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1. Introduction

After the formulation of modern set theory by George Cantor in late nineteenth century, many
generalizations of set theory were introduced to overcome some of the naturally occurring difficulties
that arise during the modelling of real word problems. The fuzzy set theory introduced by Zadeh [4]
was the first among these to provide a general framework. Rough sets by Pawlak [3], Multisets by
Yager [5], Soft sets by Moldostov [10], Genuine sets by Demicri [11] are some of the other alternatives.

One among these is the concept of multiset. A multiset is a set equipped with a multiplicity or
count function. The multiplicity function maps each member of the set to a non-negative integer
that gives how many times it occurs in the multiset. i.e., multiset is a set with repeated elements.
Nature demands it because there are identical things like repeated hydrogen atoms in a water molecule,
repeated observations in a statistical data, repeated roots of polynomials, etc.

Many authors like Yager [5], Miyamoto [7], Hickman [8], Blizard [9, 29, 30] have studied the
properties of multisets. So many mathematical structures were already developed on multisets. The
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concepts of multiset topology were introduced by Girish K. P. and Sunil Jacob John [1, 2]. Many of
the M-topological concepts like M-compactness [13], semicompactness [17], generalized closed
sets [16], rb-closed sets and rb-convergence [15] of multisets also were introduced. The concept of
quasi coincidence has a major role in the neighborhood structure of a multipoint in the multiset
topology and it was introduced by Karishma Shravan and Binod Chandra Tripathy in 2019 [14].

Previously, many Mathematical structures and concepts were already developed in different
generalized set theories. A few of them are separation axiom on multiset theory [20], the topological
structure of generalized rough multisets [21], combinatorics of multisets [24], multi weak
structures [31], the theory of bags and lists [19], etc. The concept of soft multisets is a fast-growing
generalization of sets and concepts of connectedness [22,23], compactness [25], soft multi continuous
functions [26], generalized closed soft multiset [27], semi compactness [28] that were already
developed in this structure. Recently, some applications of M-topology on DNA mutations [32] are
also developed.

In a paper published in 2017, A. Ghareeb [12] claimed that M-topology is redundant and
unnecessary complicated in the theoretical sense. He proves that (P∗(U),v) and (Ds(φ(U),⊆) are
isomorphic as lattices. That is, the mapping preserves union and intersection operations which we use
for the definition of the topology. Unfortunately, that map does not preserve complementation. So one
cannot say that they are homeomorphic as in a topological sense, even though the definition of
topology is based on these two operations. We know that complementation has a major role in various
concepts in topology. In order to prove the claim, the author [12] considered the down set topology in
which all open sets are down sets. Therefore, a closed subset which is the complement of an open
subset is not an open set. So these types of topologies do not have a subset which is both open and
closed. But in M-topology introduced in [1, 2], it is possible to find submsets that are open as well as
closed. Without the existence of clopen sets one cannot discuss the concepts of separation axiom and
connectedness. Lack of clopen sets in down set topology implies that all down set topological spaces
are connected. That is not the case in the M-topology. We can define two types of separations in the
M-topology of a submset and there are spaces that are not connected also.

In this paper primarily we prove that the mapping defined for the purpose is not preserving
complementation. Due to this, unlike the general topology, we can define two subspace M-topologies
on a submset. Similar concepts of subspaces in ordinary set theoretic topology coincide. Using it we
can define two types of M-connectedness and M-separation for a submset. For a submset A, it is
possible that A ∩ AC , φ. But it is not possible in general set theory and it will make differences in
M-topology. Another similar structure in literature is fuzzy topology, which is well developed and
mostly in parallel with general topology.

This paper further introduces a new concept of subspace M-topology on a submset. We compared
this subspace M-topology with already had concepts and analyzed the situations in which they
coincide. We compared one of the important topological properties, M-connectedness in the light of
these two concepts and we found that M-connectedness of a submset in a subspace M-topology does
not imply the M-connectedness of that submset in other subspace M-topology. We identified the
properties in terms of count that satisfied by the M-topology for an M-separation in both of the
subspace M-topologies.
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2. Preliminaries

In this section, we give necessary definition and results discussed in [1], [2], [6] and [12], which we
require for the purpose.

