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Abstract: The fractal family {p (n, k) , k ∈ N}, describe a rule to calculate the number of partitions
obtained by decomposing n ∈ N, into exactly k parts. In this paper, we will present a novel
method for proving that polynomials {p (n, k) , k ∈ N} have fractal form. For each class k, up to the
LCM (1, 2, 3, . . . , k), different polynomials of degree k − 1 are needed to form one quasi-polynomial
p (n, k). All the polynomials (needed for the same class k) have all coefficients of the higher degrees
ending with the

[
k
2

]
degree in common. Moreover, we will prove that, for a fixed value of k, all the

first, second, etc. coefficients of the common part of the fractal family have a general form, showing
the vertical connection between the corresponding coefficients of all fractal family {p (n, k) , k ∈ N}.
Furthermore, for a fixed value of k, all the coefficients within the same polynomial have a unique
general form, showing the horizontal connection of the coefficients of the polynomial p (n, k). The
partition function is not real a polynomial, but it can be written as a fractal polynomial which can be
obtained from the general form of the partition class functions {p (n, k)}. In that case, the partition
function for each n uses a different polynomial. We show that all these polynomials can be combined
with one single in which each member can be a formula for calculating the total number of partitions
of all natural numbers.
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1. Introduction

In the theory of numbers, it would be useful to find a general form for the coefficients in the fractal
family {p (n, k) , k ∈ N} which defines the rule to calculate the number of partitions for n ∈ N, in which
n can be decomposed on exactly k parts. Each k represents one class, from the total number of partitions
for n. In this case, we can state that p (n) =

∑n
k=1 p (n, k), where p (n) is the partition function. If all the

partition class functions p (n, k) have the same form, then the form of the partition function remains
the same form due to the superposition property applied to the sum of the partition class functions. In
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addition, it is known that p (n) = p (2n, n) [1], so as soon as the general form of p (n, k) is determined,
the form of p (n) is also solved, as done in Section 6.

There are many different partition number restrictions. Two of them are apparently similar but also
different. Using the notations as in [2], with pk (n) denote a function that represents the number of all
partitions of the number n with at most k parts and with p (n, k) function that represents the number of
all partitions of the number n into exactly k parts.

Significant contributions to the study of pk (n) were made by: Cayley [3], Sylvester [4], Glaisher [5]
and Gupta [6]. For historical notes, see Gupta [7]. Furthermore, the theory of q-partial fractions and
its formula was developed in Munagi [8]. All the aforementioned are characterized by the fact that
they primarily used Sylvester’s Theorem and investigated pk (n). None of the mentioned papers have
been noticed: 1. Fractal form of the partition function; 2. The common general form of all coefficients
within the same class functions p (n, k); 3. Recurrent relationship and the common general form of all
the first, second, ..., coefficients of all {p (n, k) , k ∈ N}; 4. The ability to form a function that generates
partitions function, similar to the Gamma function for a factorial. All of these are the basic content of
this paper. In addition, the access to this issue through recurrent connections in this paper is unique.

Figure 1. Graphs of quasi-polynomials.

Each polynomial written down by the value defined coefficients is not a fractal. However, it is
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possible to justify the use of the terms: fractal polynomial and fractal family. For the first analogy
we can use graphs. Based on result in [1] (part of Appendix C) we assign one graph to each quasi-
polynomials {p (n, k) , k = 1, 2, . . . , 6}. Each polynomials member is one vertex of the graph. Let
us number the vertices of the graph in the way they form individual polynomials. The vertices that
belong to the same single polynomial are joined by the edges. All the mention results correspond to
the following graphs are in Figure 1.

Within each graph, each complete branch starting from vertex with index one represents one
polynomial. All together a quasi-polynomial. Each quasi-polynomial contains a specified number of
polynomials and is not fractal. However, the fractal structure of quasi-polynomial, when k unlimitedly
increase is quite obvious. The partition function for each n, unifies from each quasi-polynomial only
one polynomial, p (2n, n). The partition function does not have a finite form and is formed from the
apparent fractal. Therefore, the partition function is a fractal polynomial and partitions class functions
p (n, k) have a fractal form. In this case, each individual polynomial (which form partition function)
has discrete values and is a true polynomial (as in Appendix D). However, this needs to be understood
only in this context. If the search for the partition function is accessed in the manner described above,
the answer is given. The result obtained does not exclude that another approach leads to a different
conclusion. Here I refer to the result obtained in Section 6 given by the function f irst (n, i). Also in
Section 6, we give a fractal form of a partition function in one unique form where for each value of n,
a polynomial of a different degree and coefficients from general formulas are obtained. That is, a
unique formula defines infinitely many different polynomials that all together form one fractal
polynomial - partition function.

All of this can be more severe and argued in the manner proposed in [9]. Consider an infinite series
of graphs corresponding to the quasi-polynomials of each partition class {p (n, k) , k ∈ N}

i) The graphs in Figure 1 are self-similar.
ii) Clearly, every part of each graph is contained in all the other parts.
iii) When k increase the length of the graphs and the number of its branches tend to infinity.
iv) Each next graph is obtained by a recursive procedure. Each subsequent graph is obtained from

the previous one, as will be shown in detail in Section 3. We will prove that all: first, second, ...
coefficients are obtained by unique general formulas.

vi) The coefficients of the polynomials correspond to vertices in each graph: 1, 2, 3, . . . have a
unique recurrent formula which they can be obtained with. This was explained in detail in Section
4 and Section 5. In this case, the polynomials corresponding to the graph in Figure 1 are not real
polynomial because they contain factorials. (Thus polynomials: q1 (n) = 1

n!n
k and q1 (n) = 1

(n−1)!n
k−1

are not of the same degree but are identical).
vii) The dimensions of each graph, starting from the second in Figure 1, is greater than 1 (has

different branches) but lesser than two (does not have a surface).
According to [9], these are quite sufficient reasons to call some object a fractal. The partition

function is an infinite part of the previous fractal, and therefore also a fractal.
There are several different approaches when attempting to determine the general form of p (n, k).

In [10], the form for k = 2, 3, 4 is given, but from such an approach it is not possible to even observe the
form for k = 5. By a completely different approach, Ekhad [11] determined the shape up to k = 60, but
the general form is not determined. The third approach (similar to that in [12]) is presented in [1] and
the process of determining p (n, k) becomes quite difficult when increasing the class k. It is advisable
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to look for some other partition features that allow for determining the coefficients of p (n, k) needed
to calculate the values of an individual class. In this paper, we will develop the recurrent relations that
generalize the form of all coefficients with the highest degrees of all the fractal polynomials {p (n, k)}.
For some fixed k, common coefficients of a fractal polynomial p (n, k) will be found using the theorem
of a horizontal total collecting from the left [1, 13]. Then, using the same theorem, we will show that
within a single fractal polynomial p (n, k), of some fixed class, there exists a general form for all of its
common coefficients.

The formula for varying coefficients of fractal polynomials {p (n, k)}will be found using the theorem
of vertical k-collecting [1] in the following manner: within class 2, every second value is found using
the same polynomial; within class 3, every sixth value is found using the same polynomial; within class
4, every twelfth value is found using same polynomial etc. [1]. Therefore, the values for the second
class are found using two polynomials, the third class using six, the fourth class using twelve and so
forth. In general, for the class k we need at most LCM (1, 2, 3, . . . , k)-(the least common multiple)
different polynomials. Therefore, using the fact that p (n, k) is a fractal polynomial of the (k − 1)-
th degree [1], and knowing the necessary values of p (n, k) within the same class k (that we may
obtain using Theorem 1 [1]), we may set up the corresponding system of equations and determine the
unknown values for the rest of the variable and unknown coefficients.

Appendix A gives the general form of the first six coefficients of a fractal polynomials p(n, k).
Appendix B gives the final form of the first six polynomials Qk (n).
Appendix C gives the final form of the first ten fractal polynomials p(n, k).
Appendix D gives the special form of partition function for the first ten natural numbers using the

fractal family {p (n, k)}.
Appendix E gives the special form of partition function for the first twelve natural numbers using

the general form of the coefficients a (n, k), from Appendix A.

2. A total horizontal collecting and p (n, k)

In [1] (Theorem 2 - a total horizontal collecting), it is shown that for the number of partition for the
class k, denoted with p (n, k), the following is valid:

p (n + k, k) = p (n, k) + p (n, k − 1) + p (n, k − 2) + · · · + p (n, 1) . (2.1)

In [1] it has been proven that the fractal polynomials {p(n, k), k ∈ N} are of degree k − 1. Also, for
each class, there are at most LCM (1, 2, 3, . . . , k) different polynomials which calculate all values of
the same class (creating a unique quasi-polynomial). Within each polynomial p (n, k) all highest level
coefficients ending with degree λ =

[
k
2

]
have a common values (total k − λ coefficients), while the

remaining coefficients vary (the remaining λ coefficients). (λ will retain the same meaning throughout
this paper.) As stated, the first variable coefficient has up to two values. The second variable coefficient
has up to six values and so forth. A free member always has a variability up to LCM (1, 2, 3, . . . , k)
values [1](not necessarily different).

The expression (1) can be applied to determine the coefficients of the fractal polynomials
{p (n, k) , k ∈ N} which allow for an explicit calculation for the number of partitions of the class k.

For every n, k ∈ N, we will look for the polynomial p (n, k) of the form:
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p (n, k) = ak,1nk−1 + ak,2nk−2 · · · + ak,k−λnλ + b j1n
λ−1 + b j2n

λ−2 + . . .

ji ∈ {2, 3, . . . , LCM (2, 3, . . . , i)} , (2.2)

where ak,1, ak,2, ..., ak,k−λ represent the coefficients of the common part which depends only on k, and
b j1 , b j2 , . . . represent the coefficients of the variable part of the polynomial p (n, k) which depends on k
and the remainder of the division of n with LCM (2, 3, . . . , ji) [1].

Let us now determine the general form of some p (n, k). For example: for k = 1, we have: p (n, 1) =

1, for each n ∈ N. Hence, a1,1 = 1. For k = 2, we have p (n, 2) in the form of the polynomial
a2,1n + b j1 , j1 ∈ {1, 2}, a2,1, b j1 ∈ Q. According to (2.1) we can state:

p (n + 2, 2) = p (n, 2) + p (n, 1) or a2,1 (n + 2) + b j1 = a2,1n + b j1 + 1.

