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Abstract: In this paper, we study Rλ-semiconservative FK-spaces for Riesz-method defined by the
Riesz matrix (R) and give some characterizations. We show that if `A is `-replaceable, then A can
not be Rλ-semiconservative and also if XA is Rλ-conull FK-space then it must be Rλ-semiconservative
space. In addition, we determine a new r(λ) and rb(λ) type duality of a sequence space X containing
ϕ. The paper aims to develop some new subspaces which each one has its own value on topological
sequence spaces theory. These subspaces are called as RλS ; RλW; RλF+; and RλB+ for a locally convex
FK-space X containing ϕ. The subspaces mentioned in the work requires some serious studies and
they arose independently from the literature which was done at the recent stage of the development of
summability through functional analysis.

Keywords: topological sequence space; multiplier spaces; semiconcervative FK-spaces
Mathematics Subject Classification: 46A45, 46A20

1. Introduction

Let ω denote the space of all real or complex valued sequences. An FK-space is a locally convex
vector subspaces of ω which is also a Fréchet space (complete linear metric) with continuous
coordinates. A BK-space is a normed FK-space [1]. Some articles about BK-space and FK-space are
studied in [1–20]. The definition of semiconservative FK-spaces and some properties of these spaces
were given by Snyder and Wilansky in [9]. Ince [10] continued to work on Cesáro semiconservative
FK-spaces and gave some characterizations. The main purpose of this paper is to introduce the
concept of Reisz semiconservative FK-spaces, which contains the space strictly increasing sequence
of positive integers lambda. We have proved several interesting conclusions about this concept in
section 3. The results in this article are new, accurate and interesting. In addition, our work is
extension of the works in [6, 9, 10, 12, 16]. The work brings innovations and information that attracts
the attention of the mathematics reader.
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2. Preliminaries

Let F be an infinite subset of N and F as the range of a strictly increasing sequence of positive
integers, say F = {λ(n)}∞n=1. The Cesáro submethod Cλ is defined as

(Cλx)n =
1
λ(n)

λ(n)∑
k=1

xk, n = 1, 2, · · · ,

where {xk} is a sequence of real or complex numbers [11]. The Riesz submethod is defined as the
following; Let (qk) be a positive sequence of real numbers.

Rλ
n( f ; x) =

1
Qλ(n)

λ(n)∑
k=0

qksk( f ; x),

where

sn( f ; x) =
1
π

∫ 2π

0
f (x + t)Dn(t)dt,

and

Dn(t) =
sin(n + 1

2 )t
2 sin( t

2 )
.

Also,
Qλ(n) = q0 + q1 + · · · + qλ(n) , 0, (n ≥ 0).

In case λ(n) = n, the method Rλ
n( f ; x) give us classical known Riesz mean. Provided that qn = 1 for all

(n ≥ 0) Riesz mean yields

σλ
n( f ; x) =

1
λ(n) + 1

λ(n)∑
k=0

sk( f ; x).

In addition to this, if λ(n) = n for σλ
n( f ; x), then it coincides with Cesáro method C1 [12]. Let q = (qk)

and (Qn) be given q0 > 0, qk ≥ 0 (∀k ∈ N), Qn =
∑n

k=1 qk (n ∈ N). The matrix R = qnk defined by

(qnk) =

{ qk
Qn

, k ≤ n
0 , otherwise

is called a Riesz matrix.
In this paper, The Riesz submethod is symbolized by Rλ

n( f ; x) or, in short, Rλ. The sequences space

cs =

x = (xn) ∈ ω :
∞∑

n=1

xn convergent

 ,
bs =

x = (xn) ∈ ω : sup
k

∣∣∣∣∣∣∣
k∑

n=1

xn

∣∣∣∣∣∣∣ < ∞
 ,

c0 =

x = (xn) ∈ ω :
∞∑

n=1

xn convergent to zero


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are FK space with the classical norm. Note that (cs)R = rs(or r), (bs)R = rb, (c0)R = r0 are FK-spaces
with the norms ‖x‖rb = supn

∣∣∣∣ 1
Qn

∑n
k=1

∑k
j=1 q jx j

∣∣∣∣ and ‖x‖ro = supn
1

Qn

∣∣∣∑n
k=1 q jx j

∣∣∣ respectively [15]. Also,

rs(λ) =

x ∈ ω : lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q jx j exists

 ,
rb(λ) =

{
x ∈ ω : supn

∣∣∣∣ 1
Qλ(n)

