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Abstract: In this paper, we study the nonlinear behaviour of multi-component plasma. For this an 

efficient technique, called Homotopy perturbation Sumudu transform method (HPSTM) is 

introduced. The power of method is represented by solving the time fractional Kersten-Krasil’shchik 

coupled KdV-mKdV nonlinear system. This coupled nonlinear system usually arises as a description 

of waves in multi-component plasmas, traffic flow, electric circuits, electrodynamics and elastic 

media, shallow water waves etc. The prime purpose of this study is to provide a new class of 

technique, which need not to use small parameters for finding approximate solution of fractional 

coupled systems and eliminate linearization and unrealistic factors. Numerical solutions represent 

that proposed technique is efficient, reliable, and easy to use to large variety of physical systems. 

This study shows that numerical solutions gained by HPSTM are very accurate and effective for 

analysis the nonlinear behaviour of system. This study also states that HPSTM is much easier, more 

convenient and efficient than other available analytical methods. 
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1. Introduction 

Plasma is also known as ionized state of the matter. In this state of matter, Plasma contains 

multi-component such as free electrons, ions neutrals, dust etc. The multi-component plasmas deal 

with the partially or fully ionized state of plasma. It also fulfils the condition of quasi neutrality. The 

multi-component plasmas play a crucial role in plasma discharge and other processing industry. The 

multi-component plasma having more than two components while general plasma having ions and 

electrons. The wide range of plasmas itself give an opportunity to analysis such plasmas in distinct 

scales. There are two main areas of multi-component plasma such as dusty plasma and the negative 

ions plasma. Both areas of multi-component plasma have its wide range of emerging applications in 

science and engineering. The dusty plasmas are the important from the perspective of space 

application to fusion possibility. On the other hand, negative ions plasmas open up the door to 

understand microelectronics fabrication technology to large scale fusion exploration [1–8].  

In the past decades, researchers paid attention to study the multi-component plasma 

mathematically and analysis the obtained results. The fractional nonlinear partial differential 

equations are widely used to model the complex phenomenon in many fields of physics and 

engineering such as hydrodynamics, lattice vibration, acoustics plasma physics, optical fibre, wave 

propagation, fluid dynamics, etc. The fractional differential equations have great interest by the many 

researchers due to its applicability in many branches of science and technology. The main benefit of 

taking fractional order coupled system in this application is its nonlocal property. An integer type 

differential operator is a class of local operator while fractional type differential operator is a class of 

nonlocal operator. The main benefit of taking fractional type operator is carrying historical 

information for determining future state of a system. Its means all future state of a system carries 

historical information of their previous states and uses this information for determining next future 

state of a system [9–14]. 

In the past decades, many researchers are used to various techniques for solving fractional 

nonlinear partial differential equation and find approximate and exact solutions of the fractional 

evolution equations. Some of them are homotopy perturbation method, Backlund transformation 

method, homotopy analysis technique, Tanh method, Adomian decomposition algorithm, variational 

iteration algorithm, Laplace decomposition method and many more [15–20]. In the past time, Singh 

et al. [21,22] give an excellent technique for solving fractional nonlinear systems. This scheme is a 

unique combine form of Sumudu transform with HPM known as HPSTM. The nonlinear term can be 

decomposed by using He’s polynomials which is proposed by Ghorbani and Saberi-Nadjafi [23] and 

Ghorbani [24]. 

Time fractional Kersten-Krasil’shchik coupled KdV-mKdV nonlinear system and homogeneous 

two component time fractional coupled third order KdV systems are very important fractional 

nonlinear systems for describing the behaviour of waves in multi-component plasma and elaborate 

various nonlinear phenomena in plasma physics. In present paper, we show applicability of HPSTM 

for study the time fractional Kersten-Krasil’shchik coupled KdV-mKdV nonlinear system and 

homogeneous two component time fractional coupled third order KdV system. HPSTM gives 

exceptional precision in analogous to numerical results and having high precisions with the 

numerical results. The HPSTM find solutions in convergent series with computable element in 

straightforward approaches, which need not to apply perturbation, linearization or contrary 

assumptions. In this work, we apply HPSTM on time fractional Kersten-Krasil’shchik coupled KdV-
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mKdV nonlinear system and homogeneous two component time fractional coupled third order KdV 

system and find approximate solution, exact solution and absolute error. Variations in results show 

by the graphically as well as numerically. 

This work is arranged as: in section 2, we describe mathematical model of problem, in 

section 3, analysis of HPSTM method presented, in section 4, we apply HPSTM on fractional 

Kersten-Krasil’shchik coupled KdV-mKdV system and homogeneous two component time fractional 

coupled third order KdV system, in section 5, results and discussions of physical systems are given, 

in section 6, conclusions are presented. At the last, references are given. 

