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Abstract: This paper studies the event-triggered fault-tolerant control problem of nonlinear multi-
agent systems. The goal is to ensure the stability of event-based sampling multi-agent systems when
the actuator faults occurs. The neural networks approximate property is used to approximate unknown
ideal control parameters, which can reduce the exact requirements of control parameters. Based on the
states information of neighboring agents, a distributed fault-tolerant consensus controller is designed
for the leaderless multi-agent systems. Moreover, an event-triggered mechanism with special definition
of event-triggered error is applied to reduce the amount of communications. In addition, the Zeno
behaviour is avoided. By using Lyapunov stability theory, it is proved that all signals are bounded in
the closed-loop systems. Finally, a numerical simulation result is presented to prove the effectiveness
of the proposed method.
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1. Introduction

In the past decades, the adaptive consensus control problem of multi-agent systems has attracted
increasing attention due to its wide range of applications in industrial and military fields, such as
exploration robots, surface vehicles formation and so on [1–6]. Generally, the consensus problem can
be divided leader-following consensus problem [7] and leaderless consensus problem [8]. The
leader-following consensus problem similar to tracking control [9–11]. The purpose of the consensus
problem is that these agents can reach synchronization. To achieve this goal, a proper distributed
control protocol is designed based on the local information of agents and its neighbors. According to
different working conditions, the consensus problem has been widely studied. In [12], the consensus
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problem of discrete-time systems with nonlinear dynamics was studied. The problem of
communication noises was studied in [13]. In order to realize the consensus control of multi-agent
systems, the adaptive control method was applied to the research of multi-agent systems [14].
Adaptive consensus control technology refers to the system adjusting itself according to the change of
environment so that its behavior can achieve the best or at least allowable characteristics and
functions in the new or changed environment. That is to say, it is an online adjustment mode, which
cause unnecessary waste of communication resources. To overcome this disadvantage, more and
more researchers have begun to research the event-triggered adaptive control technology.

In event-triggered control (ETC) scheme, when the event-triggered condition is satisfied, the
information is transmitted. Generally speaking, the event-triggered condition include a predefined
threshold and event-triggered error [15–19]. In general, based on the actual demands, the threshold is
set. If the event-triggered error exceeds the threshold, the information is allowed to transmit. In this
way, the burden of communication is reduced. In [20], the ETC problem was researched for uncertain
nonlinear systems, and three different event-triggered conditions were designed of controller update.
In [21], an ETC technology was studied for a simple single system. In [22], the technology in
literature [21] had been improved, a distributed ETC scheme was proposed, which means that the
trigger mechanism was extended to each agent system. In [23], the event-triggered tracking consensus
control problem of nonlinear systems with unknown disturbances was researched. The fuzzy adaptive
distributed ETC protocol was proposed for uncertain systems in [24]. With the development of
science and technology, there has been a better development on how to use event-triggered
mechanism to solve the communication burden. Based on describe the motivation, the methods of
algorithmic synthesis, the technical challenges, and their application in distributed control, the
development of the event-triggered mechanism of average consensus was introduced, and the
event-triggered network system control problem was studied in [25]. In [26], the event-triggered
coverage control problem was studied for asynchronous multi-agent systems, and a completely
asynchronous communication sensing solution was proposed by the agent to decide when to push
information to others in the networks. Based on ETC scheme, the global stabilization problem of
k-valued logical control networks was studied in [27]. However, most schemes consider the fault-free
system model in the above results.

In many practical systems, various faults may suddenly occur in the process of system
operation [28–30]. Therefore, the effectiveness of components cannot reach the ideal goal. The actual
performance of the systems may decline or instability, when the faults occur. In order to guarantee
stability and safety of the systems, the some fault-tolerant control (FTC) methods have been
developed. Based on fuzzy systems and sliding-mode methods, the problems of fault estimation and
fault-tolerant control for stochastic systems with sensor faults were studied in [31]. The problem of
sensor failures was researched for nonlinear pure-feedback systems, and an adaptive fuzzy
fault-tolerant control method was proposed by the parameter separation technology in [32]. In [33],
an adaptive fault-tolerant consensus control method was developed based on local filter to estimate
the unmeasurable states for multi-agent systems. In [34], Fault tolerant control and event-triggered
mechanism were considered at the same time in nonlinear systems. In order to compensate for
actuator fault and uncertainty of systems, a robust adaptive decentralized FTC scheme based on
neural network was proposed for interconnected systems in [35]. An observer-based fault-tolerant
controller was designed by the T-S fuzzy and delta operator methods in [36]. Hence, it is meaningful
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that the fault-tolerant control problem is investigated. Moreover, because of the unknown dynamics
existed in the actual system models, the neural networks (NNs) and fuzzy control have been widely
studied [37–41]. The Lyapunov stability theorem is often used to prove that the signals of systems are
bounded in different control environments, such as discrete-time systems [42], impulsive
systems [43], semi-markov jump systems [44], pure-feedback interconnected nonlinear systems [45],
and so on.

In this paper, the fault-tolerant leaderless consensus control problem is considered for nonlinear
multi-agent systems. First, this paper attempts to apply a special event-triggered error definition to
reduce the amount of communications in multi-agent systems. Then, a fault-tolerant control scheme
is designed by using model reference control method and approximate property of neural networks to
unknown functions, which reduces the exact requirements of controller parameters. At last, an event-
triggered controller is designed to ensure the stability of multi-agent systems, where adaptive law is
updated by event-triggered control method.