∑λ(n)
k=1

∑k
j=1 q jx j

∣∣∣∣ < ∞}
, r0(λ) =

{
x ∈ ω : limn

∣∣∣∣ 1
Qλ(n)

∑λ(n)
j=1 q jx j

∣∣∣∣ = 0
}

are

FK-spaces with the norms ‖x‖rb(λ) = supn

∣∣∣∣ 1
Qλ(n)

∑λ(n)
k=1

∑k
j=1 q jx j

∣∣∣∣ , ‖x‖ro(λ) = supn
1

Qλ(n)

∣∣∣∑λ(n)
k=1 q jx j

∣∣∣ ,
respectively. Throughout the paper, δ denotes sequences of the form (1, 1, . . . , 1 . . . ). Let
ϕ = span{δk : k ∈ N} and ϕ1 = ϕ ∪ {δ}. The topological dual of X is denoted by X

′

. Let (X, τ) be a
K-space with ϕ ⊂ X and dual space X

′

, and let x = (xk) ∈ X be arbitrarily given. Define the nth section
of x to be sequence x[n] =

∑n
k=1 xkδ

k = (x1, x2, . . . , xn, 0, . . . ), where δk denotes the sequence having 1
in the j-th position and 0’s elsewhere [13, 14]. Also, r[n]x = 1

Qn

∑n
k=1 qkxkδ

k is called the nth Riesz
section of x [15]. This here r is the set {rn : n ∈ N}. We define the following properties:
x has AK if x[n] → x in (X, τ),
x has S AK if x[n] → x in (X, σ(X, X

′

)),
x has FAK if

∑
k xk f (δk) converges for all f ∈ X

′

,
x has AB if {x[n] : n ∈ N} is bounded in (X, τ),
x has AD if X = ϕ (closed of ϕ),
x has rK(λ)(riesz sectional convergence) if 1

Qλ(n)

∑λ(n)
k=1 qkx(k) → x , n→ ∞ [15]. Then, some duals of

a subset X are defined to be

X f =
{
{ f (δk)} : f ∈ X

′
}
,

XY =
{
x : yx = (ykxk) ∈ Y for every y ∈ X

}
= (X → Y),

Xβ =
{
x : yx = (ykxk) ∈ cs for every y ∈ X

}
=

x :
∞∑

k=1

xkyk exists for every y ∈ X

 ,
Xr =

{
x : yx = (ykxk) ∈ rs for every y ∈ X

}
=

x : lim
n

1
Qn

n∑
k=1

k∑
j=1

q jx jy j exists for every y ∈ X

 ,
Xrb =

{
x : yx = (ykxk) ∈ rb for every y ∈ X

}
=

x : sup
n

1
Qn

∣∣∣∣∣∣∣
n∑

k=1

k∑
j=1

q jx jy j

∣∣∣∣∣∣∣ < ∞ for every y ∈ X

 ,
Xr(λ) =

{
x : yx = (ykxk) ∈ rs(λ) for every y ∈ X

}
=

x : lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q jx jy j exists for every y ∈ X

 ,
AIMS Mathematics Volume 5, Issue 4, 2858–2868.
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Xrb(λ) =
{
x : yx = (ykxk) ∈ rb(λ) for every y ∈ X

}
=

x : sup
n

1
Qλ(n)

∣∣∣∣∣∣∣
λ(n)∑
k=1

k∑
j=1

q jx jy j

∣∣∣∣∣∣∣ < ∞ for every y ∈ X

 .
By taking advantage of [1], we can easily see the following lemma:

Lemma 2.1. Let X, X1 be sets of sequences. Then for k = f , β, r, rb, r(λ), rb(λ)
(1) X ⊂ Xkk,

(2) Xkkk = Xk,

(3) if X ⊂ X1 then Xk
1 ⊂ Xk holds.

Let A = (ai j) be an infinite matrix. The matrix A may be considered as a linear transformation
of sequence by the formula y = Ax, where yi =

∑∞
j=1 ai jx j. For an FK-space (λ, u) we consider

the summability domain λA = {x ∈ ω : Ax ∈ λ}. Then λA is an FK-space under the semi-norms
pi = |xi|, (1, 2, . . . ). A conservative matrix A, and the corresponding matrix method, is called conull if
χ(A) = 0, where χ(A) = limA δ −

∑
k limA δ

k [1].
Recall that, given a matrix A with `A ⊃ ϕ is called `-replaceable if there is a matrix B = (bnk) with

`B = `A and
∑∞

k=1 bnk = 1 for all k ∈ N [16].
In addition an FK-space X is called semiconservative if X f ⊂ cs, this means that X ⊃ ϕ and∑∞

j=1 f (δ j) is convergent for each f ∈ X
′

[9].

