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1. Introduction

For a, b, c ∈ R with c , 0,−1,−2, . . . , the Gaussian hypergeometric function can be defined [4,
pp. 32–47] by

F(a, b; c; x) = 2F1(a, b; c; x) =

∞∑
n=0

(a)n(b)n

(c)n

xn

n!
, |x| < 1,

where (z)0 = 1 for z , 0,

(z)n =

n−1∏
j=0

(z + j) =
Γ(z + n)

Γ(z)
, n = 1, 2, . . . , (1.1)

and
Γ(z) = lim

n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }

is the classical Euler gamma function [17, 22].
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For r ∈ (0, 1), the well-known complete elliptic integrals of the first and the second kinds are defined
respectively by 

K(r) =
π

2
f
(1
2
,

1
2

; 1; r2
)

=

∫ π/2

0

1√
1 − r2 sin2 θ

dθ,

K(0) =
π

2
, K(1) = ∞

(1.2)

and 
E(r) =

π

2
F
(
−

1
2
,

1
2

; 1; r2
)

=

∫ π/2

0

√
1 − r2 sin2 θ dθ,

E(0) =
π

2
, E(1) = 1.

(1.3)

The complete elliptic integrals have many important applications in physics [3], engineering [7],
geometric function theory [6, 30, 34], quasi-conformal analysis [16, 28, 32], theory of mean values [9,
12–14, 20, 24–26, 33], number theory [27, 35], and other related fields. Recently, the complete elliptic
integrals have attracted the attention of numerous mathematicians. In particular, many remarkable
properties and inequalities for the complete elliptic integrals can be found in the literature [2, 29, 31].
For more information on applications, please refer to [5,19,21,23,36,38] and related references therein.

In [11], Guo and Qi found some inequalities for E(r), one of these inequalities is

π

2
−

1
2

ln
(1 + r)r−1

(1 − r)r+1 < E(r) <
π − 1

2
+

1 − r2

4r
ln

1 + r
1 − r

(1.4)

which holds true for all 0 < r < 1.
In [37], Yin and Qi established some double inequalities for E(r) by virtue of the Lupaş integral

inequality. For instance, the double inequality

π

√
6 + 2

√
1 − r2 − 3r2

4
√

2
≤ E(r) ≤

π

√
10 − 2

√
1 − r2 − 5r2

4
√

2
(1.5)

holds for all r ∈ (0, 1).
The purpose of this paper is to present some monotonicity properties of certain functions defined

in terms of the complete elliptic integrals of the second kind E(r) and some elementary functions and,
consequently, derive some inequalities which improve the double inequalities (1.4) and (1.5).

Our main results are the following three theorems.

Theorem 1. For 0 < r < 1, the function

r 7→
π2(2 − r2) − 8E2(r)

2 − r2 − 2
√

1 − r2

is strictly decreasing from (0, 1) onto
(
π2 − 8, π

2

4

)
. Consequently, for all r ∈ (0, 1), we have

π

√
2(4 − α1) + 2α1

√
1 − r2 + (α1 − 4)r2

4
√

2
≤ E(r) ≤

π

√
2(4 − β1) + 2β1

√
1 − r2 + (β1 − 4)r2

4
√

2
, (1.6)
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where the constants α1 = 1 and β1 = 4
(
1 − 8

π2

)
= 0.757 . . . are the best possible in the sense that they

can not be replaced by any larger and smaller constants respectively. The equality in the left-hand side
of (1.6) is attained only when r → 0+, while the equality in the right-hand side of (1.6) is attained only
when r → 1−.

Theorem 2. For 0 < r < 1, the function

r 7→
r[π/2 − E(r)]

2r −
(
1 − r2) ln[(1 + r)/(1 − r)]

is strictly decreasing from (0, 1) onto
(π−2

4 , 3π
32

)
. Consequently, for all r ∈ (0, 1), we have

π − 4α2

2
+
α2

(
1 − r2)
r

ln
1 + r
1 − r

< E(r) <
π − 4β2

2
+
β2

(
1 − r2)

r
ln

1 + r
1 − r

, (1.7)

where the constants α2 = 3π
32 = 0.294 . . . and β2 = π−2

4 = 0.285 . . . are the best possible.

Theorem 3. For 0 < r < 1, the function

r 7→
E(r) − π/2 − ln

(
1 − r2)

r ln[(1 + r)/(1 − r)] + ln
(
1 − r2)

is strictly increasing from (0, 1) onto
(
1 − π

8 ,∞
)
. Consequently, for all r ∈ (0, 1), we have

E(r) >
π

2
+ α3r ln

1 + r
1 − r

+ (1 + α3) ln
(
1 − r2), (1.8)

where the constant α3 = 1 − π
8 = 0.607 . . . is the best possible.