Definition 2.1. [1] An mset M drawn from the set X is represented by a function Count M or CM

defined as CM : X → N where N represents the set of non negative integers.

Here CM(x) is the number of occurrences of the element x in the mset M. We represent the mset
M drawn from the set X = {x1, ..., xn} as M = {m1/x1,m2/x2, ...,mn/xn} where mi is the number of
occurrences of the element xi, i = 1, 2, ..., n in the mset M. Those elements which are not included in
the mset have zero count.

Example 2.1. Let X = {a, b, c, d} Then M = {8/a, 7/b, 6/c, 5/d} is an mset drawn from X.

The mset operations are defined as follows:
If M and N are two msets drawn from the set X, then

• M = N ⇔ CM(x) = CN(x)∀x ∈ X.
• M ⊆ N ⇔ CM(x) ≤ CN(x)∀x ∈ X.
• If P = M ∪ N ⇔ CP(x) = max{CM(x),CN(x)} ∀x ∈ X.
• If P = M ∩ N ⇔ CP(x) = min{CM(x),CN(x)}∀x ∈ X.
• If P = M ⊕ N ⇔ CP(x) = CM(x) + CN(x)∀x ∈ X.
• If P = M	N⇔CP(x) = max{CM(x)−CN(x), 0} ∀x ∈ X. where ⊕ and 	 represents M-set addition

and M-set subtraction respectively.

Definition 2.2. [1] The support set of an mset M, denoted by M∗ is an ordinary subset of X and is
defined as M∗ = {x ∈ X : CM(x) > 0}. M∗ is also called root set.

Definition 2.3. [1] A domain X, is defined as a set of elements from which msets are constructed. The
mset space [X]w is the set of all msets whose elements are in X such that no element in the mset occurs
more than w times.

The set [X]∞ is the set of all msets over a domain X such that there is no limit on the number of
occurrences of an element in an mset.

Definition 2.4. [1] An mset M is said to be an empty mset if for all x ∈ X, CM(x) = 0.

The concept of subset of a mset is defined in terms of count function. Therefore there are different
types of submsets in multiset theory.

Definition 2.5. [1] (Whole Submset) A submset N of M is a whole submset of M with each element in
N having full multiplicity as in M. i.e., CN(x) = CM(x) for every x in N.

Definition 2.6. [1] (Partial Whole Submset) A submset N of M is a partial whole submset of M with
at least one element in N having full multiplicity as in M. i.e., CN(x) = CM(x) for some x in N.

Definition 2.7. [1] (Full submset) A submset N of M is a full submset of M if each element in M is an
element in N with the same or lesser multiplicity as in M. i.e.,M∗ = N∗ with CN(x) ≤ CM(x) for every
x in N.
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Definition 2.8. [1] (Power Mset) Let M be an mset. The power mset P(M) of M is the set of all
submsets of M. We have N ∈ P(M) if and only if N ⊆ M.

Definition 2.9. [1] The power set of an mset is the support set of the power mset and is denoted by
P∗(M).

2.1. Multiset topology

In this section, we recall the definition of multiset topology and some properties.

Definition 2.10. [1] Let M be an mset drawn from a set X and τ ⊆ P∗(M). Then τ is called a multiset
topology of M if τ satisfies the following properties.

1. The mset M and the empty mset φ are in τ.
2. The mset union of the elements of any sub collection of τ is in τ.
3. The mset intersection of the elements of any finite sub collection of τ is in τ.

If M is an M-topological space with M-topology τ, we say that a submset U of M is an open submset
of M if U belongs to the collection τ.

Definition 2.11. [2] Let (M, τ) be an M-topological space and N is a submset of M. The collection
τN = {N ∩ U; U ∈ τ} is an M-topology on N, called the subspace M-topology. With this M-topology,
N is called a subspace of M and its open msets consisting of all mset intersections of open msets of M
with N.

Definition 2.12. [2] (Closed Submset)A submset N of an M-topological space M is said to be closed
if the mset M 	 N is open.

Definition 2.13. [1] If M is an mset, then the M-basis for an M- topology on M in [X]w is a collection
B of submsets of M (called M basis elements) such that

1. For each x ∈m M, for some m > 0, there is at least one M-basis element B ∈ B containing m/x.
i.e., for each indistinguishable element in M, there is at least one M-basis element in B having
that element with same multiplicity as in M.

