is sharp noting that Fano plane is in H3 but not
2-colorable. Henning and Yeo [13] discussed 2-coloring with high balance for the hypergraphs in Hd

and observed that, for each integer k ≥ 2, every hypergraph H ∈ Hd has a 2-coloring such that each
hyperedge contains at least k + 1 vertices of each color if one of the following conditions holds: (i)

k ≤ d/2 −
√

d ln(d
√

2e); (ii) d ≥ 2k + 3
√

k ln(k) + 44.03; (iii) d ≥ 2k + 4
√

k ln(k) + 14.04. Beck
and Fiala [4] showed that every hypergraph with maximum degree ∆ ≥ 2 has a 2-coloring such that
each hyperedge f ∈ E contains at least | f |/2 − ∆ + 1 vertices of each color. Chen, Du and Meng [9]
gave a sufficient condition, each hyperedge meets at most 2S /(e(S + 1)) − 2 other hyperedge, to show
a hypergraph with anti-rank S ≥ 4 having a 2-coloring such that each color appears at least two times
on each hyperedge.

There is much literature on cover decomposition number of (multi)graphs, using edge coloring
method of (multi)graph. Gupta [11] showed every multigraph has a cover decomposition into at least
minv∈V(G){d(v) − µ(v)} covers, where µ(v) = maxu∈N(v) |E(uv)|. In [12], Gupta confirmed that each
multigraph with minimum degree δ has a cover b(3δ + 1)/4c-decomposition. Hilton [14] discussed
cover decomposition of multigraphs such that each cover contains at least j incident edges of each
vertex. Let Vk = {v ∈ V : k|d(v)}. Hilton and de Werra [15] showed every graph G with Vk independent
has a cover m-decomposition such that each cover contains either dd(v)/me or bd(v)/mc incident edges
of each vertex v ∈ V(G). Zhang and Liu [25] extended the conclusion to graphs G with G[Vk] forests
and, furthermore, peelable graphs G. Let g be a positive integer function defined on V(G) such that
g(v) ≤ d(v) for each v ∈ V(G). Song and Liu [20] considered DSCP of multigraphs satisfying that each
cover contains at least g(v) incident edges for each vertex v ∈ V(G), g-cover decomposition for short,
and obtained a result with a form analogous to Gupta’s one in [11]. Ma and Zhang [18] determined
cdg(G) for a class of graphs which extends the class of peelable graphs. Xu and Liu [23] discussed
DSCP for multigraphs with 2 ≤ δ ≤ 5. Zhang and Zhang [26] considered DSCP for nearly bipartite
graphs. A graph G is called g-critical on DSCP, if cdg(G + uv) ≥ cdg(G) for each pair of nonadjacent
vertices u, v. Xu and Liu [22] gave some properties of 1-critical graphs on DSCP. Zhang [24] described
completely disconnected g-critical graphs.

Bollobás et al. [5] researched cover decompositions of hypergraphs. We state their result in dual
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version: LetH be a family of hypergraphs with maximum ∆ and anti-rank S . Then

(i) for all ∆, S and each H ∈ H , p(H) ≥ S/(ln ∆ + O(ln ln ∆));
(ii) for all ∆ ≥ 2, S ≥ 1, minH∈H {p(H)} ≤ max{1,O(S/ ln ∆)};

(iii) for each sequence ∆, S → ∞ with S = ω(ln ∆), minH∈H {p(H)} ≤ (1 + o(1))S/ ln(∆).

In Section 2, we will prove the following result, which extends the result due to Bagaria, Pananjady
and Vaze [3] to polychromatic colorings with high balance.

Theorem 1.1. Let n, S , k be three positive integers and H be a hypergraph with n hyperedges and
anti-rank S .

(i) If k is a fixed positive integer, then pk(H) ≥ S (1 − o(1))/(2 ln n).
(ii) If k = O(ln(n ln n)), then pk(H) ≥ S/O(ln n).

