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semigroups; combinatorial number theory
Mathematics Subject Classification: 11B75, 11A05

1. Introduction

Let G be a finite abelian group written additively. The Davenport constant of G, denoted D(G),
is defined as the smallest positive integer ` such that every sequence of terms from G of length at
least ` must contain one or more terms with the sum being the identity element of G. This invariant
was popularized by H. Davenport in the 1960’s, notably for its link with algebraic number theory (as
reported in [21]), and has been investigated extensively in the past over 50 years. This combinatorial
invariant was found with applications in other areas, including Factorization Theory of Algebra (see
[5,12,13]), Classical Number Theory, Graph Theory, and Coding Theory. For example, the Davenport
constant has been applied by W.R. Alford, A. Granville and C. Pomerance [1] to prove that there are
infinitely many Carmichael numbers, by N. Alon [2] to prove the existence of regular subgraphs, and by
L.E. Marchan, O. Ordaz, I. Santos and W.A. Schmid [19] to establish a link between variant Davenport
constants and problems of linear codes. What is more important, a lot of researches were motivated by
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the Davenport constant together with the celebrated EGZ Theorem obtained by P. Erdős, A. Ginzburg
and A. Ziv [9] in 1961 on additive properties of sequences in groups, which have been developed into
a branch, called zero-sum theory (see [11] for a survey), in Combinatorial Number Theory.

As a consequence of the Fundamental Theorem for finite abelian groups, any nontrivial finite
abelian group can be written as the direct sum Zn1 ⊕ · · · ⊕ Znr of cyclic groups Zn1 , . . . ,Znr with
1 < n1 | · · · | nr. D. Kruyswijk [7] and J.E. Olson [22] independently proved the crucial inequality

D(G) ≥ 1 +

r∑
i=1

(ni − 1).

On the other hand, P. Van Emde Boas and D. Kruyswijk [8] and R. Meshulam [20] proved that

D(G) ≤ nr + nrlog(
|G|
nr

).

A lot of efforts were also made to find the precise value of Davenport constant of finite abelian groups.
However, up to date, besides for the groups of types given in Theorem A (proved independently by D.
Kruyswijk (as reported in [7]) and by J.E. Olson [22]) and Theorem B as below, the precise value of
this constant was known only for groups of specific forms such as Z2⊕Z2⊕Z2d (see [7]), or Z3⊕Z3⊕Z3d

(see [3]), etc. Even to determine the precise value of D(G) in the case when G is a direct sum of three
finite cyclic groups remains open for over 50 years (see [11], Conjecture 3.5). Note that the conclusion
D(Zn) = n follows by a simple application of the pigeonhole principle.
Theorem A. (Kruyswijk-Olson Theorem) D(Zn1 ⊕ Zn2) = n1 + n2 − 1 where n1 | n2.

Theorem B. (J.E. Olson [21]) D(Zpα1 ⊕ · · · ⊕Zpαr ) = 1 +
r∑

i=1
(pαi − 1) where p is prime and r, α1, . . . , αr

are positive integers.
For the progress about D(G) the reader may consult [10, 14, 18, 23, 24]. Recently, the Davenport

constant was generalized in the setting of commutative semigroups (see [6, 25, 26, 28, 29]). Although
the above Kruyswijk-Olson Theorem is the first classical result on the value of Davenport constant, it
has not yet been generalized into semigroups.

Another motivation of this manuscript comes from the following question (see [4, 15]) posed by P.
Erdős to D.A. Burgess:

“Let S be a finite nonempty semigroup of order n. A sequence of terms from S of length n must
contain one or more terms whose product, in some order, is idempotent?”

Burgess [4] in 1969 gave an answer to this question in the case when S is commutative or contains
only one idempotent. This question was completely affirmed by D.W.H. Gillam, T.E. Hall and N.H.
Williams [15], and was extended to infinite semigroups by the author [27] in 2019. Naturally, one
combinatorial invariant was aroused by the Erdős’ question with respect to commutative semigroups
(for noncommutative semigroup there is also a similar invariant).

Definition. ( [27], Definition 4.1) For any commutative semigroup S written additively, define the
Erdős-Burgess constant of S, denoted I(S), to be the least ` ∈ N∪ {∞} such that every sequence T of
terms from S and of length at least ` must contain one or more terms with sum being an idempotent.