2. If m/x belongs to the intersection of two M-basis elements B1 and B2, then there exists an M-basis
element P containing m/x such that P ⊆ B1 ∩ B2 with CP(x) = CB1∩B2(x) and CP(y) ≤ CB1∩B2(y)
for all y , x.

If a collection B satisfies the conditions of M-basis, then the M-topology τ generated by B can be
defined as follows.

Definition 2.14. [1] A submset U of M is said to be an open mset in M (i.e., to be an element of τ) if
for each x ∈k U, there is an M-Basis element B ∈ B such that x ∈k B and CB(y) ≤ CU(y) for all y , x.

Definition 2.15. [18] The topology on the metric space (M, d) induced by (the metric) d is defined as
the topology τ generated by the basis consisting of the set of all open ε-balls in M.

Definition 2.16. [6] (M-connectedness in M-topology) Let (M, τ) be an M-topological space. An M-
separation of M is a pair M1,M2 of disjoint nonempty open submsets of M whose union is M. An
M-space (M, τ) is said to be M-connected if there does not exist an M-separation of M. A submset N
of an M-space M is M-connected if N is M-connected as a subspace of M.
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Remark 2.1. If there exists an M-separation, the pair of sets M1 and M2 are proper whole submsets
of M.

In other words, an M-topological space M has an M-separation if and only if there exists a nonempty
proper open whole submset N of M such that M 	 N, the complement of N is also open.

Definition 2.17. [12] Let U be an mset in [X]w . Define ϕ(U) as following:

ϕ(U) = ∪x∈U∗{x} × {n ∈ N : 0 < n ≤ CU(x)}.

Then (y, n) in ϕ(U) if and only if 0 < n ≤ CU(y)

Definition 2.18. [12] Let U be an mset in [X]w. For arbitrary (x, n), (y,m) ∈ ϕ(U), denote (x, n) ≤
(y,m) if x = y and n ≤ m. Thus ” ≤ ” is a partial order of ϕ(U) and the family of all down sets is
denoted by Ds(ϕ(U)).

Result 2.1. [12] Let U be an mset in [X]w. Then

ϕ : (P∗(U),u,t)→ (Ds(ϕ(U)),∩,∪)

is an isomorphism.

3. Closed subspace M-topology

In this section, we show that the complementation has a major role in topology. Many of the
concepts in general topology are defined in terms of open sets. If we define the same concept in
terms of closed sets, then it will coincide with the definition of the same by using open sets. But in
M-topology it may differ due to a lack of preserving complementation by the mapping between the
lattices. Even the subspace M-topologies of a submset are different if we define it in terms of open and
closed sets.

Remark 3.1. Let U be an mset in [X]w. Then the map

ϕ : (P∗(U),u,t)→ (Ds(ϕ(U)),∩,∪)

does not preserve the operation complementation. Consequently, for a topology τ ⊂ P∗(U) on U, the
corresponding topological space (ϕ(U), ϕ→(τ)) need not be in the same topological structure of (U, τ).

We will prove it by giving an example. If U = {4/x, 6/y} and τ = {U, φ, {2/x, 3/y}}. Clearly τ is a
topology on U. Then V = {2/x, 3/y} is an open subset in this topology.

ϕ(V) = {(x, 1), (x, 2), (y, 1), (y, 2)(y, 3)}

which is already a down set and ϕ(V) ∈ Ds(ϕ(U)).

ϕ→(τ) = {ϕ(U), φ, ϕ(V)} ⊂ Ds(ϕ(U))

In U, VC = {2/x, 3/y}c = {2/x, 3/y} = V . ∴ In τ, V is open as well as closed. i.e.,V is a clopen set.
But in (ϕ(U), ϕ→(τ)), the corresponding open set ϕ(V) is not a clopen set, since

ϕ(V)C = {(x, 3), (x, 4), (y, 4), (y, 5), (y, 6)}
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is not a down set and does not belong to ϕ→(τ).
Therefore the topological structure of (U, τ) is different from topological structure of (ϕ(U), ϕ→(τ)).
Clearly ϕ(V)C , ϕ(VC).
∴ the mapping does not preserve complementation.
We introduce a new concept of subspace M-topology on a submset by using closed sets. Thus a

submset N of an M-topological space M will have two subspace M-topologies. In general, these two
subspace M-topologies need not be equal. But in certain circumstances, they will coincide. Firstly we
found that whatever may be the topology on an mset whole submset has this property. Secondly, we
found a condition that if given M-topology has a property with respect to that submset these subspace
M-topologies will coincide.