Comparing the degrees of the polynomials and equating the coefficients gives a1 = 1
2 . We can conclude

that:
p (n, 2) =

1
2

n + b j1 , j1 ∈ {1, 2} . (2.3)

Variable coefficients {b1, b2} cannot be determined by this procedure. Firstly, as stated earlier, for class
2 the following holds: p (2m − 1, 2) = m−1, and p (2m, 2) = m, for all m ∈ N. Substituting the variable
n into the expression (3), first with a random odd number, and then with a random even number, we
obtain: b1 = −1

2 and b2 = 0, that is, the polynomials of class 2 are given by:

p (n, 2) =

 1
2n, n even,
1
2n − 1

2 , n odd.

For k = 3, applying the same procedure with the assumption that the required polynomial is of the
form a3,1n2 + a3,2n + b j, j ∈ {1, 2, . . . , 6} by substituting in the relation (1) for k = 3, p (n + 3, 3) =

p (n, 3) + p (n, 2) + p (n, 1) we obtain

a3,1 (n + 3)2 + a3,2 (n + 3) + b j+3 =
(
a3,1n2 + a3,2n + b j

)
+

(
1
2

n + b j1

)
+ 1.

In the formula above, there are more coefficients of the required quadratic polynomial which are not
uniquely determined. The last relation leads to the value of the coefficient a1 = 1

12 . Coefficients{
a3,2, b1, . . . , b6

}
cannot be directly determined by this procedure. Similarly, for the third class it holds

that all the values can be divided into six groups, modulo six, such that each group can be calculated
using the same polynomial [1]. Therefore, all values, for example, p (6m, 3) ,m ∈ N belong to the same
polynomial. Using two given values, we can find a3,2, for example, p (6, 3) = 1

1262 + a3,2 · 6 + b6 = 3
and p (12, 3) = 1

12122 + a3,2 · 12 + b6 = 12. When we subtract them, only the coefficient a3,2 remains
as unknown. So, we find a3,2 = 0. Each of the unknowns

{
b j

}
we find by using some known values:

p (6m, 3) , p (6m + 1, 3) , . . . , p (6m + 5, 3). Finally, we obtain all six polynomials needed to calculate
the third class given by:

p (n, 3) =
n2

12
+

w j

12
,w j ∈ {0,−1,−4, 3,−4,−1} , j ≡ n mod 6.

For k = 10 see [17]. In the following section, we will focus on finding the general form of the common
coefficients ak,i of the polynomials p (n, k).

Now, we will look for the general form of all the first k − λ coefficients within the same fractal
polynomial p (n, k).
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3. Coefficients ak,1, ak,2, . . . , ak,k−λ of p (n, k) have a unique general form

Let us show that it is possible to find the general forms of the coefficients of p (n, k) for degree k,
k − 1, . . . λ. The following can be proved.
Theorem 1. (A vertical connection of the coefficients)
All first, second, third, . . . , (k − λ)th coefficients of the fractal family p (n, k), (2.2) have a unique
general form.

Proof. The proof will be carried out by method of mathematical induction on k - the degree of the
fractal family p (n, k).

Replacing the form of some p (n, k) given in (2.2), in formula (2.1), we have:

ak,1 (n + k)k−1 + ak,2 (n + k)k−2 + · · · + b jk︸                                               ︷︷                                               ︸
p(n+k,k)

=

ak,1nk−1 + ak,2nk−2 + · · · + b jk︸                               ︷︷                               ︸
p(n,k)

+ ak−1,1nk−2 + ak−1,2nk−3 + · · · + b j(k−1)︸                                       ︷︷                                       ︸
p(n,k−1)

+ . . .

Unifying the coefficients with same degrees on each side respectively and equating them, in the last
equation, we obtain the following: (k − 1) degree coefficients on both sides cancel each other out; With
the (k − 2) degree, the coefficient on the left is (k − 1)kak,1, and on the right ak−1,1. Hence,

(k − 1)kak,1 = ak−1,1, k ≥ 1. (3.1)

With degree k − 3, the coefficient on the left is
(

k−1
2

)
k2ak,1 +

(
k−2

1

)
kak,2, and on the right ak−1,2 + ak−2,1.

Hence, (
k − 1

2

)
k2ak,1 +

(
k − 2

1

)
kak,2 = ak−1,2 + ak−2,1, k ≥ 3. (3.2)

To generalize, comparing coefficients with degree k − m − 1, the recurrent equation takes form:(
k − 1

m

)
kmak,1 +

(
k − 2
m − 1

)
km−1ak,2 + · · · +

(
k − m

1

)
kak,m = ak−1,m + ak−2,m−1 + · · · + ak−m,1. (3.3)

Now, we can find the general form of all the largest coefficients of the family p (n, k). Solving the
recurrent relations (3.1) by k, it is easily found that

ak,1 =
1

k (k − 1)
ak−1,1 =

1
k (k − 1)

·
1

(k − 1) (k − 2)
ak−2,1 = · · · =

1
k! (k − 1)!

a1,1.

Hence, knowing that a1,1 = 1 we obtain the general form of the first coefficients of all
{p (n, k) , 1 ≤ k ≤ n}.

ak,1 =
1

k! (k − 1)!
, k ≥ 1. (3.4)

The relation (3.4) represents the general formula for the coefficients of the highest degree of all
fractal polynomials p (n, k) defined in (2.2).

In the same manner, resolving the relation (3.2) by k, we can conclude that the second coefficient
of the two adjacent fractal polynomials p (n, k) depends only on the first and the second corresponding
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coefficient in the previous polynomial, relative to k (the second common coefficient first appears from
k = 3). Using (3.4), relation (3.2) can be written as follows:

ak,2 =
1

k (k − 2)
ak−1,2 +

1
2k! (k − 3)!

. (3.5)

The coefficient ak,2, can be calculated from the recurrent relation (3.5) by k. Introducing the
substitution ak,2 = 1

k!(k−2)!bk,2 into (3.5) gives

bk,2 = bk−1,2 +
k − 2

2
= bk−2,2 +

k − 3
2

+
k − 2

2
= · · · = b3,2 +

2
2

+
3
2

+ · · · +
k − 2

2
.

The resulting expression allows the explicit calculation of the coefficient ak,2 in the general form. We
have already found that a3,2 = 0, because of the substitution, and b3,2 = 0. A simple transformation
leads to

bk,2 =
k (k − 3)

4
.

Hence,

ak,2 =
k − 3

4 (k − 1)! (k − 2)!
, k ≥ 3. (3.6)

Even though (3.6) can be simplified we will not do that because the coefficient ak,2 exists starting
from k = 3 and can be calculated using the given formula, which would be impossible after simplifying.

Each subsequent recurrence relation becomes more complex to calculate, since it depends on the
increasing number of coefficients of the preceding polynomials. However, note that the general form
of each coefficient ak, j can be obtained from (3.3).

Suppose we found the first m − 1 coefficients. Writing relation (3.3), on the left side only the last
coefficient is unknown. On the right side only the first coefficient is unknown, which is recurrently
related to the corresponding coefficient on the left side. The obtained recurrence relation can be solved
in the manner defined by ak,2. (In Theorem 2, the procedure will be described in detail here, only the
possibility of obtaining a general form is sufficient.)

Therefore, all the first, second, ..., (k − λ)-th coefficients of all fractal polynomials p (n, k) have a
unique general form. �

4. General form of the coefficients of the fractal family p (n, k)

Using the proof of Theorem 1, it is possible to establish the hypothesis of the general form of
coefficients ak,i and prove it.
Theorem 2. The first k − λ, coefficients of p (n, k), (2.2) are given in the form

ak, j =
Q2 j−3 (k)

(k − 1)! (k − j)!
, 1 ≤ j ≤ k − λ,

where Q2 j−3 (k) is a polynomial of k with degree 2 j − 3.

Proof. The proof involves the method of transfinite induction on j, j ∈ N.
For j = 1, from (3.4), the first coefficient is: ak,1 = k−1

(k−1)!(k−1)! , Q−1 (k) = 1
k .
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For j = 2, from (3.6), we get: ak,2 = k−3
4(k−1)!(k−2)! , Q1 (k) = 1

4k − 3
4 .

The statement is true for j = 1, 2. We will prove it to be true for all 1 ≤ j ≤ k − λ.
Suppose that the statement is true for all j from 1 to i − 1, i > 2. All the coefficients ak, j, j ≤ i − 1,

have an assumed form, for example ak−2, j−1 =
Q2 j−5(k−2)

((k−2)−1)!(k−2−( j−1))! =
Q2 j−5(k−2)

(k−3)!(k− j−1)! .
Let us prove that the statement is true for j = i. We will start from formula (3.3) in a slightly

different form (i instead of m)(
k − 1

i

)
kiak,1 +

(
k − 2
i − 1

)
ki−1ak,2 + · · · +

(
k − i + 1

2

)
k2ak,i−1 +

(
k − i

1

)
kak,i

= ak−1,i + ak−2,i−1 + · · · + ak−i+1,2 + ak−i,1.

This formula is used to calculate the coefficient ak,i from the previous coefficients. We keep the last
member on the left side and first on the right, in the previous formula, in their places and move all the
others from the left to the right in the following way:

k (k − i) ak,i = ak−1,i +

(
ak−2,i−1 −

(
k − i + 1

2

)
k2ak,i−1

)
+

(
ak−3,i−2 −

(
k − i + 2

3

)
k3ak,i−2

)
+ · · · +

(
ak−i,1 −

(
k − 1

i

)
kiak,1

)
(4.1)

Each algebraic expression in brackets, in (4.1), contains all the coefficients ak, j in which j ≤ i−1 and
all of them have an assumed form (inductive hypothesis). Using this fact, we can write an expression
for everything in the brackets as a single fraction. Thus, we obtain the following

ak−2,i−1 −

(
k − i + 1

2

)
k2ak,i−1 =

Q2i−5 (k − 2)
(k − 3)! (k − i − 1)!

−
(k − i + 1) (k − i)

2
k2 · Q2i−5 (k)

(k − 1)! (k − i + 1)!

=
(k − 1) (k − 2) Q2i−5 (k − 2) − 1

2k2 · Q2i−5 (k)
(k − 1)! (k − i − 1)!