The rest of the structure is as follows. The proposes the graph theory and the NNs approximation
method are given in Section II. Section III give the controller design. Stability analysis of multi-agent
formations is presented in Section IV. In Section V, it is proved that the ETC scheme avoid zeno
behavior. A simulation result is given in Section VI. Section VII summarize the conclusion.

2. Preliminaries

2.1. Graph theory

The identify matrix is described as IN . Let G={V,E} be an undirected graph, where
V = {1, 2, ...,N}, N ≥ 1 and E={(i, j)|i , j, i, j ∈ V} are described as a node set and an edge set,
respectively. The adjacency matrix A = [ai j] ∈ RN×N is associated with G, ai j=1 if the agent i can
receive the information from agent j, otherwise ai j=0. The degree matrix D=diag{d1, ..., dN}, where
di=

∑ j=N
j=1 ai j. Define L=D-A is Laplacian matrix of G.

For a vector s = (s1, ..., sN)T , ‖s‖ represents the 2-norm of s. Let matrix W = [w1,w2; w3,w4], the
vectorization of the matrix W is defined vec(W) = [w1,w2,w3,w4]T , and vec(W)T vec(W) = tr{WT W}.
For a square matrix E ∈ Rn×n, the minimum eigenvalue of E is defined as λmin(E) , and the maximum
eigenvalue of E is defined as λmax(E). The Z+ is difference of Z in a moment. The ⊗ is Kronecker
product.

2.2. Function approximation

In recent years, radial basis function NNs are employed to deal with unknown dynamics of
systems [46]. Defined a compact set Ωα, the unknown function F(α) ∈ Ωα, there exists a constant
ω∗Tξ(α) satisfying the following form

sup
α∈Ωα

|ω∗Tξ(α) − F(α)| ≤ δ, (2.1)

where α ∈ RN is the input variable, δ is arbitrary positive constant, ω∗ ∈ RN is the ideal NNs weight
vector, and ξ(α) is a smooth basis vector.

Based on the NNs approximation property, an unknown function F(α) can be represented in the
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following form

F(α) = ω∗Tξ(α) + δ(α), (2.2)

where δ(α) is the smallest approximation error and δ(α) ≤ δ̄. Throughout this paper, we define ξ(x) =

[ξ1(x1)T , ..., ξN(xN)T ]T , and δ(x) = [δ1(x1), ..., δN(xN)]T . There exists ‖ξ(x)‖ < ξ̄ and ‖δ(x)‖ < δ̄, in
which ξ̄ and δ̄ are positive constants.

2.3. Systems description

The nonlinear multi-agent systems are considered, and its mathematical model can be expressed as

ẋi (t) = A0xi(t) + f0i(xi) + g(xi)uii , (2.3)

where xi ∈ R
m is state of the i-th agent, and x = [xT

1 , x
T
2 , ..., x

T
N]T . A0 is a known constant matrix with

compatible dimension. The f0i ∈ f0 = [ f T
01, ..., f T

0N]T is smooth continuous nonlinear function. ui is the
controller of each agent, and u=[uT

1 , u
T
2 , ..., u

T
N]T . g(xi) ∈ g(x) = [g(x1)T , ..., g(xN)T ]T is gain coefficient.

For the multi-agent systems (2.3) have following assumption.

Assumption 1. System (2.3) is controllable, and the nonlinear function f2(x) can be linearizable. g(x)
is the control gain matrix, and g(x) is bounded for all x, satisfying ‖g(x)‖ ≤ gmax and gmax > 0.

In this paper, the actuator fault is considered, the multi-agent systems model can be rewritten as

ẋi (t) = A1xi(t) + f1i(xi) + g(xi)piui, (2.4)

where pi=diag(ρ1, ..., ρN) is the actuator effectiveness factor of each agent with ρi ∈ (0, 1), and
p=diag(p1, ..., pN). A1 is a known constant matrix with compatible dimension. The
f1i ∈ f1 = [ f T

11, ..., f T
1N]T is smooth continuous nonlinear function. It is assumed that the ideal

controller u∗i = Q(x) enables the multi-agent systems to achieve the desired performances. If the
controller u∗i = Q(x) is added to the fault multi-agent systems, the systems model can be rewritten as

ẋi (t) = A2xi(t) + f2i(xi), (2.5)

where A2 is a known constant matrix with compatible dimension, and the f2i ∈ f2 = [ f T
21, ..., f T

2N]T

is smooth continuous nonlinear function. There are the following assumptions for equality (2.2) and
system (2.5).

Assumption 2. For the multi-agent systems (2.5), the positive matrices P and Q satisfy the following
form

P(A2 ⊗ IN) + (A2 ⊗ IN)T P + σl f
2I +

1
σ

PP ≤ −Q, (2.6)

where σ represents an appropriate positive constant, I is defined as the identity matrix.