3. Main results

Firstly, we have defined the notations of Rλ-semiconservative FK-space in this section. Then, we
investigate the properties of these spaces and we also give the relationship between `-reblaceable and
Rλ-semiconservative FK-space. Note that it is accepted Qn → ∞, (n→ ∞) in this paper.

Definition 3.1. An FK-space X is called Rλ-semiconservative if X f ⊂ rs(λ). It is obvious that X f ⊂

rs(λ) if and only if
{

1
Qλ(n)

∑λ(n)
k=1 qk f (δk)

}
is convergent for each f ∈ X′ equivalently

lim
n

 1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q j f (δ j)


exists.

Definition 3.2. An FK-space containing ϕ1 is called Rλ-conull if

f (δ) = lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q j f (δ j),

for all, f ∈ X
′

.

Lemma 3.3. Let X be an FK-space containing ϕ. Then
(1)Xβ ⊂ Xr(λ) ⊂ Xrb(λ) ⊂ X f ,

(2)If X is a rK(λ) space then X f = Xr(λ),

(3)If X is an AD space then Xr(λ) = Xrb(λ).

AIMS Mathematics Volume 5, Issue 4, 2858–2868.
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Proof. (2) Let u ∈ Xr(λ) and define

f (x) = lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q jx ju j

for x ∈ X. Then f ∈ X
′

; by the Banach-Steinhaus Theorem 1.0.4 of [2]. Also f (δp) = limn
1

Qλ(n)
(λ(n) −

(p − 1))qpup = up, (p < λ(n)) so u ∈ X f . Thus Xr(λ) ⊂ X f . Now we show that X f ⊂ Xr(λ). Let u ∈ X f .
Since X is rK(λ) space

f (x) = lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q jx j f (δ j) = lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q jx ju j,

for x ∈ X, then u ∈ Xr(λ). Hence X f = Xr(λ).
(3) Let u ∈ Xrb(λ) and define fn(x) = 1

Qλ(n)

∑λ(n)
k=1

∑k
j=1 q jx ju j for x ∈ X. Then { fn} is pointwise bounded,

hence equicontinuous by [2, Theorem 7.0.2]. Since limn f (δp) = up (p < λ(n)) then
ϕ ⊂ {x : limn fn(x) exists}. Hence {x : limn fn(x) exists} is closed subspace of X by the Convergence
Lemma [2, Theorem 1.0.5, 7.0.3]. Since X is an AD space then X = {x : limn fn(x) exists} = ϕ̄ and
then limn fn(x) exists for all x ∈ X. Thus u ∈ Xr(λ). The opposite inclusion is trivial.
(1) ϕ̄ ⊂ X by the hypothesis. Since ϕ̄ is AD space, then Xrb(λ) ⊂ (ϕ̄)rb(λ) = (ϕ̄)r(λ) = (ϕ̄) f = X f by (2),
(3) and [2, Theorem 7.2.4]. �

Theorem 3.4. If a matrix A is `-replaceable then `A is not Rλ-semiconservative FK-space.

Proof. If A is `-replaceable then there is f ∈ `
′

A such that f (δ j) = 1 for all j ∈ N [16]. Hence

lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q j f (δ j)

does not exist, so `A is not Rλ-semiconservative space. �

Theorem 3.5. If XA is Rλ-conull FK-space then it is Rλ-semiconservative space.

Proof. Suppose that XA is Rλ-conull. Then

f (δ) = lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q j f (δ j),

for all f ∈ X
′

A. Hence X f
A ⊂ rs(λ). �

Theorem 3.6. (1) A closed subspace, containing ϕ, of a Rλ-semiconservatif space is a
Rλ-semiconservative space.
(2) An FK-space that contains a Rλ-semiconservative space must be a Rλ-semiconservative space.
(3) A countable intersection of Rλ-semiconservative space is a Rλ-semiconservative space.

The proof is easily obtained from elementary properties of FK-spaces (see [2]).