Definition 3.1. Let (M, τ) be an M-topological space and N be a submset of M. Then the closed
subspace M-topology on N is defined by

τc = {N 	 (N ∩C) : where C is closed in M}

For convenience we denote subspace M-topology using open sets by τo and we call it open subspace
M-topology. Therefore

τo = {N ∩ U :where U is open in M}

In general, τc , τo.
Firstly we want to prove that τc is a M-topology on N.

Proposition 3.1. The collection τc is an M-topology on N.

Proof. Here τc = {N 	 (N ∩C) : where C is closed in M}
In order to prove that the collection τc is an M-topology on N, firstly we need to prove that N and

φ belong to the collection τc. The collection τ is a topology. ∴ C = φ is a closed submset of M. The
submset corresponding to C = φ in τc is

N 	 (N ∩C) = N 	 (N ∩ φ) = N 	 φ = N

∴ N ∈ τc

If we take C = M which is also a closed subset of M. Then we get

N 	 (N ∩C) = N 	 (N ∩ M) = N 	 N = φ

∴ φ ∈ τc

Thus φ, N ∈ τc.
Now we want to prove that τc is closed under arbitrary union. Let {Uα} be a collection of submsets

of N in τc.
Therefore, corresponding to each Uα,∃ a closed subset Cα such that

Uα = N 	 (N ∩Cα)
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Now consider
⋃

α Uα =
⋃

α(N 	 (N ∩Cα)).
If x ∈

⋃
α Uα then x ∈

⋃
α(N 	 (N ∩Cα)).

C∪Uα
(x) = maxα{CUα

(x)}
= maxα{CN	(N∩Cα)(x)}
= maxα{max{CN(x) −CN∩Cα

(x), 0}}
= maxα{CN(x) −CN∩Cα

(x)}
= maxα{CN(x) − min{CN(x),CCα

(x)}}
= CN(x) − minα{min{CN(x),CCα

(x)}}
= CN(x) − min{minα{CN(x),CCα

(x)}}
= CN(x) − min{CN(x),minα{CCα

(x)}}
= CN(x) − min{CN(x),C∩Cα

(x)}
= CN(x) −CN∩(∩Cα)(x)
= CN	N∩(∩Cα)(x)

∴ ∪Uα = N 	 N ∩ (∩Cα)

The intersection of an arbitrary collection of closed submsets is closed in τ. ∴ C = ∩Cα is a closed
subset of M. ∴ U = ∪Uα is of the form N 	 (N ∩C) for some closed set C = ∩Cα.

∴ ∪Uα ∈ τc.

Now we want to prove that intersection of finitely many sets in τc is an element of τc. If it is true for
the intersection of two sets, using induction we can extend this result for finitely many sets in τc.

Let U1 and U2 be two sets in τc. We want to prove that U1 ∩ U2 ∈ τc.
There exists closed sets C1 and C2 such that Ui = N 	 (N ∩Ci) for i = 1, 2.

CU1∩U2(x) = min{CU1(x),CU2(x)}
= min{CN	(N∩C1)(x),CN	(N∩C2)(x)}
= min{CN(x) −CN∩C1(x),CN(x) −CN∩C2(x)}
= CN(x) − max{CN∩C1(x),CN∩C1(x)}
= CN(x) − max{min{CN(x),CC1(x)},min{CN(x),CC2(x)}}
= CN(x) − min{CN(x),max{CC1(x),CC2(x)}}
= CN	(N∩(C1∪C2))(x)

U1 ∩ U2 = N 	 (N ∩ (C1 ∪ C2). The union of finite collection of closed submsets is closed in τ.
Therefore C1 ∪C2 is a closed submset of M. Therefore U1 ∩U2 is of the required form. U1 ∩U2 ∈ τc.

Hence τc is a topology on N.
�
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Remark 3.2. In the case of general topology, these two definitions coincide and give the same subspace
topology. i.e, τo = τc. But in M-topology, they need not be equal.