Assumption 3. For nonlinear smooth bounded function functions f2(x) and ξ(x), there exist constant
l f and lξ satisfying

‖ f2(x) − f2(y)‖ ≤ l f ‖x − y‖,

‖ξ(x) − ξ(y)‖ ≤ lξ‖x − y‖,
(2.7)

where l f and lξ are Lipschitz constants.
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2.4. Stability theoretics

An impulsive dynamical system is considered [47], it is defined as

Ẋ =Fc(X), X(0) = X0, X ∈ F ⊂ I, X < J ,

∆X =Fd(X) = ∆X(t+) − ∆X(t), X ∈ J ⊂ I,
(2.8)

where X ∈ I is the state vector of the system, and I is an open set with 0 ∈ I. F and J are the flow
and the jump sets, respectively. ∆X(t+) = lim

a→0
X(t + a). The functions Fc(X) represents continuous

dynamics of the impulsive dynamical system, and the functions Fd(X) is reset dynamics of the
impulsive dynamical system.

Remark 1. In this paper, because the event-triggered sampling mechanism is used, the influence of
sampling impulse should be considered when discussing the stability. And, the various impulsive
theories have been widely used [48].

Lemma 1. [49] It is assumed that the function V(X) is continuously differentiable. M(∗) and O(∗) are
continuous functions with initial value being 0, such that V(X) , M(∗) and O(∗) satisfy the following
forms

M(‖X‖) ≤ V(X) ≤ O(‖X‖), X ∈ I, (2.9)
∂V(X)
∂X

Fc(X) < 0, X ∈ I, X < J , ‖x‖ > χ, (2.10)

V(X + Fd(X)) − V(X) ≤ 0, X ∈ I, X ∈ J , ‖x‖ > χ, (2.11)

where χ is a positive constant. If the above equations are satisfied, the system state is locally ultimately
bounded.

3. Controller and event-triggered mechanism design

3.1. Controller design

Based on the NNs approximate property (2.2), the ideal controller u∗i can be shown as

u∗i =
∑
j∈E

ai j(xi(t) − x j(t)) + ωT
i ξ(xi) + δ(xi), (3.1)

According to the above analysis, the actual controller can be designed in the following form

ui = H(t)
∑
j∈E

ai j(xi(tk) − x j(tk)) + ω̂Tξ(xk), (3.2)

where H(t) = exp(−τ(t − tk)). The ω̂i is estimation of ωi, and ω̂i ∈ ω̂T = [ω̂T
1 , ..., ω̂

T
N]T ,

ωT = [ωT
1 , ..., ω

T
N]T .

Remark 2. Because the multi-agent systems exist interconnections among agents, the structure of the
controller (3.1) is different from the one in [34, 47]. In this way, the technology is further introduced
into the field of multi-agent.
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At the time t = tk, the event-triggered condition is triggered, so the ω̂i is updated. The next triggered
time is defined as tk+1. Until the next triggered time tk+1, the ω̂i is held. The time interval (tk, tk+1]
represents the occurrence of an event triggered. Therefore, the adaptive update law is designed as

ω̂+
i = νω̂i −

aeξ(xi)eT
i B1i

be + ‖ei‖
2 −

ax̃ξ(xi)x̃T
i B2i

bx̃ + ‖x̃i‖
2 , t = tk

˙̂ωi = 0, t ∈ (tk, tk+1]
(3.3)

where 0 < ν < 1, ae > 0, ax̃ > 0, be and bx̃ are small positive constants, B1i ∈ B1 =diag[B11, ..., B1N]
and B2i ∈ B2 =diag[B21, ..., B2N] are nonzero matrices with appropriate dimension. ei is event-triggered
error.

Remark 3. The be and bx̃ are defined as small positive constants. They exist to avoid the denominator
of equality (3.3) equal to 0.

Let x̃i = xi − x̂i, where x̂i is reference dynamics with the following form

x̂+
i = xi(t), t = tk

˙̂xi = A2 x̂i(t)i + f2i(x̂i(t)), t ∈ (tk, tk+1]
(3.4)

Next, the ω̃i = ωi − ω̂i denotes the estimation error, and ω̃ = [ω̃T
1 , ..., ω̃

T
N]T . The estimation error

dynamics are obtained as

ω̃+
i = ωi − ω̂

+
i

= ωi − νω̂i + Weiξ(xi)eT
i B1i + Wx̃iξ(xi)x̃T

i B2i

= ω̃i + ∆ω̃i, t = tk

˙̃ωi = 0, t ∈ (tk, tk+1]

(3.5)

where ∆ω̃i = (1 − ν)ω̂i + Weiξ(xi)eT
i B1i + Wx̃iξ(xi)x̃T

i B2i,Wei = ae
be+‖ei‖2

,Wx̃i = ax̃
bx̃+‖x̃i‖2

, Wei ∈ We =

[We1 , ...,WeN ]T and Wx̃i ∈ Wx̃ = [Wx̃1 , ...,Wx̃N ]T .