. (4.2)

The degree of the polynomial in the numerator (4.2) is 2i − 3, since the degree of Q2i−5 (k) is 2i − 5.
Similarly, in each subsequent bracket, the degree of the polynomial is smaller by one.

ak−3,i−1 −

(
k − i + 2

3

)
k3ak,i−2 =

(k − 1) (k − 2) (k − 3) Q2i−7 (k − 3) − 1
6k3 · Q2i−7 (k)

(k − 1)! (k − i − 1)!
. (4.3)

The highest degree of the polynomial in the numerator in (4.3) is 2i − 4, etc. In the last bracket the
highest degree is i − 1 so we have

ak−i,1 −

(
k − 1

i

)
kiak,1 =

(k − 1) (k − 2) . . . (k − i + 1) − 1
i!k

i−1

(k − 1)! (k − i − 1)!
.

Each of the previous resulting fractions had the same expression in the denominator. Summing up
all the previous fractions and bearing in mind that the numerator is a polynomial of degree 2i − 3, we
can write down the following

k (k − i) ak,i = ak−1,i +
W2i−3 (k)

(k − 1)! (k − i − 1)!
, i ≥ 2. (4.4)
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Dividing equation (4.4) by k (k − i) gives

ak,i =
1

k (k − i)
ak−1,i +

W2i−3 (k)
k! (k − i)!

, 2 ≤ i ≤ k − λ. (4.5)

Introducing the substitution

ak,i =
1

k! (k − i)!
bk,i, (4.6)

to (4.5) and simplifying, gives a simple recurrence equation by k

bk,i = bk−1,i + W2i−3 (k) . (4.7)

The resulting recurrence equation (4.7) can be solved by k and its solution is expressed by the
sums of degrees from 0 to 2i − 3 of all natural numbers from 1 to k. Written as W2i−3 (k) by using its
coefficients w1,w2, . . . ,w2i−2, we obtain the recursion solution (4.7) in the form

bk,i = w1

k∑
j=1

j2i−3 + w2

k∑
j=1

j2i−4 + · · · + w2i−2

k∑
j=1

1. (4.8)

For the proof, it is sufficient to determine only the degree of the polynomial obtained in (4.8). For
this we need the following general known lemma and two of its consequences.
Lemma 1. Let S j

n = 1 j + 2 j + · · ·+ n j denote the sum of the jth degrees of all the natural numbers from
1 to n, where n ∈ N. Then, the sums

{
S j

n

}
, 1 ≤ j ≤ m, m ∈ N, satisfy the recurrence formula

(n + 1)m+1
− 1 =

(
m + 1

1

)
S m

n +

(
m + 1

2

)
S m−1

n + · · · +

(
m + 1

m

)
S 1

n + n.

Corollary 1. The sum S m
n expanded with powers of n can be obtained from the last equation and can

be expressed as:

S m
n =

1
m + 1

nm+1 +
1
2

nm +
m
12

nm−1 + 0 · nm−2 −
1

120

(
m
3

)
nm−3

+ 0 · nm−4 +
1

252

(
m
5

)
nm−5 + 0 · nm−6 −

1
60

(
m
7

)
nm−7 + 0 · nm−8 + . . .

(This formula is known as Faulhaber’s formula and its general form is

n∑
k=1

km =
nm+1

m + 1
+

1
2

nm +

m∑
k=2

Bk

k!
m!

(m − k + 1)!
nm−k+1,

where Bk is the k-th Bernoulli number. In this paper, it is written in a way that is more appropriate to
the context used.)
Corollary 2. Each of the resulting sums

{
S j

n

}
is divisible by both n and n + 1. The proof can be obtain

using mathematical induction.

According to Lemma 1, the sum next to each coefficients w j, j = 1, 2, . . . , 2i − 2 is always a
polynomial of degree one higher than the degree of the numbers to be added. The highest degree is
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in the w1
∑k

j=1 j2i−3 and its sum is a polynomial of degree 2i − 2. Also, it has already been found that
the resulting polynomial is always divisible by at least one k (Corollary 2). When we return to (4.6)
and make the shortening nominator and denominator with k we obtain that the general form of the
coefficients of the required polynomial is given by

ak,i =
Q2i−3 (k)

(k − 1)! (k − i)!
, 2 ≤ i ≤ k − λ.

For i = 1, the value corresponds to the obtained result but the procedure is not shown in this
proof. �

5. Determining coefficients of the polynomial Q2i−3 (k) , i ≥ 1

In order to determine the coefficient of the polynomial Q2i−3 (k) , i > 1, we shall start from the first
k − λ coefficients of some p (n, k) that can be written as

Q−1 (k)
(k − 1)! (k − 1)!

nk−1 +
Q1(k)

(k − 1)! (k − 2)!
nk−2 + · · · +

Q2(k−λ)−3 (k)
(k − 1)! · λ!

nλ,

where Q2i−3 (k) , 1 ≤ i ≤ k − λ, are polynomials of order 2i − 3, with rational coefficients, which has
been proven previously. Let qi,1, qi,2, . . . qi,2i−2 be coefficients of Q2i−3 (k) polynomials, respectively.

Q2i−3 (k) = qi,1k2i−3 + qi,2k2i−4 + · · · + qi,2i−2. (5.1)

To determine unknown coefficients, we will use a procedure similar to the proof of Theorem 2 with
some more detailing. Using this procedure, as in the proof of Theorem 2, we obtain (4.4). First, we
will calculate the coefficients of the polynomial W2i−3 (k) : W2i−3 (k) = w1 · k2i−3 + w2 · k2i−4 + · · ·+ w2i−2.
The value of these coefficients can be exactly found using expressions: (4.2), (4.3), . . . however, we
will find only the first few. While arranging expression (4.2) it should be taken into consideration that,
for example, Q2i−5 (k − 2) represents:

Q2i−5 (k − 2) = qi−1,1 (k − 2)2i−5 + qi−1,2 (k − 2)2i−6 + . . .

Multiplying and expanding the parenthesis in (4.2), (4.3), etc., developing the numerators by
degrees of k and integrating values with the same degree gives us the first few coefficients:

w1 =
1
2

qi−1,1,

as the coefficient with degree 2i − 3,

w2 = (7 − 4i) qi−1,1 +
1
2

qi−1,2 +
5
6

qi−2,1,

as the coefficient with degree 2i − 4 and

w3 =
(
8i2 − 32i + 32

)
qi−1,1 + (9 − 4i) qi−1,2 +

1
2

qi−1,3 + (15 − 6i) qi−2,1 +
5
6

qi−2,2 +
23
24

qi−3,1.
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as the coefficient with degree 2i − 5.

w4 =

(
−

32i3

3
+ 72i2 −

484
3

i + 120
)

qi−1,1 +
(
8i2 − 40i + 50

)
qi−1,2

+ (11 − 4i) qi−1,3 +
1
2

qi−1,4 +
(
18i2 − 99i + 137

)
qi−2,1 + (18 − 6i) qi−2,2

+
5
6

qi−2,3 + (26 − 8i) qi−3,1 +
23
24

qi−3,2 +
119
120

qi−4,1,

as coefficient with degree 2i − 6.
The procedure is continued as in Theorem 2. We divide (4.4) with k (k − i), introduce the

substitution (4.5) and finally solve the recurrence equation (4.7) by k. The solution is given by (4.8).
Summing up (4.8) in terms of degrees with respect to powers of k (Corollary 1), for example

w1

k∑
j=1

j2i−3 =
w1

2i − 2
k2i−2 +

w1

2
k2i−3 + w1

2i − 3
12

k2i−4 + 0 + . . .

w2

k∑
j=1

j2i−4 =
w2

2i − 3
k2i−3 +

w2

2
k2i−4 + w2

2i − 4
12

k2i−5 + 0 + . . .

w3

k∑
j=1

j2i−5 =
w3

2i − 4
k2i−4 +

w3

2
k2i−5 + w3

2i − 5
12

k2i−6 + 0 + . . .

. . .
we obtain:

W2i−2 (k) =
w1

2i − 2
k2i−2 +

( w2

2i − 3
+

w1

2

)
k2i−3

+

(
w3

2i − 4
+

w2

2
+

2i − 3
12

w1

)
k2i−4 +

(
w4

2i − 5
+

w3

2
+

2i − 4
12

w2

)
k2i−5 + . . .

It is still necessary to cancel one k in all members (with the common denominator) on the right side
in the previous formula, and equating the coefficients on the left and right with Q2i−3 (k) gives:

qi,1 =
1

2i − 2
·

1
2

qi−1,1, q1,1 = 1; (5.2)

qi,2 =
1

2i − 3

(
(7 − 4i) qi−1,1 +

1
2

qi−1,2 +
5
6

qi−2,1

)
+

1
4

qi−1,1, q2,2 = −
3
4

; (5.3)

qi,3 =
1

2i − 4

((
8i2 − 32i + 32

)
qi−1,1 + (9 − 4i) qi−1,2 +

1
2

qi−1,3 + (15 − 6i) qi−2,1 +
5
6

qi−2,2 +
23
24

qi−3,1

)
+

1
2

(
(7 − 4i) qi−1,1 +

1
2

qi−1,2 +
5
6

qi−2,1

)
+

2i − 3
24

qi−1,1, q3,3 =
25
96

; (5.4)

qi,4 =
1

2i − 5
w4 +

1
2

w3 +
2i − 4

12
w2, q3,4 = −

1
144

; (5.5)
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We will calculate four coefficients due to the fact that the procedure for calculating even and odd
coefficients differs. We’ll show that is more difficult to calculate the general form of even coefficients.
Solving (5.2) as a recurrent equation by i, we obtain the coefficient of the highest degree of Q2i−3 (k).

qi,1 =
1

2 (i − 1)
1
2

qi−1,1 = · · · =
1

4i−1 (i − 1)!
q1,1, q1,1 = 1.

Therefore, the general form of the first coefficient is:

qi,1 =
1

22i−2 (i − 1)!
, i ≥ 1.

Now, the rest of the recurrent relations can be additionally simplified. Hence, the expression (5.3)
becomes:

qi,2 =
1

2 (2i − 3)
qi−1,2 −

2i + 5
3 (2i − 3) 4i−1 (i − 2)!

.

Introducing the substitution: qi,2 = 1
2i−2(2i−3)!!ri,2 and considering:

(2i − 5)!! =
(2i − 5)!!
(2i − 4)!!

(2i − 4)!! =
(2i − 4)!