Theorem 3.7. If zr(λ) is a Rλ-semiconservative space then z ∈ rs(λ).

AIMS Mathematics Volume 5, Issue 4, 2858–2868.
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Proof. Let zr(λ) be a Rλ-semiconservative space. Then zr(λ) f ⊂ rs(λ). Since zr(λ) is a rK(λ) space, we
have zr(λ) f = zr(λ)r(λ). Since {z} ⊂ zr(λ)r(λ) ⊂ rs(λ), we get z ∈ rs(λ). �

Now we give study a new the subspaces which are called RλS ,RλW,RλF+ and RλB+.

Definition 3.8. Let X be an FK-space containing ϕ. Then, the following definitions hold.

RλS = RλS (X)

= {x ∈ X :
1

Qλ(n)

λ(n)∑
k=1

qkx(k) → x in X}

= {x ∈ X : lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q jx jδ
j = x }

= {x ∈ X : x has rK(λ) in X},

RλW = RλW(X)

= {x ∈ X :
1

Qλ(n)

λ(n)∑
k=1

qkx(k) → x (weakly) in X}

= {x ∈ X : lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

q jx j f (δ j) = f (x) for all f ∈ X
′

}

= {x ∈ X : x has S rK(λ) in X},

RλF+ = RλF+(X)

= {x ∈ X :

 1
Qλ(n)

λ(n)∑
k=1

qkx(k)

 is weakly Cauchy in X}

= {x ∈ X : {xn f (δn)} ∈ rs(λ) for all f ∈ X
′

}

= {x ∈ X : x has FrK(λ) in X},

RλB+ = RλB+(X)

= {x ∈ X :

 1
Qλ(n)

λ(n)∑
k=1

qkx(k)

 is bounded in X}

= {x ∈ X : {xn f (δn)} ∈ rb(λ) for all f ∈ X
′

}

= {x ∈ X : x has rB(λ) in X}.

Also, RλF = RλF+ ∩ X and RλB = RλB+ ∩ X.

Definition 3.9. Sequence sets of above definitions show that:

1. XrK(λ) = RλS = {x ∈ X : x has rK(λ)} ⊂ X

AIMS Mathematics Volume 5, Issue 4, 2858–2868.
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2. XS rK(λ) = RλW = {x ∈ X : x has S rK(λ)} ⊂ X
3. XFrK(λ) = RλF = {x ∈ X : x has FrK(λ)} ⊂ X
4. XrB(λ) = RλB = {x ∈ X : x has rB(λ)} ⊂ X

Corollary 3.1. By definition 3.8 we obtain from following results:

1. X has FrK(λ) iff X ⊂ RλF ,i.e., X = RλF,
2. X has rB(λ) iff X ⊂ RλB ,i.e., X = RλB.

Theorem 3.10. Let X be an FK-space containing ϕ and z ∈ ω. Then z ∈ RλF+ if and only if Y =

z−1X = {x : zx = {znxn} ∈ X} is a Rλ-semiconservative FK-space.

Proof. Let (z−1X) be an Rλ-semiconservative space. Hence f ∈ (z−1X)
′

. Then f (x) = αx + g(zx),
α ∈ ϕ, g ∈ Y

′

, by [2, Theorem 4.4.10] and f (δn) = αn + g(zδn) = αn + g(znδ
n) = αn + zng(δn). Hence,

since α ∈ ϕ ⊂ rs(λ) then { f (δn)} ∈ rs(λ) if and only if {zng(δn)} ∈ rs(λ), i. e., z ∈ RλF+. �

An FK-space is called bounded convex Rλ-semiconservative if it is Rλ-semiconservative space and
includes δ.

Theorem 3.11. Let X be an FK-space containing ϕ and z ∈ ω. Then z ∈ RλF if and only if z−1X is
bounded convex Rλ-semiconservative FK-space.

Proof. Let z ∈ RλF. Since RλF = RλF+ ∩ X then z ∈ X so δ ∈ z−1X and since z ∈ RλF+, z−1X is Rλ-
semiconservative FK-space by Theorem 3.10. Thus z−1X ∈ X is bounded convex Rλ-semiconservative
FK-space. Contrary, let z−1X ∈ X is bounded convex Rλ-semiconservative FK-space. Then z−1X is
Rλ-semiconservative FK-space and δ ∈ z−1X so z ∈ X. Since z ∈ RλF+ by Theorem 3.10 and z ∈ X, we
get the result z ∈ RλF. �

Theorem 3.12. Let X be an FK-space containing ϕ. Then
ϕ ⊂ RλS ⊂ RλW ⊂ RλF ⊂ RλB ⊂ X and ϕ ⊂ RλS ⊂ RλW ⊂ ϕ̄.