3.2. Event-triggered mechanism design

In this section, the event-triggered mechanism is introduced [34]. First, ei represents event-triggered
error. Define the ei = xi(t) − xik, where ei ∈ e = [eT

1 , ..., e
T
N]T , xik = xi(tk) exp(−τ(t − tk)). Then,

considering the stability of the multi-agent systems, the design of event-triggered condition is as follow

‖ei(t)‖ ≥
{
ζe‖xi‖, ‖xi‖ > B̄X

ζe(‖xi‖ + B̄X), ‖xi‖ ≤ B̄X
(3.6)

where B̄X is a small positive constant. The B̄X can avoid the frequent occurrence of events, when the
‖x‖ is too small. In order to ensure the stability of the multi-agent systems, ζe is designed as follows

ζe =
Kζ

2gmax‖P‖(‖L ⊗ In‖ + lξ‖ω̂‖)
, (3.7)

where Kζ is a constant, and 0 < Kζ <
1
ζ
λmin(Q). The constant ζ > 0.
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Remark 4. The event-triggered error ei has been designed, and a negative exponential function is
added to the event-triggered error. According to the characteristics of the negative exponential
function, the event-triggered mechanism avoided no triggering after a long period of system stability.
Because ξ(x) is a smooth continuous, lξ donot equal to zero. In multi-agent systems, the design of
event-triggered scheme needs to consider the interconnections among agents. Although ‖ω̂‖ is equal
to zero, it is guaranteed that the denominator of equality (3.7) is not equal to zero. Differ in [34], the
parameter selection needs to consider another form when the 2-norm of weight vector estimation
equal to zero. In other words, the denominator of ζe does not appear to be equal to zero in this paper.

4. System stability analysis

4.1. Impulsive dynamical model

According to the multi-agent systems (2.4) and controller (3.2), the multi-agent systems can be
rewritten as

ẋi = A1xi + f1i(xi) + gi(x)pi(H(t)
∑
j∈E

ai j(xi(tk) − x j(tk))

+ ω̂Tξ(xk)), t ∈ (tk, tk+1]
(4.1)

Furthermore, by the definition of Laplacian matrix, one has

ẋ = (A1 ⊗ In)x + f1(x) + g(x)p((L ⊗ In)xk + ω̂Tξ(xk)), t ∈ (tk, tk+1] (4.2)

Add and subtracting g(x)pu∗ yields

ẋ = (A1 ⊗ In)x + f1(x) + g(x)p((L ⊗ In)xk

+ ω̂Tξ(xk) − u∗ + u∗), t ∈ (tk, tk+1]
(4.3)

Using the ideal controller (8) and system (4) , we have

ẋ = (A2 ⊗ In)x + f2(x) + g(x)p((L ⊗ In)xk + ω̂Tξ(xk)
− (L ⊗ In)x − ωTξ(x) − δ(x)), t ∈ (tk, tk+1]

(4.4)

According to ω̃ = ω − ω̂, one obtains

ẋ = (A2 ⊗ In)x + f2(x) + g(x)p(L ⊗ In)(xk − x) + g(x)p(ω̂Tξ(xk)
− ω̂Tξ(x)) − g(x)p(ω̃Tξ(x) + δ(x)), t ∈ (tk, tk+1]

(4.5)

Define the state error x̃ = x − x̂. According to the above equation, the following equation can be
obtained

˙̃x = (A2 ⊗ In)x̃ + f2(x) − f2(x̂) + g(x)p((L ⊗ In)(xk − x))
+ g(x)p(ω̂Tξ(xk) − ω̂Tξ(x) − g(x)p(ω̃Tξ(x) + δ(x)), t ∈ (tk, tk+1]

∆x̃ = x̂(t) − x(t), t = tk

(4.6)
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Define a sign ψ = [xT , xT
k , x̃

T , vec(ω̂)T ]T ∈ I, where ψ is an augmented vector. Then, the closed-loop
impulsive dynamical is obtained as

ψ̇ =


ẋ

−τx (tk) e−τ(t−tk)

˙̃x
0

 , t ∈ (tk, tk+1]

∆ψ =


0

e(t)
−x̃
Γ

 , t = tk

(4.7)

where Γ = vec((1 − ν)ω̂ + Weξ(x)eT B1 + Wx̃ξ(x)x̃T B2).

4.2. Stability analysis

In this section, the stability is established via Lyapunov function. Firstly, The estimation error ω̃
needs to be bounded, so the following Lemma is given.

Lemma 2. Consider the multi-agent systems (2.3) and the controller (3.1) expressed as the the
impulsive system (4.6), and the adaptive update law is (3.5). Let Assumptions 1-3 be satisfied, and the
initial ω̂(0) in a compact set. Therefore, the estimated error ω̃ is bounded by selecting the appropriate
constant.

Proof : In impulsive systems, the stability of continuous dynamics and stability of jump dynamics
need to be considered, respectively. The function Vw = tr{ω̃T ω̃} is defined as Lyapunov function for
the impulsive dynamics (3.5). The ω̂i is held in the continuous part of impulsive dynamics, so V̇w = 0
for t ∈ (tk, tk+1]. Further, the adaptive estimation error ω̃ is bounded.