2i−2 (i − 2)!
,

the last expression, after multiplication with 2i−2 (2i − 3)!! can be rewritten and simplified in the form:

ri,2 = ri−1,2 −
2i + 5
3 · 4i−1

(
2i − 4
i − 2

)
.

The last expression can be solved as a recurrent equation by i when converted into the sum below,
which is further divided into two more simple ones. Introducing m = j − 2 further simplifies the
expression.

ri,2 = −

i∑
j=2

2 j + 5
3 · 4 j−1

(
2 j − 4
j − 2

)
= −

1
6

i−2∑
m=0

m
4m

(
2m
m

)
−

3
4

i−2∑
m=0

1
4m

(
2m
m

)
.

Knowing that 1
4m

(
2m
m

)
=

(
− 1

2
m

)
, the last sums can be found using the formulae [14]:

i−2∑
m=0

(−1)m
(

r
m

)
=

(
−r + i − 2

i − 2

)
,

and
i−2∑
m=0

(−1)m m
(

r
m

)
= r

i−2∑
m=0

(−1)m−1
(

r − 1
m − 1

)
= r

(
−r + i − 2

i − 3

)
.

Therefore, we find the sum (replacing r with −1
2 ) where the result is used starting from i = 2.

i−2∑
m=0

(−1)m m
(
−1

2

m

)
=

1
2

(
i − 3

2
3
2

)
and

i−2∑
m=0

(−1)m
(
−1

2

m

)
=

(
i − 3

2
1
2

)
. (5.6)
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If we keep the result already obtained, the general form of the second coefficient is:

qi,2 =
−1

2i−2 · (2i − 3)!!

 1
12

(
i − 3

2
3
2

)
+

3
4

(
i − 3

2
1
2

) , i ≥ 2.

By introducing the Gamma function [15] the results could be expressed as follows:(
i − 3

2
3
2

)
=

4Γ
(
i − 1

2

)
3
√
πΓ (i − 2)

,

(
i − 3

2
1
2

)
=

2Γ
(
i − 1

2

)
√
πΓ (i − 1)

.

Finally, we obtain the general form of the second coefficient:

qi,2 = −
2i + 23

9 · 22i−2 · (i − 2)!
, i ≥ 2.

The coefficient qi,3 is determined from relation (5.4), which can be written as:

qi,3 =
1

4 (i − 2)
qi−1,3 +

4i2 + 44i + 57
54 · 4i−1 (i − 2)!

.

Similarly to the above analysis, by introducing the substitution

qi,3 =
1

4i−2 (i − 2)!
ri,3,

the previous relation is reduced to a recurrent relation with the solution in the form of a sum to be
additionally determined. After simplification

ri,3 = ri−1,3 +
4i2 + 44i + 57

216
.

The coefficient qi,3 exists from i ≥ 3. Therefore, the solution of this recurrence equation is expressed
by the sum

ri,3 =

i∑
j=3

4 j2 + 44 j + 57
216

=
(2i + 21) (2i + 19) (i − 2)

648
.

By returning substitution we obtain

qi,3 =
(2i + 21) (2i + 19)
34 · 22i−1 (i − 3)!

.

In order to see the difference in the procedure for determining even and odd coefficients, we have to
find the fourth coefficient. If a similar manner we start from (5.5) we obtain

qi,4 =
1

2 (2i − 5)
qi−1,4 −

40i4 + 540i3 + 11474i2 − 65583i + 75933
5 · 35 · 22i−1 (2i − 5) (i − 3)!

, q3,4 = −
1

144
.

The substitution for even coefficients is different (in regards to odd)

qi,4 =
1

2i−3 (2i − 5)!!
ri,4,
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Now we use that
(2i − 5)!! =

(2i − 5)!!
(2i − 6)!!

(2i − 6)!! =
(2i − 5) (2i − 6)!

2i−3 (i − 3)!
.

By substitution, we obtain a recurrence equation:

ri,4 = ri−1,4 −
40i4 + 540i3 + 11474i2 − 65583i + 75933

38880 · 4i−3

(
2i − 6
i − 3

)
,

whose solution is the sum:

ri,4 = −
1

38880

i∑
j=3

40 j4 + 540 j3 + 11474 j2 − 65583 j + 75933
4 j−3

(
2 j − 6
j − 3

)
.

In addition to what has already been said in obtaining the coefficient q2 should be applied in this case
as well. First, we introduce substitution m = j − 3, we obtain

ri,4 = −
1

38880

i−3∑
m=0

40m4 + 1020m3 + 18494m2 + 22161m + 270
4m

(
2m
m

)
,

and knowing that 1
4m

(
2m
m

)
=

(
− 1

2
m

)
there is a need to finding the sums:

i−3∑
m=0

(−1)m m2
(
−1

2

m

)
,

i−3∑
m=0

(−1)m m3
(
−1

2

m

)
and

i−3∑
m=0

(−1)m m4
(
−1

2

m

)
.

Formulas for sums are found inductively, starting from (5.6). We found that

I0 =
∑

0≤m≤i−3

(−1)m
(
−1

2

m

)
=

(
i − 5

2
1
2

)
,

I1 =
∑

0≤m≤i−3

(−1)m m
(
−1

2

m

)
=

1
2

(
i − 5

2
3
2

)
.

We determine the other three sums by using equals:

m2 = (m − 1) m + m,

m3 = (m − 2) (m − 1) m + 3m2 − 2m,

m4 = (m − 3) (m − 2) (m − 1) m + 6m3 − 11m2 + 6m,

and the following transformation of the sum of binomial coefficients

I2 =
∑

0≤m≤i−3

(−1)m m2
(
−1

2

m

)
=

∑
0≤m≤i−3

(−1)m (m − 1) m
(
−1

2

m

)
+ I1

=
1
2

∑
0≤m≤i−3

(−1)m (m − 1)
(
−3

2

m − 1

)
+ I1 =

1
2
·

3
2

∑
0≤m≤i−3

(
−5

2

m − 2

)
+ I1 =

3
4

(
i − 5

2
5
2

)
+ I1.
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Similarly, we find the other sums.

I3 =
15
8

(
i − 5

2
7
2

)
+ 3I2 − 2I1 =

15
8

(
i − 5

2
7
2

)
+

9
4

(
i − 5

2
5
2

)
+

1
2

(
i − 5

2
3
2

)
,

I4 =
105
16

(
i − 5

2
9
2

)
+ 6I3 − 11I2 + 6I1 =

105
16

(
i − 5

2
9
2

)
+

45
4

(
i − 5

2
7
2

)
+

21
4

(
i − 5

2
5
2

)
+

1
2

(
i − 5

2
3
2

)
.

By substituting in the last recurrence equation we found

ri,4 = −
1

38880

(
525
2

I4 +
23219

2
I3 +

32751
2

I2 +
23221

2
I1 + 270I0

)
.

By introducing the Gamma function using the formula [15]

Γ

(
n +

1
2

)
=

(2n − 1)!!
√
π

2n ,

each of the sums I0, I1,. . . , I4 can be further simplified in the following way

I0 =

(
i − 5

2
1
2

)
=

Γ
(
i − 2 + 1

2

)
Γ
(

3
2

)
(i − 3)!

=
2 (2i − 5)!!
2i−2 (i − 3)!

, etc.

Finely, we obtain

ri,4 = −
(2i − 5)!!

(
400i4 + 72408i3 − 514684i2 + 1550322i − 1981926

)
38880 · 45 · 2i−2 (i − 3)!

,

and by replacement substitution we obtain the fourth coefficient

qi,4 = −
200i4 + 36204i3 − 257342i2 + 775161i − 990963

52 · 37 · 22i−1 (i − 3)!
.

The above procedure defines the general algorithm to find all the coefficients of the polynomial
Q2i−3 (k). Although recurrent equations become more complex, it is still possible to explicitly resolve
each of them. Similarly, as in the determination of the general form of odd coefficients ak,i, except for
recurrent equations, only the sums of the degree of natural numbers appear. But for even, except for a
different substitution, a much more complex sum is obtained. Thus, transcendence occurs only in
even members of the partition function. From the first few results it is possible to inductively
conclude the general form of all subsequent coefficients.

qi,k = (−1)k−1 Pk (i)
φ · 22i−2 (i − k1)!

,

where φ = LCM (φ1, φ2, φ3, φ4).
φ1 is common denominator in (4.2), (4.3), . . . and is equal (k + 1)!. φ2 is common denominator in
(5.3),(5.4), . . . and it inherits the highest value of the preceding coefficient. φ3 is common denominator
in (5.3),(5.4), . . . and represents the least common multiple (LCM) of the first k Bernoulli numbers.
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φ4 appears in even coefficients and represents the least common multiple of Γ
(

3
2

)
, Γ

(
5
2

)
, . . . equals

(2k − 1)!!, (
√
π is cancelled).

k1 = k +
[

k+1
2

]
− 1 represents the number of members within the polynomial Q2i−1 (i).

Pk (i) is k degree polynomial.
Knowing that p (n) = p (2n, n), what remains is to further “repackaged” this by using the fractal

polynomial p (n, k), whereby k becomes n and the whole polynomial changes both its degree and the
coefficients.

6. Fractal forms of the partition function p (n)

The general form of the coefficients of the fractal polynomial p (n, k) was found. For each natural
number n, in order to to find the total number of partitions, only one polynomial from its fractal family
{p (n, k) , k ∈ N} will be used. From everything that has been said so far (in this paper) the fractal form
of the partition function p (n) can be obtained in at least three different forms.

6.1. The formation of fractal polynomials of the partition function p (n) as special cases of {p (n, k)}

For each n, from fractal polynomials {p (m, n)}, it is necessary to choose only one polynomial
belonging to the family which has the property p (2n, n). All chosen polynomials make a new fractal
family called the partition function p (n). Several of the first members are in Appendix D. In this
approach, the partition function is a real polynomial which has a fractal form. The fractal form of the
partition function is qualitatively different from the fractal form of the partition functions of the
classes. The fractal form of the partition functions of the classes represents a unique polynomial with
higher degrees and different parts with lower degrees. In this case, the partition function for each
value has a different polynomial.

To calculate the number of partitions of the number n, one polynomial of degree n − 1 is required.
All first, second, ... coefficients of all polynomials are determined by the unique formulas given in
Appendix A. This establishes the vertical connection of all the polynomials within all the fractal
families. This is especially important for the fractal family of the partition function. The fractal form
in this case would have a form:

p (n) =
1

n! (n − 1)!
(2n)n−1 +

n − 3
(n − 1)! (n − 2)!