2. Lemmas

In order to prove our main results stated in the above three theorems, we need the following lemmas.
In [4, pp. 474–475, Appendix E and Theorem 3.21 (7)], one can find that

dK(r)
dr

=
E(r) −

(
1 − r2)K(r)

r
(
1 − r2) ,

dE(r)
dr

=
E(r) − K(r)

r
,

d [E(r) −
(
1 − r2)K(r)]
dr

= rK(r),
d [K(r) − E(r)]

dr
=

rE(r)(
1 − r2) , (2.1)

and
lim
r→1

[(
1 − r2)α/2K(r)

]
= 0, α ≥

1
2
. (2.2)

Lemma 1 ( [4, Theorem 1.25]). For −∞ < a < b < ∞, let f , g : [a, b] → R be continuous on [a, b],
differentiable on (a, b), and g′(x) , 0 on (a, b). If f ′(x)

g′(x) is increasing (decreasing) on (a, b), then so are
the ratios

f (x) − f (a)
g(x) − g(a)

and
f (x) − f (b)
g(x) − g(b)

.

If f ′(x)
g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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Lemma 2 ( [1, Theorem 15] and [4, Theorem 3.21 and Exercises 3.43]). Let r ∈ (0, 1). Then

1. the function r → E(r)−(1−r2)K(r)
r2 is strictly increasing from (0, 1) onto

(π
4 , 1

)
;

2. the function r → K(r)−E(r)
r2 is strictly increasing from (0, 1) onto

(π
4 ,∞

)
;

3. the function r → E2(r)−(1−r2)K2(r)
r4 is strictly increasing from (0, 1) onto

( π2

32 , 1
)
;

4. the function r → (1−r2)3/8[K(r)−E(r)]
r2 is strictly decreasing from (0, 1) onto

(
0, π4

)
.

Lemma 3 ( [8, Theorem 1] and [10, 18]). For n > 0, the double inequality

1
√

n + µ1
≤

Γ(n + 1/2)
Γ(n + 1)

<
1

√
n + µ2

is valid, where the constants µ1 = 4
π
− 1 and µ2 = 1

4 are the best possible.

Lemma 4. For r ∈ (0, 1), the function

r 7→
(
1 − r2)1/2[

E2(r) −
(
1 − r2)K2(r)

]
r4

is strictly decreasing from (0, 1) onto
(
0, π

2

32

)
.

Proof. Let I(r) =
I1(r)
I2(r) , where I1(r) = E2(r) −

(
1 − r2)K2(r) and I2(r) = r4

(1−r2)1/2 with I1(0) = I2(0) = 0.
By virtue of those formulas in (2.1) and (2.2), an elementary computation shows that

I′1(r)
I′2(r)

=

(
2E(r)[E(r) − K(r)]

r
+ 2rK2(r) −

2K[E(r) −
(
1 − r2)K(r)]
r

) (
1 − r2)3/2

r3[3
(
1 − r2) + 1]

= 2
((

1 − r2)3/8[K(r) − E(r)]
r2

)2 (
1 − r2)3/4

3
(
1 − r2) + 1

= 2
((

1 − r2)3/8[K(r) − E(r)]
r2

)2

I3

((
1 − r2)1/2

)
,

where I3(r) = r3/2

(3r2+1) . It is easy to verify that the function I3(r) is strictly increasing from (0, 1) onto(
0, 1

4

)
. From Lemma 1 and the fourth item in Lemma 2, it follows directly that I(r) is strictly decreasing

in (0, 1).
By L’Hôpital’s rule and the fourth item in Lemma 2, we obtain

lim
r→0+

I(r) = lim
r→0+

I′1(r)
I′2(r)

= 2
(
π

4

)2 1
4

=
π2

32
,

while I(1−) = 0 is clear. �

Lemma 5. For r ∈ (0, 1), the function

r 7→
1
r2

[
E(r) −

π

2
(
1 − r2)]

is strictly decreasing from (0, 1) onto
(
1, 3π

8

)
.
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Proof. Let J(r) =
J1(r)
J2(r) , where J1(r) = E(r) − π

2

(
1 − r2) and J2(r) = r2 with J1(0) = J2(0) = 0. Making

use of those formulas in (2.1) and (2.2) and computing give

J′1(r)
J′2(r)

=
1
2r

[
πr −

K(r) − E(r)
r

]
=
π

2
−
K(r) − E(r)

2r2 .

Utilizing Lemma 1 and the second item in Lemma 2 yields that the function J(r) is strictly decreasing
on (0, 1).

Making use of L’Hôpital’s rule and the second item in Lemma 2 shows

lim
r→0+

J(r) = lim
r→0+

J′1(r)
J′2(r)

=
π

2
−

1
2
×
π

4
=

3π
8
.