2. Mathematical model of the problem 

The fractional coupled systems are widely applied to study complex behaviour of plasma 

contains multi components such as ions, free electrons, atoms etc. Many researchers made efforts to 

study this behaviour numerically. In this direction, recently Paul Kersten and Joseph Krasil’shchik 

studied KdV equation and modified KdV equation and proposed absolute complexity between 

coupled KdV–mKdV nonlinear systems for study the behaviour of nonlinear systems. Numerous 

variations of this Kersten-Krasil’shchik coupled KdV-mKdV nonlinear system has been introduced 

by many researchers [27–34].  

Among these variations, the mathematical model for describing behaviour of multi-component 

plasma for waves propagating in positive 𝜉 axis, known as nonlinear fractional Kersten-Krasil’shchik 

coupled KdV-mKdV system is given by: 

𝐷𝜂
𝛼𝜌 + 𝜌3𝜉 − 6𝜌𝜌𝜉 + 3𝜔𝜔3𝜉 + 3𝜔𝜉𝜔2𝜉 − 3𝜌𝜉𝜔

2 + 6𝜌𝜔𝜔𝜉 = 0,  𝜂 > 0,  𝜉 ∈ 𝑅,  0 < 𝛼 ≤ 1 (2.1) 

𝐷𝜂
𝛼𝜔 + 𝜔3𝜉 − 3𝜔2𝜔𝜉 − 3𝜌𝜔𝜉 + 3𝜌𝜉𝜔 = 0,   𝜂 > 0,  𝜉 ∈ 𝑅,  0 < 𝛼 ≤ 1,    (2.2) 

where  𝜂  is temporal coordinate and 𝜉 is spatial coordinate. The factor 𝛼 is represents order of the 

fractional operator. This operator is studied in the Caputo form.  

When 𝛼 = 1, fractional coupled system converts to classical system as: 

𝜌𝜂 + 𝜌3𝜉 − 6𝜌𝜌𝜉 + 3𝜔𝜔3𝜉 + 3𝜔𝜉𝜔2𝜉 − 3𝜌𝜉𝜔
2 + 6𝜌𝜔𝜔𝜉 = 0,  𝜂 > 0,  𝜉 ∈ 𝑅,  (2.3) 

𝜔𝜂 + 𝜔3𝜉 − 3𝜔2𝜔𝜉 − 3𝜌𝜔𝜉 + 3𝜌𝜉𝜔 = 0,   𝜂 > 0,  𝜉 ∈ 𝑅,         (2.4) 

If we put 𝜔 = 0 then Kersten-Krasil’shchik coupled KdV-mKdV system convert into well-known 

KdV system as: 

𝜌𝜂 + 𝜌3𝜉 − 6𝜌𝜌𝜉 = 0,  𝜂 > 0,  𝜉 ∈ 𝑅,           (2.5) 

If we put 𝜌 = 0 then Kersten-Krasil’shchik coupled KdV-mKdV system convert into well-known 

modified KdV system as: 

𝜔𝜂 + 𝜔3𝜉 − 3𝜔2𝜔𝜉 = 0,   𝜂 > 0,  𝜉 ∈ 𝑅,            (2.6) 

In view of that, Kersten-Krasil’shchik coupled KdV-mKdV system can be assumed combination 

between KdV system and mKdV system represented by (2.3) to (2.6). 

In this study, we also consider fractional nonlinear two component homogeneous time fractional 

coupled third order KdV system as: 
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𝐷𝜂
𝛼𝜌 − 𝜌3𝜉 − 𝜌𝜌𝜉 − 𝜔𝜔𝜉 = 0,  𝜂 > 0,  𝜉 ∈ 𝑅,  0 < 𝛼 ≤ 1,       (2.7) 

𝐷𝜂
𝛼𝜔 + 2𝜔3𝜉 − 𝜌𝜔𝜉 = 0,   𝜂 > 0,  𝜉 ∈ 𝑅,  0 < 𝛼 ≤ 1,        (2.8) 

where  𝜂  is temporal coordinate and 𝜉  is spatial coordinate, 𝛼  is a factor represents order of the 

fractional operator. This operator is studied in the Caputo form. 

When 𝛼 = 1, fractional coupled system converts to classical system as: 

𝜌𝜂 − 𝜌3𝜉 − 𝜌𝜌𝜉 − 𝜔𝜔𝜉 = 0,  𝜂 > 0,  𝜉 ∈ 𝑅,          (2.9) 

𝜔𝜂 + 2𝜔3𝜉 − 𝜌𝜔𝜉 = 0,   𝜂 > 0,  𝜉 ∈ 𝑅.          (2.10) 

3. Basic plan of HPSTM 

Assume a nonhomogeneous, nonlinear time fractional coupled system as [21,22]: 

𝐷𝜂
𝛼𝜌 𝜉, 𝜂 + 𝑅𝜌 𝜉, 𝜂 + 𝑁𝜌 𝜉, 𝜂 = 𝑔 𝜉, 𝜂 ,          (3.1) 

with the initial condition (IC) 

𝜌 𝜉, 0 = 𝑓 𝜉 ,               (3.2) 

where 𝐷𝜂
𝛼𝜌 𝜉, 𝜂  is fractional order Caputo derivative of the function 𝜌 𝜉, 𝜂 , 𝑔 𝜉, 𝜂  represent 

source term, R shows linear differential derivative and N shows nonlinear differential derivative. 