(2n)n−2

+
9n3 − 58n2 + 75n − 2
288 (n − 1)! (n − 3)!

(2n)n−3 + · · · + b1nn−λ−1 + . . .

The last term is only for making the first half of the whole expression, the other half which contains
the alternating members bi is not specified (see Appendix E). To find the number of partitions of the
number n, the first

[
n
2

]
required members is shown how to calculate. Other bi, i = 1, . . . , n − λ can be

calculated as shown in section 1. In [17] this part for n = 10 was calculated.
It is important to note that despite the use of polynomials to calculate partition functions, the

coefficients together with degrees do not behave asymptotically as expected. The main values are not
located at the highest degrees, but are moving towards the centre in relation to the ordered
polynomial. If we compare the two adjacent members starting with the highest degree, one can notice
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that:
an,1 (2n)n−1

≤ an,2 (2n)n−2
≤ an,3 (2n)n−3

≤ . . . ,

1
n! (n − 1)!

(2n)n−1
≤

n − 3
4 (n − 1)! (n − 2)!

(2n)n−2
≤

9n3 − 58n2 + 75n − 2
288 (n − 1)! (n − 3)!

(2n)n−3
≤ . . .

The first pair satisfies the inequality for n ≥ 4. The second pair satisfies the inequality for n ≥ 7,
etc. Therefore, this approach is not suitable for asymptotic assessment. This is because the partition
function is not a real polynomial. The second problem is that the values of the members from the
beginning of this polynomial tends to zero, when n increases unlimitedly. In other words, because it is

lim
n→∞

(2n)n−1

n! (n − 1)!
= 0,

lim
n→∞

(n − 3) (2n)n−2

4 (n − 1)! (n − 2)!
= 0,

. . .

In order to avoid this, certain repacking of the obtained polynomials is required. We want the values
of the members of the partition function decrease together with the degrees or at least the first members
do not tend to zero when n increase. This leads us to the next section.

6.2. Computation values of p (n) with a polynomial whose coefficients are an,i

Instead of the first approach, using the general form of the entire family p (n, k) (Appendix C)
it is possible to get p (n) in a formally different form. To that end it is necessary to additionally
“repackaged” the general form of the coefficients (Appendix A) of p (n, k). In this case, all k are
converted to n, and the general form is apparently changed. Using only the general forms of the
coefficients an,k given in Appendix A the values of the partition functions can be obtained as given in
Appendix E.

Notice the general form of the polynomial p (2n, n), λ =
[

n
2

]
is given by the expression:

p (n) = p (2n, n) =

1
n

(n − 1)! (n − 1)!
(2n)n−1 +

(
1
4n − 3

4

)
(n − 1)! (n − 2)!

(2n)n−2

+

(
1

32n3 − 29
144n2 + 25

96n − 1
144

)
(n − 1)! (n − 3)!

(2n)n−3 + · · · +
Q2(n−λ)−3 (n)
(n − 1)!λ!

(2n)λ + b j1 (2n)λ−1 + b j2 (2n)λ−2 + . . .

ji ∈ {2, . . . , LCM (2, 3, . . . , i)} , (6.1)

where b j1 , b j2 , . . . represent the coefficients of the variable part of the fractal polynomial p (2n, n) which
depend on n and the remainder of the division of n by the LCM (2, 3, . . . , ji). We will only repack the
fixed part of (6.2). The last member in (6.1) is of the degree λ, so we obtain

1
n

(n − 1)! (n − 1)!
(2n)n−1 +

(
1
4n − 3

4

)
(n − 1)! (n − 2)!

(2n)n−2
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+

(
1

32n3 − 29
144n2 + 25

96n − 1
144

)
(n − 1)! (n − 3)!

(2n)n−3 + · · · +
Q2(n−λ)−3 (n)
(n − 1)!λ!

(2n)λ (6.2)

It can be seen (6.1) that the partition function is not a real polynomial, because its coefficients also
depend on n. Such a polynomial has the characteristic that its greatest values do not have to be at the
highest degree. If we look carefully at the expression (6.1), we will see that the degrees the polynomials
in the numerators grow until the degrees of the main polynomial decrease. The highest degree is in the
numerator of the last fixed member. The last member in the polynomial (6.2) has degree 2 (n − λ) −
3 + λ = 2n−

[
n
2

]
− 3. Hence, it is possible to “repack” the fractal polynomial (6.2) into a new, formally

different which will give completely new general form of the partition function.
Let us consider the series of real polynomials Q2 j−3 (n):

Q−1 (n) , Q1 (n) , . . . ,Q2i−3 (n) , . . . , Q2(n−λ)−3 (n) .

Members within each of these polynomials have a form

qi,1n2i−3 + qi,2n2i−4 + qi,3n2i−5 + qi,4n2i−6 + · · · + qi,2i−2.

In section 5 we have already seen that polynomials Q2i−3 (n) have members that alternate and found
the general forms a few first coefficients qi, j. Each member in (6.2) with the degree n − j, j = 1, 2, . . .
additionally divided into individual addends

(2n)n−1

n! (n − 1)!
+

(
(2n)n−2

4 (n − 1)! (n − 2)!
−

3 (2n)n−2

4 (n − 1)! (n − 2)!

)
+

(
n3 · (2n)n−3

32 (n − 1)! (n − 3)!
−

29n3 · (2n)n−3

144 (n − 1)! (n − 3)!
+

25n2 (2n)n−3

96 (n − 1)! (n − 3)!
−

(2n)n−3

144 (n − 1)! (n − 3)!

)
+ . . .

Using already obtained forms qi, j the general form of all the first, second and third members in each
previous parentheses is:

f irst (n, i) =
n2i−3

22i−2 (i − 1)! (n − 1)! (n − i)!
(2n)n−i , i = 1, . . . , n − λ

second (n, i) = −
(2i + 23) n2i−4

9 · 22i−2 (i − 2)! (n − 1)! (n − i)!
(2n)n−i , i = 2, 3, . . . , n − λ.

third (n, i) =
(2i + 19) (2i + 21) n2i−5

81 · 22i−1 (i − 3)! (n − 1)! (n − i)!
(2n)n−i , i = 3, 4, . . . , n − λ.

Before we proceed, we notice the following fact that is particularly significant. Each of the obtained
members: f irst (n, i) , second (n, i) , third (n, i) , . . . can be a formula for calculating the total number of
partitions of all natural numbers. The following table illustrates this in the example of the first member.
This is a fractal property that deserves further examination.
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Table 1. Fractal form of the first member.

n i f irst(n, i) p(n)
10 .3555012 · n 41.9999999 42
20 .4287794 · n 626.999999 627
30 .4799203 · n 5603.99999 5604
40 .5160625 · n 37337.99999 37338
50 .5431965 · n 204225.9999 204226
60 .5645369916 · n 966466.9999 966467

200 .6823173048310197 · n 3972999029387.99 3972999029388

Table 1 indicates the possibility of obtaining the exact values of the number of partitions, and not
the approximate ones. Thus, we obtain infinitely many different forms that are very similar (fractal)
that contain all the exact values of the total number of all partitions of natural numbers.

In order to obtain a unique polynomial with the “non tend to zero” values in the first members, we
will do the following. Let us unify all the first members f irst (n, i), i = 1, 2, . . . , n − λ into one single.
Let us repeat this process for all the others in the same way. Thus, we get a polynomial representing
the general fractal form of the partition function whose values in members from the beginning do not
tend to zero.

When we unify all the f irst (n, i), second (n, i) and third (n, i) members into a single sum we obtain

p1 (n) =

n−λ∑
j=1

2n− jnn+ j−3

22 j−2 (n − 1)! (n − j)! ( j − 1)!

=
2n−1nn−2

(n − 1)!2

n−λ∑
j=1

n j−1 (n − 1)!
23 j−3 (n − j)! ( j − 1)!

=
2n−1nn−2

(n − 1)!2

n−λ∑
j=1

(n
8

) j−1
(
n − 1
j − 1

)

=
2n−1nn−2

(n − 1)!2

n−λ−1∑
m=0

(n
8

)m
(
n − 1

m

)
.

(Generating function of the last sum is 2x−1 xx−2

(x−1)!2

(
1 + x

8

)x−1
.)

p2 (n) = −

n−λ∑
j=2

(2 j + 23) 2n− jnn+ j−4

9 · 22 j−2 (n − 1)! (n − j)! ( j − 2)!
= −

2n−4nn−2

(n − 1)! (n − 2)!

n−λ∑
j=2

(2 j + 23) n j−2 (n − 2)!
9 · 23 j−6 (n − j)! ( j − 2)!

= −
2n−4nn−2

9 · (n − 1)! (n − 2)!

n−λ−2∑
m=0

(2m + 27)
(n
8

)m
(
n − 2

m

)
.

p3 (n) =

n−λ∑
j=3

(2 j + 19) (2 j + 21) 2n− jnn+ j−5

81 · 22 j−1 (n − 1)! (n − j)! ( j − 3)!
=

2n−8nn−2

(n − 1)! (n − 3)!

n−λ∑
j=3

(2 j + 19) (2 j + 21) n j−3 (n − 3)!
81 · 23 j−9 (n − j)! ( j − 3)!

=
2n−8nn−2

81 · (n − 1)! (n − 3)!

n−λ−3∑
m=0

(2m + 25) (2m + 27)
(n
8

)m
(
n − 3

m

)
.
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Although the following forth coefficients have been calculated in this paper, it is clear that without
further writing how its form will look.