Note that if the commutative semigroup S is finite, Gillam-Hall-Williams Theorem definitely tells
us that the Erdős-Burgess constant of S exists, i.e., I(S) ∈ N is finite. In particular, when the semigroup
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S happens to be a finite abelian group, the Erdős-Burgess constant reduces to the Davenport constant,
because the identity element is the unique idempotent in a group.

Therefore, in this manuscript by studying the Erdős-Burgess constant for the direct sum of two finite
cyclic semigroups, we extend the Kruyswijk-Olson Theorem into commutative semigroups. Our main
result is as follows.

Theorem 1.1. For any positive integers k1, k2, n1, n2, let S = Ck1;n1 ⊕ Ck2;n2 . Then

I(S) ≤ max
(
(
⌈
k1

n1

⌉
− 1)n1, (

⌈
k2

n2

⌉
− 1)n2

)
+ gcd(n1, n2) + lcm(n1, n2) − 1.

Moreover, the equality holds whenever one of the following conditions holds.
(i) n1 | n2 or n2 | n1;
(ii) there exists some ε ∈ {1, 2} such that (

⌈
kε
nε

⌉
−1)nε = max

(
(
⌈

k1
n1

⌉
− 1)n1, (

⌈
k2
n2

⌉
− 1)n2

)
and n3−ε

gcd(n1, n2)

divides
⌈

kε
nε

⌉
− 1.

2. Notation and terminologies

For integers a, b ∈ Z, we set [a, b] = {x ∈ Z : a ≤ x ≤ b}. For a real number x, we denote by bxc
the largest integer that is less than or equal to x, and by dxe the smallest integer that is greater than or
equal to x.

Let S be a commutative semigroup written additively, where the operation of S is denoted as +.
For any positive integer m and any element a ∈ S, we denote by ma the sum a + · · · + a︸      ︷︷      ︸

m

. An element

e of S is said to be idempotent if e + e = e. A cyclic semigroup is a semigroup generated by a single
element x, denoted 〈x〉, consisting of all elements which can be represented as mx for some positive
integer m. If the cyclic semigroup 〈x〉 is infinite then 〈x〉 is isomorphic to the semigroup of N with
addition (see [16], Proposition 5.8), and if 〈x〉 is finite then the least integer k > 0 such that kx = tx for
some positive integer t , k is called the index of x, then the least integer n > 0 such that (k + n)x = kx
is called the period of x. We denote a finite cyclic semigroup of index k and period n by Ck;n.
• Note that if k = 1 the semigroup Ck;n reduces to a cyclic group of order n which is isomorphic to the
additive group Zn of integers modulo n.

We also need to introduce notation and terminologies on sequences over semigroups and follow the
notation of A. Geroldinger, D.J. Grynkiewicz and others used for sequences over groups (cf. [ [17],
Chapter 10] or [ [13], Chapter 5]). Let F (S) be the free commutative monoid, multiplicatively written,
with basis S. We denote multiplication in F (S) by the boldsymbol · and we use brackets for all
exponentiation in F (S). By T ∈ F (S), we mean T is a sequence of terms from S which is unordered,
repetition of terms allowed. Say T = a1a2 · . . . · a` where ai ∈ S for i ∈ [1, `]. The sequence
T can be also denoted as T = •

a∈S
a[va(T )], where va(T ) is a nonnegative integer and means that the

element a occurs va(T ) times in the sequence T . By |T | we denote the length of the sequence, i.e.,
|T | =

∑
a∈S

va(T ) = `. By ε we denote the empty sequence in S with |ε| = 0. We call T ′ a subsequence of

T if va(T ′) ≤ va(T ) for each element a ∈ S, denoted by T ′ | T, moreover, we write T
′′

= T · T ′[−1] to
mean the unique subsequence of T with T ′ · T

′′

= T . We call T ′ a proper subsequence of T provided
that T ′ | T and T ′ , T . In particular, the empty sequence ε is a proper subsequence of every nonempty
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sequence. Let σ(T ) = a1 + · · · + a` be the sum of all terms from T . We call T a zero-sum sequence
provided that S is a monoid and σ(T ) = 0S. In particular, if S is a monoid, we allow T = ε to be
empty and adopt the convention that σ(ε) = 0S. We say the sequence T is

• an idempotent-sum sequence if σ(T ) is an idempotent;
• an idempotent-sum free sequence if T contains no nonempty idempotent-sum subsequence.