Then, the ω̂i is updated when the event-triggered condition is triggered. The stability of jump part
is considered. According to the above analysis, we know that

∆Vw = tr{ω̃+T ω̃+} − tr{ω̃T ω̃},

= tr{(ω̃ + ∆ω̃)T (ω̃ + ∆ω̃)} − tr{ω̃T ω̃},
(4.8)
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Using the equality (3.5), we can get

∆Vw = tr{(ω̃ + (1 − ν)(ω − ω̃) + Weξ(x)eT B1 + Wx̃ξ(x)x̃T B2)T (ω̃+

(1 − ν)(ω − ω̃) + Weξ(x)eT B1 + Wx̃ξ(x)x̃T B2)} − tr{ω̃T ω̃},

= tr{ω̃T ω̃ + (1 − ν)ω̃Tω − (1 − ν)ω̃T ω̃ + Weω̃
Tξ(x)eT B1

+ Wx̃ω̃
Tξ(x)x̃T B2 + (1 − ν)ωT ω̃ + (1 − ν)2ωTω − (1 − ν)2ωT ω̃

+ (1 − ν)Weω
Tξ(x)eT B1 + (1 − ν)Wx̃ω

Tξ(x)x̃T B2 − (1 − ν)ω̃T ω̃

− (1 − ν)2ω̃Tω + (1 − ν)2ω̃T ω̃ − (1 − ν)Weω̃
Tξ(x)eT B1

− (1 − ν)Wx̃ω̃
Tξ(x)x̃T B2 + WeBT

1 eξ(x)T ω̃ + (1 − ν)WeBT
1 eξ(x)Tω

− (1 − ν)WeBT
1 eξ(x)T ω̃ + W2

e BT
1 eξ(x)Tξ(x)eT B1

+ WeWx̃BT
1 eξ(x)Tξ(x)x̃T B2 + Wx̃BT

2 x̃ξ(x)T ω̃

+ (1 − ν)Wx̃BT
2 x̃ξ(x)Tω − (1 − ν)Wx̃BT

2 x̃ξ(x)T ω̃

+ WeWx̃BT
2 x̃ξ(x)Tξ(x)eT B1 + W2

x̃ BT
2 x̃ξ(x)Tξ(x)x̃T B2} − tr{ω̃T ω̃},

= tr{−(1 − ν)2ω̃T ω̃ + 2(ν − ν2)ωT ω̃ + 2νWeBT
1 eξ(x)T ω̃

+ 2νWx̃BT
2 x̃ξ(x)T ω̃ + (1 − ν)2ωTω + 2(1 − ν)Weω

Tξ(x)eT B1

+ 2(1 − ν)Wx̃ω
Tξ(x)x̃T B2 + 2WeWx̃BT

1 eξ(x)Tξ(x)x̃T B2

+ W2
e BT

1 eξ(x)Tξ(x)eT B1 + W2
x̃ BT

2 x̃ξ(x)Tξ(x)x̃T B2},

(4.9)

According to the equality (3.3), the 0 ≤ Wx̃‖x̃‖ < 1 and 0 ≤ We‖e‖ < 1 is obtained. We get

∆Vw ≤ −(1 − ν)2‖ω̃‖2 + 2(ν − ν2)‖ω‖‖ω̃‖ + 2νξ̄‖B1‖‖ω̃‖

+ 2νξ̄‖B2‖‖ω̃‖ + (1 − ν)2‖ω‖2 + 2(1 − ν)ξ̄‖ω‖‖B1‖

+ 2(1 − ν)ξ̄‖ω‖‖B2‖ + 2ξ̄2‖B1‖‖B2‖ + ξ̄2‖B1‖
2 + ξ̄2‖B2‖

2,

∆Vw ≤ −(1 − ν)2‖ω̃‖2 + (2(ν − ν2)‖ω‖ + 2νξ̄‖B1‖ + 2νξ̄‖B2‖)‖ω̃‖
+ (1 − ν)2‖ω‖2 + 2(1 − ν)ξ̄‖ω‖(‖B1‖ + ‖B2‖) + ξ̄2(‖B1‖ + ‖B2‖)2,

(4.10)

Combined with the above inequalities and 0 < ν < 1, we can get

∆Vw ≤ −η1‖ω̃‖
2 + η2‖ω̃‖ + η3, (4.11)

where

η1 = (1 − ν)2,

η2 = 2(ν − ν2)‖ω‖ + 2νξ̄‖B1‖ + 2νξ̄‖B2‖,

η3 = (1 − ν)2‖ω‖2 + 2(1 − ν)ξ̄‖ω‖(‖B1‖ + ‖B2‖) + ξ̄2(‖B1‖ + ‖B2‖)2,

(4.12)

And, inequality (4.11) can be rewritten as follows

∆Vw ≤ −
η1

2
‖ω̃‖2 − (

√
η1

2
‖ω̃‖ −

η2√
2η1

)2 + η4,

∆Vw ≤ −
η1

2
‖ω̃‖2 + η4,

(4.13)
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where η4 = η3 + (η2
2/2η1). It is found that ∆Vw is negative when ‖ω̃‖2 > 2η4/η1. In the triggered instant

tk, the estimated error ω̃ is ultimately bounded.
According to the above analysis, it is proved that the error ω̃ is locally ultimately bounded. Then,

the stability is illustrated in the following theorem.

Theorem 1. Consider the multi-agent systems (2.4), the controller (3.1), the event-triggered condition
(3.6), and adaptive update law (3.3), suppose that the initial augmentation state ψ(0) ∈ I. If the
Assumptions 1–3 are satisfied. Then, the augmented state ψ is locally ultimately bounded.