The general form of the partitions function is

p (n) = p1 (n) + p2 (n) + p3 (n) + . . . (6.3)

The main disadvantage of this form is that there are large amplitudes of positive and negative values.(p1

is the sum of positive, and p2 is the sum of negative members, etc.)
In order to alleviate this effect we can write another interesting fractal form of partition function. It

is enough to write only the form (6.2) by decreasing degrees. It has already been established that the
highest degree is in the last member and equal 2n −

[
n
2

]
− 3. Let the first λ coefficients of the partition

function be given with:

p (n) = r1n2n−[ n
2 ]−3 + r2n2n−[ n

2 ]−4 + r3n2n−[ n
2 ]−5 + . . . (6.4)

When the coefficients qi,1, qi,2, . . . , qi,2i−2, i ∈ {1, 2, . . . , λ} are found (section 5) then all the unknown
coefficients of the partition function are determined. When uniting values from several different
polynomial in the numerator (6.2) it should be taken into account that the degrees of two neighbours
members of (6.2) differ by two. According to the notations used in paper i = n − λ = n −

[
n
2

]
. Thus,

we find

r1 =
qn−λ,1

(n − 1)!λ!
· 2λ;

r2 =
qn−λ,2

(n − 1)!λ!
· 2λ;

r3 =
qn−λ,3

(n − 1)!λ!
· 2λ +

qn−λ−1,1

(n − 1)! (λ + 1)!
· 2λ+1;

r4 =
qn−λ,4

(n − 1)!λ!
· 2λ +

qn−λ−1,2

(n − 1)! (λ + 1)!
· 2λ+1;

r5 =
qn−λ,5

(n − 1)!λ!
· 2λ +

qn−λ−1,3

(n − 1)! (λ + 1)!
· 2λ+1 +

qn−λ−2,1

(n − 1)! (λ + 2)!
· 2λ+2;

r6 =
qn−λ,6

(n − 1)!λ!
· 2λ +

qn−λ,4

(n − 1)! (λ + 1)!
· 2λ+1 +

qn−λ−2,2

(n − 1)! (λ + 2)!
· 2λ+2;

. . .
rλ =

1
n! (n − 1)!

· 2n−1 −
3

4 (n − 1)! (n − 2)!
· 2n−2 −

1
144 (n − 1)! (n − 3)!

· 2n−3 + . . .

A set of coefficients with a unique general form is continued until the degree is
[

n
2

]
and thus is

obtained by repacking the remaining coefficients in (6.2). The variable part of p (n) is obtained from
the variable part of p (2n, n) to which the unused fixed-coefficients are attached.

The coefficient with the highest degree n2n−[ n
2 ]−3, has already been defined in this study and equals

r1 =
1

22n−3[ n
2 ]−2 (n − 1)!

(
n −

[
n
2

]
− 1

)
!
[

n
2

]
!
.

The next three coefficient are also determined

r2 = −
2n − 2

[
n
2

]
+ 23

9 · 22n−3[ n
2 ]−2 (n − 1)!

(
n −

[
n
2

]
− 1

)
!
[

n
2

]
!
.
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r3 =

(
2n − 2

[
n
2

]
+ 21

) (
2n − 2

[
n
2

]
+ 19

)
81 · 22n−3[ n

2 ]−1 (n − 1)!
(
n −

[
n
2

]
− 1

)
!
[

n
2

]
!

+
1

22n−3[ n
2 ]−5 (n − 1)!

([
n
2

]
+ 1

)
!
(
n −

[
n
2

]
− 2

)
!
.

j = 2n − 2
[n
2

]
,

r4 = −
200 j4 + 36204 j3 − 257342 j2 + 775161 j − 990963

52 · 37 · 22n−3[ n
2 ]−1 (n − 1)!

[
n
2

]
!
(
n −

[
n
2

]
− 1

)
!

−
2n − 2

[
n
2

]
+ 23

9 · 22n−3[ n
2 ]−2 (n − 1)!

([
n
2

]
+ 1

)
!
(
n −

[
n
2

]
− 2

)
!
.

The general form of the partition function is

p (n) =
1

n! (n − 1)!

(
n − 1[

n
2

] ) (n
2

)2n−2
(
8
n

)[ n
2 ]
−

2n − 2
[

n
2

]
+ 23

9 · n! · n!

(
n − 1[

n
2

] ) (n
2

)2n−2
(
8
n

)[ n
2 ]

+ . . .

From this form it can be seen that the number of partitions for even numbers is slightly faster increase
than the odd. And in this case (6.4) there are large amplitudes in the values of positive and negative
members. The disadvantage in (6.4) is that it is easier to notice the general fractal form of all members
in the previous form (6.3).

7. Conclusion

With finding the fractal form f irst (n, i) = 2n−3i+2nn+i−3

(n−1)!(n−i)!(i−1)! should be of great interest in further
research of partition function. From Table 1 it can be observed that there is a visible connection
between n and i and in the case of precise determination that connection it is possible to obtain an
extension of the partition function in the same way as the Gamma function from factorial. When
f irst (n, i) is converted to a single parameter function, the perfect asymptotic form of the partition
function will be obtained.

If a similar Table were made for functions: second (n, i), third (n, i) , . . . it would be noticed that as
their index increases, an increasing number of initial values of partition function cannot be obtained by
using them. Thus, second (n, i) gives all values except the first three, third (n, i) all except the first five
etc.
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Appendix A
The first six coefficients of the fractal polynomials {p(n, k)}

• The coefficient with degree k − 1

ak,1 =
1

k! (k − 1)!
, k ≥ 1;
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• The coefficient with degree k − 2

ak,2 =
k − 3

4 (k − 1)! (k − 2)!
, k ≥ 3;

• The coefficient with degree k − 3

ak,3 =
9k3 − 58k2 + 75k − 2
288 (k − 1)! (k − 3)!

, k ≥ 5;

• The coefficient with degree k − 4

ak,4 =
(k − 1) (k − 3)

(
3k3 − 19k2 + 2k

)
1152 (k − 1)! (k − 4)!

, k ≥ 7;

• The coefficient with degree k − 5

num = 675k7 − 9900k6 + 44950k5 − 72312k4

ak,5 =
num + 37795k3 − 7020k2 + 100k − 48

4147200 (k − 1)! (k − 5)!
, k ≥ 9;

• The coefficient with degree k − 6

After shortening with (k − 1) (k − 3)

ak,6 =
135k7 − 2085k6 + 8305k5 − 5087k4 + 1568k3 − 52k2 + 48k

16588800 (k − 2) (k − 4)! (k − 6)!

Appendix B
The coefficients of the first six polynomials Q2i−3(n)

•

i = 1, Q−1(n) =
1
n

•

i = 2, Q1(n) =
1
4

n −
3
4

•

i = 3, Q3(n) =
1
32

n3 −
29

144
n2 +

25
96

n −
1

144
•

i = 4, Q5(n) =
1

384
n5 −

31
1152

n4 +
29
384

n3 −
65

1152
n2 +

1
192

n

•

i = 5, Q7(n) =
1

6144
n7 −

11
4608

n6 +
899

82944
n5 −

3013
172800

n4 +
7559

829440
n3

−
13

7680
n2 +

1
41472

n −
1

86400
•

i = 6, Q9 (n) =
1

122880
n9 −

35
221184

n8 +
341

331776
n7 −

7427
2764800

n6

+
46831

16588800
n5 −

1439
1105920

n4 +
31

103680
n3 −

29
1382400

n2 +
1

115200
n
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Appendix C
The first ten fractal polynomials p(n, k)

• The first class k = 1
p (n, 1) = 1.

• The second class k = 2

p (n, 2) =

 n
2 , n even,
n
2 −

1
2 , n odd.

• The third class k = 3

p (n, 3) =
n2

12
+

w j

12
,w j ∈ {0,−1,−4, 3,−4,−1} , j = n mod 6.

Values for w j are listed in order from j = 0 to j = 5, as is the case in all of the following examples.
• The fourth class k = 4

p (n, 4) =
1

144
n3 +

1
48

n2 +

 w j

144 , n even,
− 1

16n +
w j

144 , n odd,
j ≡ n mod 12,

w j ∈ {0, 5,−20,−27, 32,−11,−36, 5, 16,−27,−4,−11} .

• The fifth class k = 5

p (n, 5) =
1

2880
n4 +

1
288

n3 +
1

288
n2 +

− 1
24n +

w j

2880 , n even,
− 1

96n +
w j

2880 , n odd,
j ≡ n mod 60,

w j are following numeric respectively:

0, 9, 104,−351,−576, 905,−216,−351,−256, 9, 360,−31,−576, 9, 104,
225,−576, 329,−216,−351, 320, 9,−216,−31,−576, 585, 104,−351,−576,
329, 360,−351,−256, 9,−216, 545,−576, 9, 104,−351, 0, 329,−216,−351,
− 256, 585,−216,−31,−576, 9, 680,−351,−576, 329,−216, 225,−256, 9,
− 216,−31.

• The sixth class k = 6

p (n, 6) =
1

86400
n5 +

1
3840

n4 +
19

12960
n3

+w6,1 (n) , n even,
− 1

384n2 + w6,1 (n) , n odd,

where

w6,1 (n) =


1

180n + w j, n = 6m,

− 629
17280n + w j, n = 6m ± 1,
− 7

540n + w j, n = 6m ± 2,
− 103

5760n + w j, n = 6m + 3,

j ≡ n mod 60,
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w j are given in the following table: 0, 19319
518400 , 313

32400 , 87
6400 , − 244

2025 , − 2801
20736 , 89

400 , 30983
518400 , − 188

2025 , − 569
6400 ,

− 127
1296 , 45319

518400 , 3
25 , − 22153

518400 , − 2279
32400 , − 17

256 , − 1
2025 , − 7817

518400 , 57
400 , − 10489

518400 , −14
81 , 199

6400 , 713
32400 , 3847

518400 , 1
25 ,

− 2545
20736 , 1609

32400 , 343
6400 , − 163

2025 , − 49289
518400 , 1

16 , 51719
518400 , − 107

2025 , − 313
6400 , − 1879

32400 , − 1505
20736 , 4

25 , − 1417
518400 , − 983

32400 , − 169
6400 ,

−13
81 , 12919

518400 , 73
400 , 10247

518400 , − 269
2025 , − 33

256 , 2009
32400 , 24583

518400 , 2
25 , − 42889

518400 , − 143
1296 , 599

6400 , − 82
2025 , − 28553

518400 , 41
400 , − 1249

20736 ,
− 26

2025 , − 57
6400 , − 583

32400 , − 16889
518400 .

• The seventh class k = 7

p (n, 7) =
1

3628800
n6 +

1
86400

n5 +
1

6480
n4 +

7
12960

n3 +

− 11
3600n2 + w7,1 (n) , n even,
− 101

57600n2 + w7,1 (n) , n odd.

The linear members show greater variability with

w7,1 (n) =



− 1
36n + w j, n = 6d,
29

10368n + w j, n = 6d + 1,
− 7

324n + w j, n = 6d + 2,
− 11

1152n + w j. n = 6d + 3,
− 5

234n + w j, n = 6d + 4,
− 35

10368n + w j, n = 6d + 5,

j ≡ n mod 420.