Example 3.1. Let M = {10/x, 10/y, 10/z}, τ = {M, φ, {9/x, 8/y, 7/z}} and N = {5/x, 3/y, 6/z}.
Then τo = {N ∩ M,N ∩ φ,N ∩ {9/x, 8/y, 7/z}} = {N, φ}
The closed submsets of M are M 	 M = φ,M 	 φ = M, and M 	 {9/x, 8/y, 7/z} = {1/x, 2/y, 3/z}.
Taking intersections with N, we get

φ,N, {1/x, 2/y, 3/z}

Taking complements of these sets in N, i.e.,N 	 (N ∩C), we get

τc = {N, φ, {4/x, 1/y, 3/z}} , τo

Now we will analyze the situations for which these two subspace M-topologies are same.

Theorem 3.1. Let (M, τ) be an M-topological space and N be a whole submset. Then these subspace
M-topologies on N are same. i.e., τc = τo.

Proof. Given that N is a whole submset. ∴ ∀x ∈ N,CN(x) = CM(x).
We want to prove that τc = τo. It is enough to prove that N ∩U = N 	 (N ∩C) = N 	 (N ∩ (M 	U))

for every open set U.
Let U be an open submset of M and C = M 	 U. Let x ∈ N. Let us check the count of x in these

two sets.
CN∩U(x) = min{CN(x),CU(x)} = CU(x), since CN(x) = CM(x) and CU(x) ≤ CM(x).

CN∩C(x) = min{CN(x),CC(x)}
= CC(x)
= max{CM(x) −CU(x), 0}
= CM(x) −CU(x)

CN	(N∩C)(x) = max{CN(x) −CN∩C(x), 0}
= CN(x) −CN∩C(x)
= CN(x) − (CM(x) −CU(x))
= CU(x)

CN	(N∩C)(x) = CU(x), ∀x ∈ N.
For x < N, CN∩U(x) = min{CN(x),CU(x)} = 0.
Since CN∩C(x) = 0,CN	(N∩C)(x) = 0. In this case also CN	(N∩C)(x) = CN∩U(x).
Therefore N ∩ U = N 	 (N ∩C).
∴ τc = τo.

�
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Remark 3.3. Whatever may be the M-topology on M, if N is a whole submset, then τc = τo.

Definition 3.2. Let M be an mset and N be a partial whole submset of M, then x ∈ N is called whole
element of N if CN(x) = CM(x) and called a part element of N if CN(x) < CM(x).

Theorem 3.2. Let N be a partial whole submset of M. If the M-topology τ on M has the property that
the part elements of N appear as whole elements in all open sets which contains it, then τc = τo.

Proof. If x is a whole element of N, proceed as in the proof of previous theorem. Suppose x is a part
element of N.Then

CN∩U(x) = min{CN(x),CU(x)} = CN(x).
CC(x) = CM	U(x) = max{CM(x) −CU(x), 0} = 0.
CN∩C(x) = min{CN(x),CC(x)} = min{CN(x), 0} = 0.
CN	(N∩C)(x) = max{CN(x) −CN∩C(x), 0} = CN(x).
Therefore
CN∩U(x) = CN	(N∩C)(x).∀x .
∴ N ∩ U = N 	 (N ∩C).
Therefore τc = τo.

�

Example 3.2. Let M = {5/a, 6/b, 7/c} and N = {3/a, 2/b, 7/c} be a submset of M. Clearly N is a
partial whole submset. Consider the topology.

τ = {M, {4/a, 1/b, 5/c}, φ}

Here U1 = {4/a, 1/b, 5/c} is not in the category mentioned in the theorem, since part elements a and b
of N are not whole elements in U1.

τo = {N, {3/a, 1/b, 5/c}, φ}
τc = {N, {2/a, 5/c}, φ}

Hence τc , τo.
Consider the topologies

τ′ = {M, {5/a, 6/b, 5/c}, φ}
τ′′ = {M, {5/a, 3/c}, φ}

In these topologies, part elements of N occur as whole elements in all open sets containing it.Therefore

τ′o = {N, {3/a, 2/b, 5/c}, φ} = τ′c and
τ′′o = {N, {3/a, 3/c}, φ} = τ′′c .

Definition 3.3. (Whole M-topology) If all open submsets of an M-topology τ on X are whole submsets,
then we call it as whole M-topology.