Proof. First conclusion is obvious by Definition 3.8. We show that the inclusion RλW ⊂ ϕ̄. Let f ∈ X
′

and f = 0 on ϕ. The definition of RλW shows that f = 0 on RλW. Thus, the Hanh-Banach theorem
gives the result. �

Theorem 3.13. The subspaces E = RλS ,RλW,RλF,RλB,RλF+ and RλB+ of X are monotone, i. e., if
X ⊂ Y then E(X) ⊂ E(Y).

Proof. The proof is obtained from elementary properties of FK-spaces (see [2]) and Definition 3.8. �

Theorem 3.14. Let X be an FK-space containing ϕ. Then,
(1) RλB+ = (X f )rb(λ).

(2) RλB+ is the same for all FK-spaces Y between ϕ̄ and X; i. e. ,ϕ̄ ⊂ Y ⊂ X implies
RλB+(Y) = RλB+(X). Here the closure of ϕ is calculated in X.

Proof. (1) By Definition 3.8, z ∈ RλB+ if and only if zu ∈ rb(λ) for each u ∈ X f .Hence RλB+ ⊂ (X f )rb(λ)

holds. The converse inclusion is trivial. This is precisely the claim.
(2) By Theorem 3.13, we have RλB+(ϕ̄) ⊂ RλB+(Y) ⊂ RλB+(X). By Theorem 3.14 (1), the first and last
are equal. �

AIMS Mathematics Volume 5, Issue 4, 2858–2868.
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Theorem 3.15. Let X be an FK-space containing ϕ. Then
(1) RλF+ = (X f )r(λ).

(2) RλF+ is the same for all FK-spaces Y between ϕ̄ and X; i. e. ,ϕ̄ ⊂ Y ⊂ X implies RλF+(Y) =

RλF+(X). Here the closure of ϕ is calculated in X.

Proof. This can be proved as in Theorem 3.14, with rs(λ) instead of rb(λ). �

Theorem 3.16. Let X be an FK-space in which ϕ̄ has rK(λ). Then
(1) RλF+ = (ϕ̄)r(λ)r(λ).
(2) X has FrK(λ) if and only if X ⊂ (ϕ̄)r(λ)r(λ).
(3) If the inclusion RλB ⊃ ϕ̄ holds, RλS = RλW = ϕ̄.

Proof. (1) It is obvious that RλF+ = (X f )r(λ). Since X f = (ϕ̄) f by [2], we have (X f )r(λ) = (ϕ̄ f )r(λ). Thus
by Lemma 3.3 the result follows.
(2) Firstly, suppose that X has FrK(λ). X has rB(λ) since RλF ⊂ RλB. If ϕ̄ has rK(λ) then X ⊂ RλF+.
Hence X ⊂ (ϕ̄)r(λ)r(λ). Sufficiency is given by Theorem 3.16 (1).
(3) By Theorem 3.12, ϕ ⊂ RλS ⊂ RλW ⊂ ϕ̄ ⊂ RλB. Firstly, suppose that X has RλB. Define fn : X → X
by x → fn(x) = x − 1

Qλ(n)

∑λ(n)
k=1 qkx(k). Then { fn} is pointwise bounded, hence equicontinuous by [2].

Since fn → 0 on ϕ then also fn → 0 on ϕ̄ by [2]. By ϕ̄ has rK(λ), the proof is complete. �

Theorem 3.17. Let X be an FK-space containing ϕ. Then X has
(1) rB(λ) property if and only if X f ⊂ Xrb(λ).
(2) rF(λ) property if and only if X f ⊂ Xr(λ).

Proof. Necessity; Let X be rB(λ) property. Then X ⊂ RλB+ = (X f )rb(λ) and Xrb(λ) ⊃ (X f )rb(λ)rb(λ) ⊃ X f .
Sufficiency is clear. The proof of (2) is similar to that of (1). �

Theorem 3.18. Let Y be a Rλ-semiconservative FK-space and Z an AD-space. Suppose that for an
FK-space X, X ⊃ Y.Z. Then X ⊃ Z,where Y.Z = {y.z : y ∈ Y, z ∈ Z}.