The first hundred w j (420 numbers) are: 0, − 127
72576 , 76

1575 , 321
22400 , 334

14175 , −1159
8064 , −1

7 , 73511
259200 , 13

1575 , − 183
22400 ,

− 32
567 , − 655

8064 , − 11
175 , 69401

1814400 , 43
225 , − 23

896 , − 32
567 , − 12847

201600 , − 18
175 , 255377

1814400 , − 2
63 , 7

128 , 334
14175 , − 8311

201600 , − 11
175 ,

− 127
72576 , − 2

63 , 1217
22400 , 256

2025 , − 12847
201600 , −1

7 , 4409
72576 , 76

1575 , − 1079
22400 , 334

14175 , 71
1152 , −1

7 , 141977
1814400 , 13

1575 , 1217
22400 , − 32

567 ,
−1159

8064 , 2
5 , 182801

1814400 , 76
1575 , − 79

896 , − 32
567 , − 247

201600 , − 18
175 , 57311

259200 , − 2
63 , − 23

896 , 334
14175 , − 20911

201600 , − 11
175 , 4409

72576 , 1
9 ,

− 183
22400 , − 233

14175 , − 247
201600 , −1

7 , − 127
72576 , 76

1575 , 503
3200 , 334

14175 , −1159
8064 , −1

7 , 255377
1814400 , 13

1575 , − 183
22400 , 7

81 , − 655
8064 , − 11

175 ,
69401

1814400 , 76
1575 , − 23

896 , − 32
567 , 2279

28800 , − 18
175 , 255377

1814400 , − 2
63 , − 79

896 , 334
14175 , − 8311

201600 , 2
25 , − 127

72576 , − 2
63 , 1217

22400 , − 233
14175 ,

− 12847
201600 , −1

7 , 2111
10368 , 76

1575 , − 1079
22400 , 334

14175 , − 655
8064 , −1

7 , 141977
1814400 , 34

225 , 1217
22400 , − 32

567 , . . .
• The eighth class k = 8

p (n, 8) =
1

203212800
n7 +

1
2903040

n6 +
83

9676800
n5 +

7
82944

n4

+

 187
1209600n3 − 1

640n2 + w8,1 (n) , n even
971

9676800n3 − 49
15360n2 + w8,1 (n) , n odd

w8,1 (n) =



− 3383
215040n + w j, n = 12p + 1, 12p + 3, 12p + 7, 12p + 9
− 811

362880n + w j, n = 12p + 2
− 1

1680n + w j, n = 12p, 12p + 4
− 55501

5806080n + w j, n = 12p + 5, 12p + 11
− 113

13440n + w j, n = 12p + 6, 12p + 10
253

45360n + w j, n = 12p + 8

The first hundred w j, j ≡ n mod 840 (840 numbers) are: 0, 76117
4064256 , 49759

6350400 , 80301
1254400 , − 457

31752 ,
120661

4064256 , − 377
3136 , − 330419

2073600 , 24694
99225 , 3013

50176 , − 2441
254016 , 140101

4064256 , −1217
9800 , − 4400819

101606400 , − 281
5184 , 3253

50176 , 601
3969 , 3099469

101606400 ,
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− 3089
78400 , − 319163

4064256 , − 577
31752 , − 43

1024 , − 55841
6350400 , 11713981

101606400 , 4
49 , − 172715

4064256 , − 3401
254016 , − 96851

1254400 , − 577
16200 , 452437

4064256 ,
− 121

3136 , − 153275
4064256 , 10681

99225 , 48701
1254400 , − 17993

254016 , − 2219
82944 , − 1

392 , − 4234931
101606400 , 428191

6350400 , 181
50176 , 358

3969 , 37717
4064256 , − 289

1600 ,
4379581

101606400 , 2015
31752 , 1989

50176 , − 7625
254016 , − 2635331

101606400 , 74
1225 , − 8603

82944 , 17335
254016 , 2229

50176 , − 26977
793800 , 9154381

101606400 , − 313
3136 ,

− 402107
4064256 , 7

81 , 50749
1254400 , 322591

6350400 , 223045
4064256 , − 25

392 , − 255659
4064256 , − 468641

6350400 , − 451
25600 , 682

3969 , 369493
4064256 , − 185

3136 , − 9969731
101606400 ,

33527
793800 , − 1083

50176 , − 473
5184 , 388933

4064256 , 76
1225 , 1819981

101606400 , 1783
254016 , − 843

50176 , − 1753
31752 , − 106019

2073600 , 1711
78400 , − 70331

4064256 , 667
3969 ,

965
50176 , − 574241

6350400 , 3419581
101606400 , −1

8 , 76117
4064256 , 12151

254016 , − 20051
1254400 , 14944

99225 , 120661
4064256 , − 377

3136 , − 9899
82944 , 34823

793800 , 125501
1254400 ,

− 2441
254016 , 140101

4064256 , 2
49 , − 12529331

101606400 , − 1841
129600 , 3253

50176 , 839
31752 , . . .

• The ninth class k = 9

p (n, 9) =
1

14631321600
n8 +

1
135475200

n7 +
317

1045094400
n6 +

37
6451200

n5

+
22661

522547200
n4 +

− 11
172800n3 + w9,2 (n) , n even
− 101

2764800n3 + w9,2 (n) , n odd

w9,2 =


− 11579927

7315660800n2 + w9,1 (n) , n = 6p + 1, 6p + 5
− 153259

57153600n2 + w9,1 (n) , n = 6p + 2, 6p + 4
− 1007903

812851200n2 + w9,1 (n) , n = 6p + 3
− 14851

6350400n2 + w9,1 (n) , n = 6p

w9,1 =



− 6305
20901888n + w9,1 + w j, n = 12p + 1
− 15217

1306368n + w j, n = 12p + 2
135

28672n + w j, n = 12p + 3
− 607

40824n + w j, n = 12p + 4
− 20641

20901888n + w j, n = 12p + 5
− 11

5376n + w j, n = 12p + 6
− 87253

20901888n + w j, n = 12p + 7
− 635

40824n + w j, n = 12p + 8
247

28672n + w j, n = 12p + 9
− 14321

1306368n + w j, n = 12p + 10
− 102289

20901888n + w j, n = 12p + 11
− 1

168n + w j, n = 12p

The first hundred w j, j ≡ n mod 2520 (2520 numbers) are: 0, 22355
11943936 , 307571

9144576 , − 51469
7225344 , 1258961

14288400 ,
− 757021

585252864 , − 781
112896 , − 1470637

11943936 , − 97
729 , 4553891

20070400 , 459635
9144576 , 23130851

585252864 , − 55
7056 , 348899

585252864 , − 233701
4665600 , − 16285

147456 ,
− 1243

35721 , 35821283
585252864 , 2347

12544 , 295376939
14631321600 , 5335

571536 , − 7069
147456 , − 9901

186624 , − 25391389
585252864 , − 334

11025 , 48871139
585252864 , 120947

9144576 ,
99867

802816 , − 391
11664 , − 629989

298598400 , − 781
112896 , − 48173341

585252864 , − 1837
35721 , 400115

7225344 , 25301051
228614400 , − 502957

11943936 , 1
16 , 348899

585252864 ,
− 450589

9144576 , 2021819
180633600 , − 1972

35721 , 47765219
585252864 , − 13

2304 , − 724141
11943936 , 438161

14288400 , 83483
802816 , 261347

9144576 , − 37335325
585252864 , − 22

441 ,
12502811

298598400 , − 5149
186624 , 95987

7225344 , 4169
571536 , 23130851

585252864 , 38819
313600 , − 36229405

585252864 , − 97
729 , 2147

147456 , 646259
9144576 , 566327339

14631321600 , 233
7056 ,

− 11595037
585252864 , − 263965

9144576 , 11
16384 , − 1021

18225 , 47765219
585252864 , 3971

112896 , 12292835
585252864 , − 16999

571536 , 9625019
180633600 , − 9901

186624 , − 1249453
11943936 ,

3
49 , 24983267

585252864 , 21499451
228614400 , − 51469

7225344 , 15833
571536 , − 502957

11943936 , − 157
2304 , − 320482261

14631321600 , − 3295
35721 , 166427

802816 , 459635
9144576 ,

11186915
585252864 , − 31

3600 , − 724141
11943936 , − 263965

9144576 , − 503053
7225344 , − 514

35721 , 1480789939
14631321600 , 2091

12544 , − 724141
11943936 , − 823

11664 , 95987
7225344 ,

6347051
228614400 , − 13447453

585252864 , − 31
441 , 36927203

585252864 , − 5149
186624 , 42259

409600 , 15833
571536 , . . .
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• The tenth class k = 10

p (n, 10) =
1

1316818944000
n9 +

1
8360755200

n8 +
47

6270566400
n7 +

7
29859840

n6

+
40859

11197440000
n5 +

 1529
74649600n4 − 43471

457228800n3 + w10,2 (n) , n even
11827

597196800n4 − 2085647
14631321600n3 + w10,2 (n) , n odd

w10,2 (n) =



− 622301
313528320n2 + w10,1 (n) , n = 6p + 1
− 10733

9797760n2 + w10,1 (n) , n = 6p + 2
− 25703

11612160n2 + w10,1 (n) , n = 6p + 3
− 9613

9797760n2 + w10,1 (n) , n = 6p + 4
− 658141

313528320n2 + w10,1 (n) , n = 6p + 5
− 439

362880n2 + w10,1 (n) , n = 6p

w10,1 (n) =



− 190806281
62705664000n + w j, n = 60p + 1, 60p + 13, 60p + 37, 60p + 49
158521

979776000n + w j, n = 60p + 2, 60p + 14, 60p + 26, 60p + 38
− 2346067

258048000n + w j, n = 60p + 3, 60p + 27, 60p + 39, 60p + 51
92153

30618000n + w j, n = 60p + 4, 60p + 16, 60p + 28, 60p + 52
− 1928317

501645312n + w j, n = 60p + 5
− 12253

4032000n + w j, n = 60p + 6, 60p + 18, 60p + 42, 60p + 54
− 68334281

62705664000n + w j, n = 60p + 7, 60p + 19, 60p + 31, 60p + 43
− 54847

30618000n + w j, n = 60p + 8, 60p + 32, 60p + 44, 60p + 56
− 2850067

258048000n + w j, n = 60p + 9, 60p + 21, 60p + 33, 60p + 57
70253

7838208n + w j, n = 60p + 10
− 369390281

62705664000n + w j, n = 60p + 11, 60p + 23, 60p + 47, 60p + 59
− 629

126000n + w j, n = 60p + 12, 60p + 24, 60p + 36, 60p + 48
− 10511

2064384n + w j, n = 60p + 15
− 491862281

62705664000n + w j, n = 60p + 17, 60p + 29, 60p + 41, 60p + 53
541

244944n + w j, n = 60p + 20
4862521

979776000n + w j, n = 60p + 22, 60p + 34, 60p + 46, 60p + 58
480131

501645312n + w j, n = 60p + 25
31

32256n + w j, n = 60p + 30
− 948541

501645312n + w j, n = 60p + 35
1717

244944n + w j, n = 60p + 40
− 14543

2064384n + w j, n = 60p + 45
32621

7838208n + w j, n = 60p + 50
1459907

501645312n + w j, n = 60p + 55
− 1

1008n + w j, n = 60p
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The first hundred w j, j ≡ n mod 4240 (4240 numbers) are: 0, 67771020491
13168189440000 , 112093001