Proof: In order to prove the stability of system (4.7), the Lyapunov function is constructed as

V f (ψ) = Vx + Vxk + Vx̃ + Vw, (4.14)

where Vx = xT Px , Vxk = xk
T xk, Vx̃ = x̃T Px̃ and Vw = tr{ω̃T ω̃}. P is a positive matrix satisfying the

Assumption 3.
In the first step, the continuous part of the dynamical (4.7) is considered for t ∈ (tk, tk+1]. The time

derivative of the Lyapunov function (4.14) can be expressed in the following four parts.
We know that the V̇x can be described as

V̇x = xT P((A2 ⊗ In)x + f2(x) + g(x)p(L ⊗ In)(xk − x)
+ g(x)p(ω̂Tξ(xk) − ω̂Tξ(x)) − g(x)p(ω̃Tξ(x) + δ(x)))
+ ((A2 ⊗ In)x + f2(x) + g(x)pL(xk − x)
+ g(x)p(ω̂Tξ(xk) − ω̂Tξ(x)) − g(x)p(ω̃Tξ(x) + δ(x)))T Px,

= xT (P(A2 ⊗ In) + (A2 ⊗ In)T P)x + 2xT P f2(x)
+ 2xT Pg(x)p((L ⊗ In)(xk − x)) − 2xT Pg(x)p(ω̃Tξ(x) + δ(x))
+ 2xT Pg(x)p(ω̂Tξ(xk) − ω̂Tξ(x)),

(4.15)

Using the Assumption 2 and Young’s inequality , one has

V̇x ≤ xT (P(A2 ⊗ In) + (A2 ⊗ In)T P + σl f
2I +

1
σ

PP)x

+ 2xT Pg(x)p((L ⊗ In)(xk − x)) + 2xT Pg(x)p(ω̂Tξ(xk) − ω̂Tξ(x))
− 2xT Pg(x)p(ω̃Tξ(x) + δ(x)),

(4.16)

Using Assumption 3, it is rewritten as

V̇x ≤ −xT Qx + 2xT Pg(x)p((L ⊗ In)(xk − x))
+ 2xT Pg(x)p(ω̂Tξ(xk) − ω̂Tξ(x)) − 2xT Pg(x)p(ω̃Tξ(x) + δ(x)),

(4.17)

It is fact that 0 < ‖p‖ < 1, Lipschitz condition (6) of Assumption 2, and the g(x) is bounded, we can
get

V̇x ≤ −λmin(Q)‖x‖2 + 2gmax‖P‖(‖ω̃‖ξ̄ + δ̄)‖x‖
+ (2gmax‖P‖‖x‖(‖L ⊗ In‖ + lξ‖ω̂‖))‖e‖,

(4.18)
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Consider the event-triggered condition (3.6), the ‖e‖ ≤ ζe(‖x‖ + B̄X) is given. Therefore, we can
obtained

V̇x ≤ −(λmin(Q) − Kζ)‖x‖2 + 2(gmax‖P‖(‖ω̃‖ξ̄ + δ̄) + Kζ B̄X)‖x‖, (4.19)

The derivative of V̇xk is given as

V̇xk = −2τx(tk)2 exp(−τ(t − tk)) ≤ 0, (4.20)

Next, the derivative of Vx̃ is given as follows

V̇x̃ = x̃T P((A2 ⊗ In)x̃ + f2(x) − f2(x̂) + g(x)p((L ⊗ In)(xk − x))
+ g(x)p(ω̂Tξ(xk) − ω̂Tξ(x)) − g(x)p(ω̃Tξ(x) + δ(x)))
+ ((A2 ⊗ In)x̃ + f2(x) − f2(x̂) + g(x)p((L ⊗ In)(xk − x))
+ g(x)p(ω̂Tξ(xk) − ω̂Tξ(x)) − g(x)p(ω̃Tξ(x) + δ(x)))T Px̃,

(4.21)

Similar to (4.16)-(4.18), we can obtain

V̇x̃ ≤ −λmin(Q)‖x̃‖2 + 2gmax‖P‖(‖ω̃‖ξ̄ + δ̄)‖x̃‖
+ 2gmax‖P‖‖x̃‖(‖L ⊗ In‖ + lξ‖ω̂‖))‖e‖,

(4.22)

Based on the event-triggered condition (3.6) and Young’s inequality, the following inequality holds

V̇x̃ ≤ −λmin(Q)‖x̃‖2 + Kζ‖x‖‖x̃‖

+ 2(gmax‖P‖(‖ω̃‖ξ̄ + δ̄) + Kζ B̄X)‖x̃‖,
≤ −(λmin(Q) − βKζ)‖x̃‖2

+ 2(gmax‖P‖(‖ω̃‖ξ̄ + δ̄) + Kζ B̄X)‖x̃‖ +
1
β

Kζ‖x‖,

(4.23)

where β is a positive constant, and the equality β2 = β + 1 is satisfied.
Because the ω̂i is held in the event-triggered time intervals, we can get V̇w = 0. Therefore, one has

V̇ f (ψ) ≤ −(λmin(Q) −
β + 1
β

Kζ)‖x‖2

+ 2(gmax‖P‖(‖ω̃‖ξ̄ + δ̄) + Kζ B̄X)‖x‖
− (λmin(Q) − βKζ)‖x̃‖2

+ 2(gmax‖P‖(‖ω̃‖ξ̄ + δ̄) + Kζ B̄X)‖x̃‖,

(4.24)