Proof. Let z ∈ Z. Then, since X ⊃ Y.Z, z−1.X ⊃ Y . Thus, since Y is Rλ-semiconservative space
then z−1.X is Rλ-semiconservative space by Theorem 3.6 and so z ∈ RλF+ by Theorem 3.10. Hence
Z ⊂ RλF+ = (X f )r(λ). Thus X f ⊂ X f r(λ)r(λ) ⊂ Zr(λ) ⊂ Z f and so X ⊃ Z by Theorem 8.6.1 of [2]. �

Theorem 3.19. Let X be an FK-space containing ϕ. The following statements are equivalent:
(1) X has FrK(λ),
(2) X ⊂ (RλS )r(λ)r(λ),
(3) X ⊂ (RλW)r(λ)r(λ),
(4) X ⊂ (RλF)r(λ)r(λ),
(5) Xr(λ) = (RλS )r(λ),
(6) Xr(λ) = (RλF)r(λ).

Proof. Since RλS ⊂ RλW ⊂ RλF ⊂ X, it is trivial that (2)⇒ (3) and (3)⇒ (4). If (4) is true, then

X f ⊂ (RλF)r(λ) = (X f r(λ))r(λ) ⊂ Xr(λ)

so (1) is true by Lemma 3.3. If (1) holds, then Theorem 3.16 implies that ϕ̄ = RλS which means (2)
holds. The equivalence of (5), (6) with others is clear. �

AIMS Mathematics Volume 5, Issue 4, 2858–2868.



2866

Theorem 3.20. Let X be an FK-space containing ϕ. The following are equivalent:
(1) X has S rK(λ) ,
(2) X has rK(λ) ,
(3) Xr(λ) = X

′

.

Proof. By Theorem 3.12, it is clear (2) implies (1). Conversely if X has S rK(λ) it must have AD for
RλW ⊂ ϕ̄ by Theorem 3.12. It also has rB(λ) since RλW ⊂ RλB. Thus X has rK(λ) by Theorem 3.16,
this proves that (1) and (2) are equivalent. Assume that (3) holds. Let f ∈ X′, then there exists u ∈ Xr(λ)

such that

f (x) = lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

u jx jq j

for x ∈ X. Since u j = f (δ j), it follows that each x ∈ RλW which shows that (3) implies (1). Let X has
rK(λ), then by Theorem 3.12 it has S rK(λ). So, by Definition 3.8, for all f ∈ X′ there is

f (x) = lim
n

1
Qλ(n)

λ(n)∑
k=1

k∑
j=1

u jx jq j

such that u ∈ Xr(λ) which is u j = f (δ j), (∀x ∈ X). This shows that (2) implies (3). �

Theorem 3.21. Let X be an FK-space containing ϕ. The following are equivalent:
(1) RλW is closed in X,
(2) ϕ̄ ⊂ RλB,
(3) ϕ̄ ⊂ RλF,
(4) ϕ̄ = RλW,
(5) ϕ̄ = RλS ,
(6) RλS is closed in X.

Proof. (2) ⇒ (5): By Theorem 3.16, ϕ̄ has rK(λ), i.e., ϕ̄ ⊂ RλS . The opposite inclusion is Theorem
3.12. Note that (5) implies (4), (4) implies (3) and (3) implies (2) because

RλS ⊂ RλW ⊂ ϕ̄,RλW ⊂ RλF ⊂ RλB;

(1)⇒ (4) and (6)⇒ (5) since ϕ ⊂ RλS ⊂ RλW ⊂ ϕ̄. Finally (4) implies (1) and (5) implies (6). �

4. Conclusion

The main motivation of this article is to develop some distinguished subspaces in the theory of
topological sequence spaces. These subspaces are called as RλS ,RλW,RλF+ and RλB+ for a locally
convex FK-space X containing ϕ. Moreover, we study Rλ-semiconservative FK-spaces for Riesz
method defined by the Riesz matrix (R) and give some characterizations. In addition, we determine a
new r(λ) and rb(λ) type duality of a sequence space X containing ϕ and we examine monotone of the
distinguished subspaces. Finally, we prove some theorems related to the f -, r(λ)- and rb(λ)- duality of
a sequence spaces X. Our main results give information that holds the mathematics reader’s attention.
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10. H. G. Ince, Cesàro semiconservative FK-Spaces, Math. Communs., 14 (2009), 157–165.
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