It is worth remarking that when the commutative semigroup S is an abelian group, the notion zero-sum
sequence and idempotent-sum sequence make no difference.

Let S1 and S2 be two commutative semigroups written additively with additions +S1 and +S2

respectively. The direct sum of S1 and S2, denoted S1 ⊕ S2, is the commutative semigroup whose
underlying set is the Cartesian product of the sets S1 and S2 and whose binary operation + is given by

(a1, a2) + (b1, b2) =
(
a1 +S1 b1, a2 +S2 b2

)
where a1, b1 ∈ S1; a2, b2 ∈ S2.

Let S = Ck1;n1 ⊕Ck2;n2 , where the finite cyclic semigroup Cki;ni is generated by gi for each i ∈ {1, 2}. For
any element a of S and each i ∈ {1, 2}, let a(i) be the i-th component of a, i.e., a = (a(1), a(2)), and let
indgi(a(i)) be the least positive integer ti such that tigi = a(i). Let

GS = Zn1 ⊕ Zn2

be the direct sum of two additive groups of integers modulo n1 and n2, which is the largest group
contained in S. Define a map ψ : S → GS given by

ψ(a) 7→
(
indg1(a(1)), indg2(a(2))

)
∈ GS

for any element a ∈ S, where indgi(a(i)) denotes the congruence class of the integer indgi(a(i)) modulo
ni. We extend ψ to the map Ψ : F (S)→ F (GS) given by

Ψ : T 7→ •
a|T
ψ(a)

for any sequence T ∈ F (S).

3. Proof of Theorem 1.1

We begin this section with two necessary lemmas.

Lemma 3.1. ( [16], Chapter I, Lemma 5.7, Proposition 5.8, Corollary 5.9) Let S = Ck;n be a finite
cyclic semigroup generated by the element x. Then S = {x, . . . , kx, (k + 1)x, . . . , (k + n − 1)x} with

ix + jx =

{
(i + j)x, if i + j ≤ k + n − 1;
tx, if i + j ≥ k + n, where k ≤ t ≤ k + n − 1 and t ≡ i + j (mod n).

Moreover, there exists a unique idempotent, `x, in the cyclic semigroup 〈x〉, where

` ∈ [k, k + n − 1] and ` ≡ 0 (mod n).

By Lemma 3.1, it is easy to derive the following.
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Lemma 3.2. Let S = Ck1;n1 ⊕ Ck2;n2 where Cki;ni = 〈gi〉 for i = 1, 2. Then there exists a unique
idempotent e in S, where

indgi(e(i)) ∈ [ki, ki + ni − 1] and indgi(e(i)) ≡ 0 (mod ni)

for both i = 1, 2. In particular, a sequence W ∈ F (S) is an idempotent-sum sequence if, and only if,∑
a|W

indgi(a(i)) ≥
⌈

ki
ni

⌉
ni and

∑
a|W

indgi(a(i)) ≡ 0 (mod ni) for both i = 1, 2.

Note that in Lemma 3.2, the condition that
∑
a|W

indgi(a(i)) ≡ 0 (mod ni) for both i = 1, 2 is equivalent

to that Ψ(W) is a zero-sum sequence in the group GS.
Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Say Cki;ni = 〈gi〉 for each i ∈ {1, 2}. Note that GS � Zn1 ⊕ Zn2 � Zgcd(n1, n2) ⊕

Zlcm(n1, n2). By Theorem A, we have that

D(GS) = gcd(n1, n2) + lcm(n1, n2) − 1. (3.1)

Since Ck1;n1 ⊕ Ck2;n2 � Ck2;n2 ⊕ Ck1;n1 , we can assume without loss of generality that

(
⌈
k2

n2

⌉
− 1)n2 = max

(
(
⌈
k1

n1

⌉
− 1)n1, (

⌈
k2

n2

⌉
− 1)n2

)
. (3.2)

Let T ∈ F (S) be an arbitrary sequence of length

|T | = (
⌈
k2

n2

⌉
− 1)n2 + gcd(n1, n2) + lcm(n1, n2) − 1. (3.3)

Take a nonempty subsequence L of T such that Ψ(L) is a zero-sum sequence over the group GS, i.e.,∑
a|L

indgi(a(i)) ≡ 0 (mod ni) for each i ∈ {1, 2}, (3.4)

with |L| being maximal. By the maximality of |L|, we have that |T ·L[−1]| ≤ D(GS)−1. By (3.1), (3.2) and
(3.3), we have that