It is clear that J(1) = 1. �

Lemma 6. For n ≥ 0, we have

cn = 2 −
π

8

[(1
2

)
n
]2

(n + 1)(n!)2 > 0.

Proof. For n = 0, it is trivial.
For n ≥ 1, since Γ

(1
2

)
=
√
π , applying Lemma 3 and (1.1) arrives at

cn = 2 −
π

8(n + 1)

[
Γ(n + 1/2)
√
πΓ(n + 1)

]2

> 2 −
1

8(n + 1)(n + 1/4)
> 0.

The proof of Lemma 6 is complete. �

3. Proofs of main results

Now we are in a position to prove our main results.

Proof of Theorem 1. Let F(r) =
f1(r)
f2(r) , where

f1(r) = π2(2 − r2) − 8E2(r) and f2(r) = 2 − 2
(
1 − r2)1/2

− r2

with f1(0) = f2(0) = 0. From those formulas in (2.1) and (2.2), it follows that

f ′1(r)
f ′2(r)

=
8E(r)[K(r) − E(r)]/r − π2r

r
[
1/

(
1 − r2)1/2

− 1
] =

8E(r)[K(r) − E(r)]/r2 − π2

1/
(
1 − r2)1/2

− 1
,

f3(r)
f4(r)

,

where f3(r) =
8E(r)[K(r)−E(r)]

r2 − π2 and f4(r) = 1
(1−r2)1/2 − 1.

By the second item in Lemma 2 and (1.3), it is easy to see that f3(0) = f4(0) = 0. Differentiating
and using those formulas in (2.1) and (2.2) give

f ′3(r)
f ′4(r)

= 8

(
rE2(r)
(1−r2) −

[K(r)−E(r)]2

r

)
r2 − 2rE(r)[K(r) − E(r)]

r4

(
1 − r2)3/2

r
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= 8
(
1 − r2)1/2[

E2(r) −
(
1 − r2)K2(r)

]
r4 .

Employing (2.1) and (2.2) and considering Lemmas 1 and 4 reveal that F(r) is strictly decreasing in
(0, 1).

Making use of L’Hôpital’s rule and considering Lemma 4 demonstrates

lim
r→0+

F(r) = lim
r→0+

f ′1(r)
f ′2(r)

= lim
r→0+

f ′3(r)
f ′4(r)

= 8 ×
π2

32
=
π2

4
.

From (1.3), it is clear that limr→1− F(r) = π2 − 8.
The double inequality (1.6) and its equality cases follow from the monotonicity of F(r) on (0, 1]. �

Proof of Theorem 2. Let G(r) =
g1(r)
g2(r) , where

g1(r) = r
[
π

2
− E(r)

]
and g2(r) = 2r −

(
1 − r2) ln

1 + r
1 − r

with g1(0) = g2(0) = 0. From (2.1), a simple computation leads to

g′1(r)
g′2(r)

=
1
2

[π/2 − E(r)] + [K(r) − E(r)]
r ln[(1 + r)/(1 − r)]

,
g3(r)
g4(r)

,

where g3(r) =
[ π2−E(r)]+[K(r)−E(r)]

r and g4(r) = 2 ln 1+r
1−r .

By the formulas in (1.2) and (1.3), the fourth item in Lemma 2, and g3(0) = g4(0) = 0, we obtain

g3
′(r)

g4
′(r)

=
K(r) − E(r) +

r2E(r)
1−r2 −

(π
2 − E(r) + [K(r) − E(r)]

)
r2

1 − r2

4

=
r2E(r) −

[π
2 − E(r)

](
1 − r2)

4r2 =
E(r) − π

2

(
1 − r2)

4r2 =
J(r)

4
.

From the formulas in (2.1) and (2.2) and by Lemmas 1 and 5, it follows that G(r) is strictly decreasing
in (0, 1).

Making use of L’Hôpital’s rule and Lemma 5 leads to

lim
r→0+

G(r) = lim
r→0+

g′1(r)
g′2(r)

= lim
r→0+

g′3(r)
g′4(r)

=
3π
32
.

It is straightforward to obtain limr→1− G(r) = π−2
4 .

The double inequality (1.7) in Theorem 2 follows immediately from the monotonicity properties of
G(r) on (0, 1]. �

Proof of Theorem 3. It is general knowledge that

1
1 − r2 =

∞∑
n=0

r2n, |r| < 1. (3.1)
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Let H(r) =
h1(r)
h2(r) , where h1(r) = E(r)− π

2−ln
(
1−r2) and h2(r) = r ln 1+r

1−r +ln
(
1−r2) with h1(0) = h2(0) = 0.