Example 3.3. Let X = {5/x, 4/y.3/z}

τ = {X, φ, {5/x}, {5/x, 4/y}}

Here τ is a whole M-topology.

AIMS Mathematics Volume 5, Issue 3, 2484–2499.



2493

Definition 3.4. (Pseudo metric on an mset) A pseudo metric d on an mset M is a function d : M×M →
R which satisfies following conditions.

(i) d(x, y) ≥ 0.
(ii) d(x, x) = 0 ∀x ∈ M, ie, the distance between two indistinguishable elements is zero.

(iii) d(x, y) = d(y, x) ∀ x, y ∈ M.
(iv) d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ M.

For the definition of pseudo metric on M, we are not considering the multiplicity of an ordered pair
(x, y) ∈ M × M. Therefore every (x, y) ∈ M × M is also an element of M∗ × M∗ and we can consider d
as a function from M∗ × M∗ to R. By defining d∗ : M∗ × M∗ → R as d∗(x, y) = d(x, y) we get a pseudo
metric on M∗.

Proposition 3.2. A function d : M × M → R is a pseudo metric on M if and only if corresponding d∗

is a pseudo metric on M∗.

Proposition 3.3. The topology induced by a pseudo metric on an mset is a whole M-topology.

Proof. It is enough to prove that every base element of the topology is a whole submset. Here a base
element

B = B(x, r) = {y ∈ M : d(x.y) < r}

We will prove that B is a whole submset.
Here x ∈ B and d(x.x) = 0 < r ⇒ CB(x) = CM(x).
If y ∈ B then d(x, y) < r Therefore, for all other indistinguishable y’s in M.

d(x, y) ≤ d(x, y) + d(y, y) = d(x, y) < r

∴ y ∈ B, ∀ y ∈ M

Hence CB(y) = CM(y). ie, if y ∈ B then all indistinguishable y ∈ M are in B. ∴ B is whole submset of
M. Hence τ is a whole M-topology. �

Definition 3.5. Let M be an mset drawn from X and F be a collection of submsets of M. Then

F ′ = {U∗ ⊂ X : U ∈ F }

is called the corresponding supporting ordinary collection of subsets of M∗.

If F ′ is a collection of subsets of X, then

F = {U ⊂ M : U is a whole submset and U∗ ∈ F ′}

is the corresponding whole submset collection of submsets of M.

Proposition 3.4. A collection τ of whole submsets of M is a M-topology on M if and only if
corresponding supporting ordinary collection τ′ is a topology on M∗.

Proof. Straight forward. �

Theorem 3.3. An M-topological space τ on a multiset M is pseudo metrizable if it is a whole M-
topology and the supporting topology τ′ on M∗ is pseudo metrizable in ordinary set topology.
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Proof. Straight forward. �

Example 3.4. Let X = {a, b, c}. Define d : X × X → R by d(b, c) = d(c, b) = 1 = d(a, c) = d(c, a) and
d(x, y) = 0 for all other (x, y) ∈ X × X.

Then

τ′ = {X, φ, {a, b}, {c}}

is the topology induced by d.
If M = {5/a, 3/b, 8/c} then corresponding M-topology is

τ = {M, φ, {5/a, 3/b}, {8/c}}

Theorem 3.4. In a whole M-topology, open subspace M-topology and closed subspace M-topology on
a submset N are same. i.e., τc = τo.

Proof. Let τ be a whole M-topology on M and N be a submset of M.
For any open set U, it is enough to prove that N ∩ U = N 	 (N ∩C) where C = M 	 U.

CN∩U(x) = min{CN(x),CU(x)} =

{
CN(x) if x ∈ U
0 if x < U

CC(x) = CM	U(x) = max{CM(x) −CU(x), 0} =

{
0 if x ∈ U
CM(x) if x < U

CN∩C = min{CN(x),CC(x)} =

{
0 if x ∈ U
CN(x) if x < U

CN	(N∩C) = max{CN(x) −CN∩C(x), 0} =

{
CN(x) if x ∈ U
0 if x < U

Therefore N ∩ U = N 	 (N ∩C).
∴ τc = τo.

�

4. M-connectedness and subspace M-topologies

The M-connectedness of a submset N is determined by the subspace M-topology on N and we
have two types of subspace M-topologies on a submset. Therefore we can define two types of M-
connectedness on a submset N.