∑
a|L

indgi(a(i)) ≥ |L| ≥ (
⌈

k2
n2

⌉
−1)n2 +1 ≥ (

⌈
ki
ni

⌉
−1)ni +1, and thus

∑
a|L

indgi(a(i)) ≥
⌈

ki
ni

⌉
ni

by (3.4), where i ∈ {1, 2}. By Lemma 3.2, we have that L is a nonempty idempotent-sum subsequence
of T . By (3.2), (3.3) and the arbitrariness of choosing the sequence T , we conclude that

I(S) ≤ max
(
(
⌈
k1

n1

⌉
− 1)n1, (

⌈
k2

n2

⌉
− 1)n2

)
+ gcd(n1, n2) + lcm(n1, n2) − 1. (3.5)

Now we assume one of Conditions (i) and (ii) holds. To prove
I(S) = max

(
(
⌈

k1
n1

⌉
− 1)n1, (

⌈
k2
n2

⌉
− 1)n2

)
+ gcd(n1, n2) + lcm(n1, n2) − 1, by (3.2) and (3.5) it suffices to

show that there exists an idempotent-sum free sequence of terms from S with length exactly
(
⌈

k2
n2

⌉
− 1)n2 + gcd(n1, n2) + lcm(n1, n2) − 2.

Consider the case when Condition (i) n1 | n2 or n2 | n1 holds. Take two elements β, γ ∈ S with(
indg1(β(1)), indg2(β(2))

)
= (1, n2) (3.6)
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and (
indg1(γ(1)), indg2(γ(2))

)
= (n1, 1) . (3.7)

Let
T1 = β[n1−1] · γ

[⌈
k2
n2

⌉
n2−1

]
.

Since gcd(n1, n2) + lcm(n1, n2) = n1 + n2, it follows that |T1| = (n1 − 1) + (
⌈

k2
n2

⌉
n2 − 1) = (

⌈
k2
n2

⌉
−

1)n2 + n1 + n2 − 2 = (
⌈

k2
n2

⌉
− 1)n2 + gcd(n1, n2) + lcm(n1, n2) − 2. We need only to verify that the

sequence T1 is idempotent-sum free. Assume to the contrary that T1 contains a nonempty idempotent-
sum subsequence

U = β[t1] · γ[t2] (3.8)

where
t1 ≤ n1 − 1 (3.9)

and

t2 ≤

⌈
k2

n2

⌉
n2 − 1. (3.10)

It follows from (3.6), (3.7), (3.8) and Lemma 3.2 that

t1 + t2n1 = t1indg1(β(1)) + t2 indg1(γ(1)) =
∑
a|U

indg1(a(1)) ≡ 0 (mod n1) (3.11)

and

t1n2 + t2 = t1indg2(β(2)) + t2 indg2(γ(2)) =
∑
a|U

indg2(a(2)) ≥
⌈
k2

n2

⌉
n2. (3.12)

By (3.9) and (3.11), we have t1 = 0, and then combined with (3.10) and (3.12), we derive a
contradiction, done.

Now we consider the case when Condition (ii) holds. Combined with (3.2), we assume that

n1

gcd(n1, n2)
|

⌈
k2

n2

⌉
− 1. (3.13)

Let
m1 =

∏
p is a prime divisor of n1

potp(n1)<potp(n2)

ppotp(n1) (3.14)

and
m2 =

∏
p is a prime divisor of n2

potp(n2)≤potp(n1)

ppotp(n2),

where potp(n) denotes the largest integer h such that ph divides n. Note that

m1m2 = gcd(n1, n2). (3.15)

Take b, c ∈ S such that (
indg1(b(1)), indg2(b(2))

)
= (m1, 1) (3.16)
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and (
indg1(c(1)), indg2(c(2))

)
=

(
n1

m1
,

n2

gcd(n1, n2)

)
. (3.17)

Take the sequence

T2 = b
[
(
⌈

k2
n2

⌉
−1)n2+

n1n2
gcd(n1 , n2)−1

]
· c[gcd(n1, n2)−1].