(iii) If k = ω(ln(n ln n)), then pk(H) ≥ S (1 − o(1))/((2 +
√

3)k).

2. The proof of the main result

Within the proof, we shall make use of the following classical tool of the probabilistic method–the
Chernoff Bound. Let X1, X2, . . . , Xs be mutually independent Bernoulli variables such that Xi = 1 with
probability p and Xi = 0 with probability 1 − p. Define X =

∑s
i=1 Xi. Clearly, E(X) =

∑s
i=1 E(Xi) = sp.

Theorem 2.1. [16](The Chernoff Bound) For any 0 ≤ t ≤ sp, Pr(X > sp + t) < e−
t2

3sp and Pr(X <

sp − t) < e−
t2

2sp ≤ e−
t2

3sp .

The proof of Theorem 1.1

Proof. By virtue of the operation shrinking, we can always assume that H is S -uniform.
Let n be large enough and C = {1, 2, . . . , h} be a color set. Color the vertices of H in such a way that

each vertex is independently and uniformly assigned a color of C. For f ∈ E, c ∈ C, define A f ,c to be
the “bad” event that color c appears at most k − 1 times on hyperedge f . We want to avoid these “bad”
events and achieve a polychromatic mk-coloring with m(≤ h) as large as possible. If we can show that
with positive probability, each of m colors appears at least k times on every hyperedge, then we will
be done. Let X f ,c be the number of vertices colored with c on the hyperedge f . Then E(X f ,c) = S/h.
Clearly, for each pair of f ∈ E and c ∈ C,

Pr(A f ,c) = Pr(X f ,c < k) = Pr(X f ,c <
S
h
− (

S
h
− k))

and S
h − k ≤ S

h . If S
h − k ≥ 0, by the Chernoff Bound, the probability of event A f ,c is the following.

Pr(A f ,c) < e
−

( S
h −k)2

2S
h (2.1)

= e−( S
2h−k+ hk2

2S ). (2.2)
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An invalid color is one which appears at most k−1 times in some hyperedge of H. Let L be the number
of invalid colors in a random uniform h-coloring of H as described as above. Then the expectation of
L

E(L) ≤
∑
c∈C

∑
f∈E

Pr(A f ,c) ≤ hn max
c∈C, f∈E

Pr(A f ,c).

Next, we discuss three cases according to the value of k, corresponding to which the function h will
vary.

(i) k is a fixed positive integer.
Set h = S

2 ln(n ln n) . Clearly, S
h − k ≥ 0 as n is large enough. By Inequality (2), for each pair of f ∈ E

and c ∈ C,

Pr(A f ,c) < (n ln n)−1eke−
k2

4 ln(n ln n) < (n ln n)−1ek.

Then

E(L) < hn(n ln n)−1ek = hek/ ln n.

Thus, with positive probability, we can get a coloring of H with at least h − E(L) colors such that each
of the colors appears at least k times on each hyperedge of H. That is to say,

pk(H) ≥ h − E(L)

> h(1 −
ek

ln n
)

=
S

2 ln(n ln n)
(
ln n − ek

ln n
)

=
S

2 ln n
·

ln n − ek

ln(n ln n)

=
S

2 ln n
(1 −

ln ln n + ek

ln(n ln n)
)

=
S

2 ln n
(1 − o(1))

(ii) k = O(ln(n ln n)).
Then there exists a positive constant, say d, such that k ≤ d ln(n ln n) for large enough n. Set

h = S
(d+
√

2d+1+1) ln(n ln n)
. Clearly, S

h − k > 0. By Inequality (1), for each pair of f ∈ E and c ∈ C,

Pr(A f ,c) < e
−

( S
h −k)2

2S
h

≤ e−
h( S

h −d ln(n ln n))2

2S

= e−( S
2h−d ln(n ln n)+ hd2 ln2(n ln n)

2S )
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= e−( (d+
√

2d+1+1) ln(n ln n)
2 −d ln(n ln n)+ d2 ln2(n ln n)

2(d+
√

2d+1+1) ln(n ln n)
)

= e−( (d+
√

2d+1+1)
2 −d+ d2

2(d+
√

2d+1+1)
) ln(n ln n)

= e− ln(n ln n)

= (n ln n)−1.