Definition 4.1. (MO-Connectedness) A submset N of a multiset M is said to be MO-connected if it is
connected in open subspace M-topology.

Definition 4.2. (MC-Connectedness) A submset N of a multiset M is said to be MC-connected if it is
connected in closed subspace M-topology.

There exist MO-connected submsets which are not MC-connected and vice versa.
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Example 4.1. Let M = {10/x, 10/y, 10/z} and N = {8/x, 6/y, 3/z}
τ = {M, φ, {9/x, 4/z}, {8/y}, {9/x, 8/y, 4/z}}
τo = {N, φ, {8/x, 3/z}, {6/y}} and N has a separation in the open subspace M-topology. Therefore N

is not connected in open subspace M-topology.
τc = {N, φ, {7/x}, {4/y}.{7/x, 4/y}}
N has no separation in closed subspace M-topology, and hence it is
MC-connected.
If τ′ = {M, φ, {10/x, 10/y, 5/z}, {2/x, 4/y, 10/z}, {2/x, 4/y, 5/z}}
τ′o = {N, φ, {2/x, 4/y, 3/z}} and τ′c = {N, φ, {8/x, 6/y}, {3/z}}
Hence N is MO-connected and not MC-connected.

There exists submset which is connected in both subspace M-topologies.

Example 4.2. Consider M and N as in above example and we consider indiscrete topology on M.
Then N is MO-connected and MC-connected.

There exists submset which has separation in both subspace M-topologies.

Example 4.3. Let M = {10/x, 10/y, 10/z} and N = {8/x, 6/y, 3/z}. τ = {M, φ, {10/x, 10/z}, {10/y}}
Then open subspace M-topology and closed subspace M-topology are given by

τo = {N, φ, {8/x, 3/z}, {6/y}} and τc = {N, φ, {8/x, 3/z}, {6/y}}
Therefore N has separation in both subspace M-topologies.

In general topology, existence two open subsets is important for a separation. But in M-topology
we need an additional condition in terms of count of elements also.

Theorem 4.1. Let (M, τ) be an M-topological space and N be a submset of M. Then N has a separation
in open subspace M-topology if and only if there exists two open submsets V1 and V2 such that each
x ∈ N is an element of exactly one of the Vi’s with CVi(x) ≥ CN(x) and N 1 Vi for i=1,2.

Proof. Firstly suppose there exists two open submsets V1 and V2 such that each x ∈ N is an element of
exactly one of the Vi’s with CVi(x) ≥ CN(x) and N 1 Vi for i = 1, 2.

Define Ui = N ∩ Vi for i = 1, 2. Then CUi(x) = CN(x) or 0.
Then Ui ∈ τo and ∀x ∈ N, x ∈ V1 or V2, therefore x ∈ U1 or U2 i.e., N ⊂ U1 ∪ U2.
The sets U1 and U2 are submsets of N, ∴ N = U1 ∪ U2

N 1 Vi =⇒ N , Ui =⇒ U1 and U2 are nonempty, since N = U1 ∪ U2.
∴ N has a separation.
Conversely, suppose N has a separation, then N = U1 ∪ U2 where Ui ∈ τo. Then there exists open

submsets V1 and V2 such that Ui = N ∩ Vi. Then clearly Vi has the properties that each x ∈ N is an
element of exactly one of the Vi’s with CVi(x) ≥ CN(x) and N 1 Vi for i = 1, 2.

�

Theorem 4.2. Let (M, τ) be an M-topological space and N be a submset of M. Then N has a separation
in closed subspace M-topology if and only if there exists two open partial whole submsets V1 and V2

such that each x ∈ N is a whole element of exactly one of the Vi’s and whole element of one set is a
part element of other set with a count less than or equal to CM(x) − CN(x) and there exists x, y ∈ N
such that x is not a whole element of V1 and y is not a whole element of V2.

AIMS Mathematics Volume 5, Issue 3, 2484–2499.