We see that |T2| = (
⌈

k2
n2

⌉
− 1)n2 + n1n2

gcd(n1, n2) − 1 + gcd(n1, n2) − 1 = (
⌈

k2
n2

⌉
− 1)n2 + lcm(n1, n2) +

gcd(n1, n2) − 2. To prove T2 is idempotent-sum free, we assume to the contrary that T2 contains a
nonempty idempotent-sum subsequence V . Say

V = b[s] · c[t] (3.18)

with

s ≤ (
⌈
k2

n2

⌉
− 1)n2 +

n1n2

gcd(n1, n2)
− 1 (3.19)

and
t ≤ gcd(n1, n2) − 1. (3.20)

By Lemma 3.2, (3.16), (3.17) and (3.18), we derive that

sm1 + t
n1

m1
=

∑
a|V

indg1(a(1)) ≡ 0 (mod n1) (3.21)

and
s + t

n2

gcd(n1, n2)
=

∑
a|V

indg2(a(2)) ≡ 0 (mod n2), (3.22)

and that s + t n2
gcd(n1, n2) =

∑
a|V

indg2(a(2)) ≥
⌈

k2
n2

⌉
n2, combined with (3.20), then

s > (
⌈
k2

n2

⌉
− 1)n2. (3.23)

By (3.14), we have gcd(m1,
n1
m1

) = 1, combined with (3.21), we have that

n1

m1
| s (3.24)

and that m1 | t, combined with (3.15), (3.22), then

n2

m2
| s. (3.25)

Note that gcd( n1
m1
, n2

m2
) = 1. It follows from (3.15), (3.24) and (3.25) that

n1n2

gcd(n1, n2)
=

n1

m1

n2

m2
| s. (3.26)

By (3.13), we have n1n2
gcd(n1, n2) | (

⌈
k2
n2

⌉
− 1)n2. Combined with (3.19) and (3.23), we derive a contradiction

to (3.26). This proves Theorem 1.1. �
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4. Concluding remarks

In Theorem 1.1, by taking k1 = k2 = 1, both cyclic semigroups Ck1;n1 and Ck2;n2 reduce to Zn1 and
Zn2 respectively, and thus

S = Zn1 ⊕ Zn2 � Zgcd(n1, n2) ⊕ Zlcm(n1, n2).

We also see that
⌈

ki
ni

⌉
− 1 = 0 for both i ∈ {1, 2} and Condition (ii) holds. By the conclusion of Theorem

1.1, we have that D(Zn1⊕Zn2) = I(S) = max
(
(
⌈

k1
n1

⌉
− 1)n1, (

⌈
k2
n2

⌉
− 1)n2

)
+gcd(n1, n2)+lcm(n1, n2)−1 =

gcd(n1, n2)+ lcm(n1, n2)−1. That is, Condition (ii) of Theorem 1.1 implies Kruyswijk-Olson Theorem
as a consequence (Condition (i) deduce Kruyswijk-Olson Theorem clearly).

For a finite cyclic semigroup Ck;n, since Ck;n � C1;1 ⊕Ck;n and Condition (i) holds for C1;1 ⊕Ck;n, by
applying Theorem 1.1, we have that I(Ck;n) = I(C1;1 ⊕ Ck;n) =

⌈
k
n

⌉
n.

We remark that there exists some direct sum of two finite cyclic semigroups for which the Erdős-
Burgess constant is strictly less than that upper bound max

(
(
⌈

k1
n1

⌉
− 1)n1, (

⌈
k2
n2

⌉
− 1)n2

)
+ gcd(n1, n2) +

lcm(n1, n2)−1 given in Theorem 1.1. For example, by a straightforward case distinction, we can show
that any sequence over C1;3 ⊕ C3;2 of length 7 must contain a nonempty idempotent-sum subsequence,
i.e., I(C1;3 ⊕ C3;2) is strictly less than that upper bound 8 given as Theorem 1.1. Therefore, we close
this paper with the following conjecture.

Conjecture 4.1. Let S = Ck1;n1 ⊕ Ck2;n2 . If I(S) = max
(
(
⌈

k1
n1

⌉
− 1)n1, (

⌈
k2
n2

⌉
− 1)n2

)
+ gcd(n1, n2) +

lcm(n1, n2) − 1 then one of the following conditions holds.
(i) n1 | n2 or n2 | n1;
(ii) there exists some ε ∈ {1, 2} such that (

⌈
kε
nε

⌉
−1)nε = max

(
(
⌈

k1
n1

⌉
− 1)n1, (

⌈
k2
n2

⌉
− 1)n2

)
and n3−ε

gcd(n1, n2)

divides
⌈

kε
nε

⌉
− 1.
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