A direct differentiation results in

h′1(r)
h′2(r)

=

2r
(1−r2) −

K(r)−E(r)
r

ln[(1 + r)/(1 − r)]
,

h3(r)
h4(r)

,

where
h3(r) =

2r(
1 − r2) − K(r) − E(r)

r
and h4(r) = ln

1 + r
1 − r

with h3(0) = h4(0) = 0. By those formulas in (2.1) and (2.2), utilizing (1.2) and (3.1) gives

h′3(r)
h′4(r)

=

[
2(

1 − r2) +
4r2(

1 − r2)2 −
E(r) −

(
1 − r2)K(r)(

1 − r2)r2

]
1 − r2

2

=
1
2

[
4

1 − r2 −
E(r) −

(
1 − r2)K(r)
r2 − 2

]
=

1
2

[
4
∞∑

n=0

r2n −
π

4

∞∑
n=0

[(1
2

)
n
]2

(n + 1)(n!)2 r2n − 2
]

=

∞∑
n=0

[
2 −

π

8

[(1
2

)
n
]2

(n + 1)(n!)2

]
r2n − 1 =

∞∑
n=0

cnr2n − 1 = 1 −
π

8
+

∞∑
n=1

cnr2n.

Therefore, by Lemmas 1 and 6, we see that H(r) is strictly increasing in (0, 1).
Making use of L’Hôpital’s rule and Lemma 6 acquires

lim
r→0+

H(r) = lim
r→0+

h′1(r)
h′2(r)

= lim
r→0+

h′3(r)
h′4(r)

= 1 −
π

8
,

while limr→1− H(r) = ∞.
The inequality (1.8) in Theorem 3 follows from the monotonicity of H(r). �

4. Comparisons

In this section, we compare our newly-established bounds for E(r) with the bounds in (1.4) and (1.5)
in terms of remarks.

Remark 1. Let β1 = 4
(
1 − 8

π2

)
and r ∈ (0, 1). Let

S 1(r) = 10 − 2
√

1 − r2 − 5r2, Q1(r) = 2(4 − β1) + 2β1

√
1 − r2 + (β1 − 4)r2,

and
L1(r) = S 1(r) − Q1(r) = (1 + β1)

(
2 − 2

√
1 − r2 − r2

)
.

It is easy to verify that the function L1(r) is strictly increasing on (0, 1). Hence, we have L1(r) >
L1(0) = 0. Consequently, the upper bound in (1.6) in Theorem 1 is better than the upper bound in (1.4).

Remark 2. For β2 = π−2
4 and r ∈ (0, 1), let

S 2(r) =
π − 1

2
+

1 − r2

4r
ln

1 + r
1 − r

, Q2(r) =
π − 4β2

2
+
β2

(
1 − r2)

r
ln

1 + r
1 − r

,
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and

L2(r) = S 2(r) − Q2(r) =
4β2 − 1

2
+

1 − 4β2

4
1 − r2

r
ln

1 + r
1 − r

=
4β2 − 1

4
[2 − L3(r)],

where

L3(r) =
1 − r2

r
ln

1 + r
1 − r

.

Employing L’Hôpital’s rule and Lemma 1 reveals that the function L3(r) is decreasing from (0, 1) onto
(0, 2). Therefore, we have L2(r) > L2(0) = 0. Consequently, the right hand side of inequality in (1.7)
in Theorem 2 is better than the right hand side of inequality in (1.5).

Remark 3. For α3 = 1 − π
8 , let

S 3(r) =
π

2
+ α3r ln

1 + r
1 − r

+ (1 + α3) ln
(
1 − r2) and Q3(r) =

π

2
−

1
2

ln
(1 + r)r−1

(1 − r)r+1 .

A elementary computation gives

L4(r) = S 3(r) − Q3(r) = α3r ln
1 + r
1 − r

+ (1 + α3) ln[(1 + r)(1 − r)] +
1
2

ln
(1 + r)r−1

(1 − r)r+1

=

(1
2

+ α3

)(
r ln

1 + r
1 − r

+ ln[(1 + r)(1 − r)]
)
.

It is not difficult to verify that the function L4(r) is increasing on (0, 1). Then L4(r) > L4(0) = 0.
Therefore, the lower bound in (1.8) in Theorem 3 is better than the lower bound in (1.5).

Remark 4. On 16 March 2020, Vito Lampret (retired, University of Ljubljana, Slovenia) commented on
the ResearchGate, wrote an e-mail to the second author, and stated that he established in his paper [15]
a double inequality

g(n, r) < E(r) < g(n, r) + ∆n(r)

for n ∈ N and 0 < r < 1, where

g(n, r) =
π

2
−

1
4

[
2 +

(
r −

1
r

)
ln

1 + r
1 − r

]
+

n∑
i=1

(
π

2
w2

i −
1

2i + 1

) r2i

2i − 1
,

wi =

i∏
j=1

2 j − 1
2 j

, 0 < ∆n(r) <
r2n+2

(2n + 1)2

for n ∈ N and 0 < r < 1.
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