So E(L) < hn(n ln n)−1 = h/ ln n and then there is

pk(H) ≥ h − E(L)

> h(1 −
1

ln n
)

=
S

(d +
√

2d + 1 + 1) ln(n ln n)
(
ln n − 1

ln n
)

=
S

(d +
√

2d + 1 + 1) ln n
(1 −

ln ln n + 1
ln(n ln n)

)

=
S

(d +
√

2d + 1 + 1) ln n
(1 − o(1))

=
S

O(ln n)

(iii) k = ω(ln(n ln n)).
In this case, set h = S

(2+
√

3)k
. Clearly, S

h − k > 0. By Inequality (1), for each pair of f ∈ E and c ∈ C,

Pr(A f ,c) < e
−

( S
h −k)2

2S
h

= e−
((1+

√
3)k)2

2(2+
√

3)k

= e−k < e− ln(n ln n)

= (n ln n)−1.

Then E(L) < h/ ln n and

pk(H) ≥ h − E(L)

> h(1 −
1

ln n
)

=
S (1 − o(1))

(2 +
√

3)k

�

3. Concluding remarks

Bagaria, Pananjady and Vaze [3] gave the following result for hypergraphs with n hyperedges.
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Theorem 3.1. [3] Let H be a hypergraph with n hyperedges and anti-rank S . Then p(H) ≥ S (1 −
o(1))/ ln n.

From the proof of Theorem 1.1 (ii), we can deduce the following result.

Corollary 3.2. Let n, S , k be three positive integers and d be a positive real. Let H be a hypergraph
with n hyperedges and anti-rank S . If k ≤ d ln(n ln n)), then pk(H) ≥ S

(d+
√

2d+1+1) ln n
(1 − o(1)). In

particular, if k ≤ ln(n ln n)), then pk(H) ≥ S
(2+
√

3) ln n
(1 − o(1)).

Let A be a nonempty set. An equitable q-partition of A is a collection A1, A2, . . . , Aq such that,
for each 1 ≤ i < j ≤ q, Ai ∩ A j = ∅, ||Ai| − |A j|| ≤ 1 and ∪1≤i≤qAi = A. The operation equitable
q-splitting a hyperedge f in a hypergraph means to replace f with an equitable q-partition of f . Let H
be a hypergraph with n hyperedges and anti-rank S . Do an equitable k-splitting for each hyperedge of
H and denote the resulting hypergraph by Hk. Clearly, Hk has kn hyperedges and S (Hk) = bS/kc. By
Theorem 3.1, there is p(Hk) ≥ b S

k c(1 − o(1))/ln(kn). It is easy to see that a polychromatic m-coloring
of Hk is corresponding to a polychromatic mk-coloring of H. So undoing equitable k-splitting could
get a lower bound for pk(H), which is at most S (1 − o(1))/(k ln(kn)). Obviously, for each k ≥ 2, the
lower bound shown in Theorem 1.1 is better.

By the dual relationship of H and H∗, we have the following result on cover decomposition of a
hypergraph with high balance.

Theorem 3.3. Let n, δ, k be three positive integers and H be a hypergraph with n vertices and minimum
degree δ.

(i) If k is a fixed positive integer, then cdk(H) ≥ δ(1 − o(1))/(2 ln n).
(ii) If k = O(ln(n ln n)), then cdk(H) ≥ δ/O(ln n).

(iii) If k = ω(ln(n ln n)), then cdk(H) ≥ δ(1 − o(1))/((2 +
√

3)k).
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