25719120000 ,
2620941641

54190080000 , − 1051471
3214890000 , 1294475515

21069103104 , 1498451
105840000 , 2802280763

268736560000 , − 30064892
200930625 , − 258248981

2007040000 , 8713177
41150592 ,

554474300491
13168189440000 , 552779

13230000 , 793065538763
13168189440000 , − 12319207

524880000 , − 406439
86704128 , − 17493844

200930625 , − 7018318842613
13168189440000 , − 293591

3920000 ,
1233988035659

13168189440000 , 784753
5143824 , 45465113

1105920000 , 480573001
25719120000 , − 80720141237

13168189440000 , − 57017
826875 , − 1165700869

21069103104 , − 702116407
25719120000 ,

− 32330133
2007040000 , 3852497

65610000 , 411640595659
13168189440000 , 20955

169344 , 914830140491
13168189440000 , − 20694083

200930625 , − 2667138359
54190080000 , 289718857

25719120000 , 877675
429981696 ,

− 35039
490000 , 869713757387

13168189440000 , 914949449
25719120000 , 322397513

54190080000 , 33560
321489 , − 193052019509

13168189440000 , − 16957
2160000 , − 257841421237

13168189440000 ,
− 285251471

3214890000 , 3355
3211264 , − 1474283593

25719120000 , 1070882317387
13168189440000 , − 28069

826875 , − 6525591109
268738560000 , 3395801

41150592 , − 991009463
54190080000 ,

47105297
3214890000 , − 542711741237

13168189440000 , − 139863
3920000 , 2530605179

21069103104 , − 180206
4100625 , − 2351713591

54190080000 , 233669449
25719120000 , 435687875659

13168189440000 , 1675
21168 ,

452838540491
13168189440000 , − 743264999

25719120000 , − 1888933
40960000 , − 5182006

200930625 , − 101969669
21069103104 , 5418451

105840000 , 356283917387
13168189440000 , − 29817647

3214890000 ,
633037513

54190080000 , 98473
839808 , − 420947139509

13168189440000 , − 4153
30625 , 457764418763

13168189440000 , − 175961143
25719120000 , 6343769

86704128 , 171319121
3214890000 , 6941880763

268738560000 ,
− 4006957

105841000 , − 278910524341
13168189440000 , 5140

321489 , − 232558869
2007040000 , 2482893001

25719120000 , 944467698763
13168189440000 , 2747

270000 , 931455227
21069103104 ,

− 799316407
25719120000 , 1134126409

54190080000 , − 19744267
200930625 , − 849315564341

13168189440000 , 569
6292 , 23138822459

268738560000 , − 11104703
3214890000 , 514941641

54190080000 ,
1242278857

25719120000 , 393361531
21069103104 , − 46433

826875 , − 391242402613
13168189440000 , − 30919399

524880000 , − 136728981
2007040000 , 839009

5143824 , . . .

Appendix D
The formation of fractal polynomial of the partition function p (n) as special cases of {p (2n, n)}

When a fractal family {p (m, n)} is known, only one polynomial from that family counts p (n) and
that is p (2n, n). In Appendix C, the forms of all the families are determined by k = 10. Using these,
we can obtain the following results.

1) p (1), we calculate from p (n, 1) = 1. So, p (1) = 1.
2) p (2), we calculate from the fractal family {p (n, 2)}. The value for n = 4 is obtained from the

function p (n, 2) = n
2 . We find p (2) = p (4, 2) = 2.

3) p (3), we calculate from the fractal family {p (n, 3)}. The value for n = 6 is obtained from the
function p (n, 3) = n2

12 . We find p (3) = p (6, 3) = 3.
4) p (4), we calculate from the fractal family {p (n, 4)}. The value for n = 8 is obtained from the

function p (n, 4) = 1
144n3 + 1

48n2 + 16
144 .

We find p (4) = p (8, 4) = 5.
5) p (5), we calculate from the fractal family {p (n, 5)}. The value for n = 10 is obtained from the

function
p (n, 5) =

1
2880

n4 +
1

288
n3 +

1
288

n2 −
1

24
n +

360
2880

.

We find p (5) = p (10, 5) = 7.
6) p (6), we calculate from the fractal family {p (n, 6)}. The value for n = 12 is obtained from the

function
p (n, 6) =

1
86400

n5 +
1

3840
n4 +

19
12960

n3 +
1

180
n +

3
25
.

We find p (6) = p (12, 6) = 11.
7) p (7), we calculate from the fractal family {p (n, 7)}. The value for n = 14 is obtained from the

function

p (n, 7) =
1

3628800
n6 +

1
86400

n5 +
1

6480
n4 +

7
12960

n3 −
11

3600
n2 −

7
324

n +
43

225
.

We find p (7) = p (14, 7) = 15.
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8) p (8), we calculate from the fractal family {p (n, 8)}. The value for n = 16 is obtained from the
function

p (n, 8) =
1

203212800
n7 +

1
2903040

n6 +
83

9676800
n5 +

7
82944

n4

+
187

1209600
n3 −

1
640

n2 −
1

1680
n +

601
3969

.

We find p (8) = p (16, 8) = 22.
9) p (9), we calculate from the fractal family {p (n, 9)}. The value for n = 18 is obtained from the

function

p (n, 9) =
1

14631321600
n8 +

1
135475200

n7 +
317

1045094400
n6 +

37
6451200

n5

+
22661

522547200
n4 −

11
172800

n3 −
14851

6350400
n2 −

11
5376

n +
2347
12544

.

We find p (9) = p (18, 9) = 30.
10) p (10), we calculate from the fractal family {p (n, 10)}. The value for n = 20 is obtained from the

function

p (n, 10) =
1

1316818944000
n9 +

1
8360755200

n8 +
47

6270566400
n7

+
7

29859840
n6 +

40859
11197440000

n5 +
1529

74649600
n4 −

43471
457228800

n3 −
10733

9797760
n2

+
541

244944
n +

784753
5143824

.

We find p (10) = p (20, 10) = 42.

etc. See [16] for a different algebraic procedure.

Appendix E
Calculating the total number of partitions for several first n ∈ N from the known coefficients ak,i

To calculate the values of p (n) we use the formula p (n) = p (2n, n) and the record given with (2.2).
If we take instead of n, 2n and instead of k, n we get

p (2n, n) = an,1 (2n)n−1 + an,2 (2n)n−2 + · · · + an,n−λ (2n)λ + b j1 (2n)λ−1 + b j2 (2n)λ−2 + · · · + b jn

ji ∈ {2, 3, . . . , LCM (2, 3, . . . , i)} ,

where an,1, an,2, ..., an,n−λ represent the coefficients of the common part which depends only on n. In
calculation, we use only the coefficients of the common part (without the variable coefficients). The
first few coefficients an,i are determined by the general form in Appendix A. The number of coefficients
an,i to be taken is determined by n − λ, λ =

[
n
2

]
.

1) For n = 1, λ = 0, p (1) = a1,1 · 1 = 1.
2) For n = 2,λ = 1, only one coefficient is needed p (2) = 1

2 · 4 = 2.
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3) For n = 3, λ = 1, the first two coefficient are needed p(3) = 1
12 · 6

2 + 0 · 6 = 3.
4) For n = 4, λ = 2, the first two coefficient are needed.

p(4) ≈
1

144
83 +

1
48

82 ≈ 4.88888 (= 5) .

5) For n = 5, λ = 2, the first three coefficient are needed.

p(5) ≈
1

2880
104 +

1
288

103 +
1

288
102 ≈ 7.29166 (= 7) .

6) For n = 6, λ = 3, the first three coefficient are needed.

p(6) ≈
1

86400
125 +

1
3840

124 +
19

12960
123 ≈ 10.81333 (= 11) .

7) For n = 7, λ = 3, the first four coefficient are needed.

p(7) ≈
1

3628800
146 +

1
86400

145 +
1

6480
144 +

7
12960

143 ≈ 15.71 (= 15)

8) For n = 8, λ = 4, the first four coefficient are needed.

p(8) ≈
1

203212800
167 +

1
2903040

166 +
83

9676800
165 +

7
82944

164 ≈ 21.62487 (= 22) .

9) For n = 9, λ = 4, the first five coefficient are needed.

p(9) ≈
1

14631321600
188 +

1
135475200

187 +
317

1045094400
186

+
37

6451200
185 +

22661
522547200

184 ≈ 30.97868 (= 30) .

10) For n = 10, λ = 5, the first five coefficient are needed.

p(10) ≈
1

1316818944000
209 +

1
8360755200

208 +
47

6270566400
207

+
7

29859840
206 +

40859
11197440000

205 ≈ 39.72486 (= 42) .

11) Case n = 11, λ = 5, the first six coefficient are needed.

p(11) ≈
1

144850083840000
2210 +

1
658409472000

229 +
241

1755758592000
228

+
143

21946982400
227 +

1907
11197440000

226 +
43879

19595520000
225 ≈ 60.50 (= 56) .

12) Case n = 12, λ = 6, the first six coefficient are needed.

p(12) ≈
1

19120211066880000
2411 +

1
64377815040000

2410 +
4049

2085841207296000
249

+
103

780337152000
248 +

18989
3621252096000

247 +
1189

9953280000
246 ≈ 67.6 (= 77) .
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