2496

Proof. Suppose there exists two open partial whole submsets V1 and V2 such that each x ∈ N is an
element of exactly one of the Vi’s and whole element of one set is a part element of other set with count
less than or equal to CM(x) − CN(x) and there exists x, y ∈ N such that x is not a whole element of V1

and y is not a whole element of V2.
Define Ci = M 	 Vi. Then Ci is a closed submset and contains all elements of M except whole

elements of Vi.
If x ∈ N is a part element of Vi. Then CVi(x) ≤ CM(x) −CN(x), ∴ CCi(x) ≥ CN(x).
∴ N ∩Ci contains only the part elements of Vi with count CN(x).
∴ N 	 (N ∩Ci) contains whole elements of Vi which are in N with count CN(x).
∴ Ui = N 	 (N ∩Ci) is an open set in closed subspace topology, which contains whole elements of

Vi with count CN(x).
If x ∈ N, it is whole element of exactly one of Vi’s.
∴ x is an element of exactly one of Ui’s with count CN(x).
∴ N ⊂ U1 ∪ U2.
Since each Ui is a submset of N, ∴ N = U1 ∪ U2.
By assumption ∃x ∈ N which is not a whole element of V1. ∴ x is a whole element of V2, and

x < C2.
∴ x < N ∩C2 =⇒ x ∈ N 	 (N ∩C2) = U2 with count CN(x).
∴ U2 is not empty.
Similarly, we can prove that U1 is nonempty.
Conversely, suppose N has a separation in closed subspace M-topology.
There exists nonempty submsets U1 and U2 which are open in closed subspace M-topology such

that Ui ⊂ N and N = U1 ∪ U2.
Then there exists closed submsets Ci such that Ui = N 	 (N ∩Ci).
∴ ∃ open submsets Vi such that Ci = M 	 Vi

If x ∈ N then x ∈ U1 or x ∈ U2. Suppose x ∈ U1.Then

max {CN(x) −CN∩C1(x), 0} = CU1(x) = CN(x).
∴ CN(x) −CN∩C1(x) = CN(x).

∴ CN∩C1(x) = 0

=⇒ x < C1 =⇒ x ∈ V1 with CV1(x) = CM(x).
∴ x belongs to one of the Vi’s as whole element.
x ∈ U1 =⇒ x < U2, ∴ CU2(x) = 0.

max {CN(x) −CN∩C2(x), 0} = 0

since N ∩C2 ⊂ N, CN(x) = CN∩C2(x). Therefore

CN(x) ≤ CC2(x)
i.e., CN(x) ≤ CM(x) −CV2(x)
∴ CV2(x) ≤ CM(x) −CN(x)

That x is a part element of V2 with count ≤ CM(x) −CN(x)
Here N = U1 ∪U2, U1 and U2 are nonempty =⇒ there exists an x ∈ U1 which is not an element of

U2.
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i.e, x ∈ N 	 (N ∩ C1) with count CN(x). Then NC1(x) = 0 and x is whole element of V1. Similarly
there exists a y ∈ N which is a whole element of V2.

�

Theorem 4.3. Let (M, τ) be an M-topological space and N be a whole submset. Then N is MO-
connected if and only if N is MC-connected.

Proof. By theorem 3.1, both subspace M-topologies on N coincide and hence the result. �

Theorem 4.4. In whole topology a submset N is MO-connected if and only if it is MC-connected.

Proof. By theorem 3.1, both subspace M-topologies on N coincide and hence the result. �

5. Conclusions and future work

In this paper, we emphasized the importance of complementation in topology and how M-topology
differs from the general topology. We introduced the concept of a new subspace M-topology on a
submset which is distinct from the subspace M-topology already defined by using open sets, in many
situations. In ordinary set theoretic topology, we discuss all topological properties of a subset by
considering the subspace topology. In M-topologies we have two subspace M-topologies and we could
discuss all M-topological properties of a submset in the light of these two concepts. We compared
the property of M-connectedness in these two subspace M-topologies. There is a scope of a study to
compare other M-topological properties in these two subspace M-topologies also.

One can define two subspace M-topologies on a submset of an mset. We plan to analyze many
topological properties like semi open sets, generalized closed sets, semi compactness, interior,
boundary, exterior, separation axioms and γ−operations in the light of these two subspace
M-topologies. Similar way we can define one more subspace topology in some situations of fuzzy
topology also. So we are planning to extend our research work to the fuzzy topological spaces. This
approach is possible in rough multiset theory and soft multiset theory also.
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