According to β is solution of the β2 = β + 1 and β > 0, we can get

V̇ f (ψ) ≤ −θ1‖X̄‖2 + θ2‖X̄‖, (4.25)

where X̄ = [‖x‖, ‖x̃‖]T , θ1 = λmin(Q) − βKζ and θ2 = 2
√

2(gmax‖P‖(‖ω̃‖ξ̄ + δ̄) + Kζ B̄X). According to
Lemma 2,we know that ω̃ is bounded, we can conclude that the θ2 is bounded. It is fact that V̇ f (ψ) is
less than zero when ‖X̄‖ > ḠX̄ = θ2/θ1 is satisfied, and it means that the multi-agent systems state x(t)
and the state error x̃ are locally ultimately bounded for t ∈ (tk, tk+1].
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Consider the jump part of the dynamical (4.7) in t = tk, the Lyapunov function is defined as (4.14).
The difference is obtained as follow form

∆V f (ψ) = ∆V f (ψ+) − ∆V f (ψ), (4.26)

Using ∆ψ = ψ+ − ψ and the dynamics (4.7), we have

∆V f (ψ) = x+T Px+ + xk
+T x+

k + x̃+T Px̃+ + tr{ω̃+T ω̃+}

− xT Px − xk
T xk − x̃T Px̃ − tr{ω̃T ω̃},

= xT x − xk
T xk − x̃T Px̃ + tr{ω̃+T ω̃+} − tr{ω̃T ω̃},

(4.27)

For any t ∈ (tk, tk+1], it is fact that the x(t) is bounded. Consider the inequality (4.11), one obtains

∆V f (ψ) ≤ −‖xk‖
2 − η1‖ω̃‖

2 + η2‖ω̃‖ + η3 + ηx,

≤ −‖xk‖
2 − η1(‖ω̃‖ −

η2

2η1
)2 +

4η1(η3 + ηx) + η2
2

4η1
,

(4.28)

where ηx is bounded for ‖x‖2 and ηx < ‖X̄‖2.
Consider the above analysis, ∆V f (ψ) is negative when ‖xk‖ > Gxk or ‖ω̃‖ > Gω̃, where

Gxk =

√
4η1 (η3 + ηx) + η2

2

4η1
, (4.29)

Gω̃ =
η2 +

√
4η1 (η3 + ηx) + η2

2

2η1
, (4.30)

Further, the state ψ is locally ultimately bounded in t = tk. Because of x+ = x and ‖x̃+‖ ≤ ‖x̃‖ for
t = tk, the ‖X̄‖ ≤ ḠX̄ in t = tk. we can conclude that Gxk and Gω̃ converge to Ḡxk and Ḡω̃, where

Ḡxk =

√√
4η1

(
η3 + Ḡ2

X̄

)
+ η2

2

4η1
, (4.31)

Ḡω̃ =
η2 +

√
4η1

(
η3 + Ḡ2

X̄

)
+ η2

2

2η1
, (4.32)

The ω̂ remains constant, and ‖xk‖ is monotone decreasing function on t ∈ (tk, tk+1]. If

‖ψ‖ ≥
√

Ḡ2
X̄

+ Ḡ2
xk

+ Ḡ2
ω̃, the Lemma 1 is satisfied. Then, it can be proven that all signals of the

multi-agent systems are locally ultimately bounded.

5. The event-triggered time interval

In this section, it is proven that the event-triggered time interval is a nonzero positive constant in
the following theorem. Therefore, the event-triggered time interval is a lower bound.

Theorem 2. Consider the controller (3.1) and the event-triggered condition (3.6) are proposed in this
paper. Let Assumptions 1-3 be satisfied and the initial ω̂(0) is in a compact set. Then, the event-
triggered time interval Tk is a positive scalar with nonzero lower bound.
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In the event-triggered time interval t ∈ (tk, tk+1], the following equalities hold

e = x(t) − xk = x(t) − x(tk) exp(−τ(t − tk)),
ė = ẋ(t) + τx(tk) exp(−τ(t − tk)),

(5.1)

Based on the system dynamics (4.4) and (4.6), one has

ė = (A2 ⊗ In)x + f2 (x) + g(x)p(L ⊗ In)(xk − x) + g(x)p(ω̂Tξ(xk) − ω̂Tξ(x))
− g(x)p(ω̃Tξ(x) + δ(x)) + τx(tk) exp(−τ(t − tk)),

= (A2 ⊗ In)x − (A2 ⊗ In)xk + (A2 ⊗ In)xk

+ f2(x) − f2(xk) + f2(xk) + g(x)p(L ⊗ In)(xk − x)
+ g(x)p(ω̂Tξ(xk) − ω̂Tξ(x))
− g(x)p(ω̃Tξ(x) + δ(x)) + τx(tk) exp(−τ(t − tk)),

= (A2 ⊗ In)e + (τIn + A2 ⊗ In)xk

+ f2(x) − f2(xk) + f2(xk) + g(x)p(L ⊗ In)(xk − x)
+ g(x)p(ω̂Tξ(xk) − ω̂Tξ(x))
− g(x)p(ω̃Tξ(x) + δ(x)),

(5.2)

Therefore, one obtains

‖ė‖ ≤ ‖(A2 ⊗ In)‖‖e‖ + ‖(τIn + A2 ⊗ In)‖‖xk‖ + ‖ f2(x) − f2(xk)‖
+ ‖ f2(xk)‖ + gmax‖p‖‖L ⊗ In‖‖e‖ + gmax‖p‖‖(ω̂Tξ(xk) − ω̂Tξ(x))‖
+ gmax‖p‖‖(ω̃Tξ(x) + δ(x))‖,
≤ (‖(A2 ⊗ In)‖ + gmax‖L ⊗ In‖ + ł f )‖e‖ + (‖τIn + A2 ⊗ In‖ + l f )‖xk‖

+ gmax(2‖ω̂‖ξ̄ + ‖ω̃‖ξ̄ + δ̄),
≤ (‖(A2 ⊗ In)‖ + gmax‖L ⊗ In‖ + ł f )‖e‖ + Γe,

(5.3)

where Γe = (‖τIn + A2 ⊗ In‖ + l f )‖xk‖ + gmax(2‖ω̂‖ξ̄ + ‖ω̃‖ξ̄ + δ̄).
Consider the comparison lemma in [50] and e(tk) = 0, one has

‖e‖ ≤
∫ t

tk
exp((‖(A2 ⊗ In)‖ + gmax‖L ⊗ In‖ + l f )(t − s))Γeds,

≤
Γe

Γ1
(exp(Γ1(t − tk)) − 1),

(5.4)

where Γ1 = ‖(A2 ⊗ In)‖ + gmax‖L ⊗ In‖ + l f

Based on the event-triggered condition (3.6), the ‖e‖ ≥ ζeB̄x in the trigger instant t = tk. The
Tk = tk+1 − tk represents the k-th event-triggered time interval. Further, we can get

ζeB̄x ≤
Γe

Γ1
(exp(Γ1Tk) − 1), (5.5)

which means that

Tk ≥
1
Γ1

ln(
ζeB̄xΓ1

Γe
+ 1) > 0, (5.6)

Therefore, the event-triggered time interval is a lower bound. In other words, there is no Zeno
behavior.
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6. Simulation

In this section, we prove the theoretical results by numerical examples. We consider the leaderless
multi-agent systems with four follower nodes in Figure 1. The each agent’s dynamic is given as follows

ẋi (t) = A1xi(t) + f1i(xi) + g(xi)piui, (6.1)

where xi = [xi1, xi2]T , ui = [ui1, ui2]T , i = 1, . . . , 4. The matrices A1, f1i(xi), g(xi), and pi are chosen as
follows

A1 =

[
0 1
0 0

]
, f1i(xi) =

[
−2xi2 + xi1

−2xi1 + xi2

]
,

g(xi) =

 −1
cos2 xi2−2

1+cosxi2
cos2 xi2−2

1+cosxi2
cos2 xi2−2

−3−2cosxi2
cos2 xi2−2

 , pi =

[
0.8 0
0 0.7

]
,

(6.2)

We assume the ideal controller u∗i = Q(x), so the each agent’s dynamic is rewritten as

ẋi (t) = A2xi(t) + f2i(xi), (6.3)

where A2 =diag{−20,−25} and f2i = [4xi1, 5xxi2]T .

Figure 1. Communication topology.

The constants are chosen as P =diag(1/60, 1/60), l f = 2.4, lξ = 2.4, σ = 1, ν = 0.0015, ae = 5,
ax̃ = 5, bx̃ = 1, be = 1, Kζ = 0.09, τ = 0.81, B1i =diag(1, 1) and B2i =diag(1, 1). We choose the
initial values as x1 = [5, 2.5]T , x2 = [3, 2]T , x3 = [1, 1.21]T , x4 = [4, 3]T . Figures 2–7 show the
simulation results. The Figure 2 depicts the responses of the system state vector x11, x21, x31 and x41.
The Figure 3 depicts the responses of the system state vector x12, x22, x32 and x42. The above figures
show the leaderless consensus. The event-triggered time intervals are presented in Figures 4–7.
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Figure 2. Responses of the state x11, x21, x31 and x41.
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Figure 3. Responses of the state x12, x22, x32 and x42.
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Figure 4. Event-triggered time instants of agent 1.
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Figure 5. Event-triggered time instants of agent 2.
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Figure 6. Event-triggered time instants of agent 3.
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Figure 7. Event-triggered time instants of agent 4.
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7. Conclusions

In this paper, an event-triggered fault-tolerant consensus control strategy for nonlinear multi-agent
systems has been proposed. Based on the approximate property of neural networks and the model
reference control method, the fault-tolerant method has been designed to ensure security for
leaderless multi-agent systems, which reduces the exact requirements of control parameters. The ETC
scheme based on a relative threshold method has been proposed to reduce communications. The
event-triggered scheme has been proved that there is no Zeno behavior. By the Lyapunov stability
theory, we have obtained that all signals are bounded. The simulation result has confirmed the validity
of proposed approach. In the future, we will continue to study the issue of event-triggered and
fault-tolerant control. These problems are of great significance in various practical systems.
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