Using Sumudu transform [25,26] on Eq. (3.1), we get 

𝑆 𝐷𝜂
𝛼𝜌 𝜉, 𝜂  + 𝑆 𝑅𝜌 𝜉, 𝜂  + 𝑆 𝑁𝜌 𝜉, 𝜂  = 𝑆 𝑔 𝜉, 𝜂  .       (3.3) 

By using identity of Sumudu transform, we have 

𝑆 𝜌 𝜉, 𝜂  = 𝑓 𝜉 + 𝑢𝛼𝑆 𝑔 𝜉, 𝜂  − 𝑢𝛼𝑆 𝑅𝜌 𝜉, 𝜂 + 𝑁𝜌 𝜉, 𝜂  .     (3.4) 

Using inverse Sumudu transform on Eq. (3.4), we have 

𝜌 𝜉, 𝜂 = 𝐺 𝜉, 𝜂 − 𝑆−1 𝑢𝛼𝑆 𝑅𝜌 𝜉, 𝜂 + 𝑁𝜌 𝜉, 𝜂   .        (3.5) 

Here 𝐺 𝜉, 𝜂  is an expression due to source term and IC. 

Use of HPM on Eq. (3.5) gives 

𝜌 𝜉, 𝜂 =  𝑝𝑛𝜌𝑛 𝜉, 𝜂 ∞
𝑛=0 .             (3.6) 

Nonlinear term can be disintegrated as: 

𝑁𝜌 𝜉, 𝜂 =  𝑝𝑛𝐻𝑛 𝜌 
∞
𝑛=0 ,             (3.7) 

here 𝐻𝑛 𝜌  are He’s polynomials [23,24] which are expressed as: 

𝐻𝑛 𝜌0, 𝜌1, 𝜌2, … , 𝜌𝑛 =
1

𝑛!

𝜕𝑛

𝜕𝑝 𝑛  𝑁  𝑝𝑖𝜌𝑖
∞
𝑖=0   

𝑝=0
, 𝑛 = 0, 1, 2, 3 ….     (3.8) 

Incorporating Eq. (3.6) and Eq. (3.7) in Eq. (3.5), we have 

 𝑝𝑛𝜌𝑛 𝜉, 𝜂 = 𝐺 𝜉, 𝜂 − 𝑝 𝑆−1 𝑢𝛼𝑆 𝑅  𝑝𝑛𝜌𝑛 𝜉, 𝜂 ∞
𝑛=0 +  𝑝𝑛𝐻𝑛 𝜌 

∞
𝑛=0    ∞

𝑛=0 . (3.9) 

Equation (3.9) represents combination of He’s polynomials, Sumudu transform and HPM. 

Comparing coefficients of the same powers of p, we have 
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𝑝0: 𝜌0 𝜉, 𝜂 = 𝐺 𝜉, 𝜂 ,                

𝑝1: 𝜌1 𝜉, 𝜂 = −𝑆−1 𝑢𝛼𝑆 𝑅𝜌0 𝜉, 𝜂 + 𝐻0 𝜌   ,          

𝑝2: 𝜌2 𝜉, 𝜂 = −𝑆−1 𝑢𝛼𝑆 𝑅𝜌1 𝜉, 𝜂 + 𝐻1 𝜌   ,        (3.10) 

𝑝3: 𝜌3 𝜉, 𝜂 = −𝑆−1 𝑢𝛼𝑆 𝑅𝜌2 𝜉, 𝜂 + 𝐻2 𝜌   ,          

⋮                 

𝑝𝑛 : 𝜌𝑛 𝜉, 𝜂 = −𝑆−1 𝑢𝛼𝑆 𝑅𝜌𝑛−1 𝜉, 𝜂 + 𝐻𝑛−1 𝜌   .         

By the same manner, one can evaluate other elements of 𝜌𝑛 𝜉, 𝜂  and then find series solution. 

We approximate numerical solution of 𝜌 𝜉, 𝜂  as: 

𝜌 𝜉, 𝜂 = lim𝑁→∞  𝜌𝑛 𝜉, 𝜂 𝑁
𝑛=0 .           (3.11) 

Equation (3.11) represents series solution, which converges very fast. 

4. Numerical experiments 

Example 4.1. Assume time fractional Kersten-Krasil’shchik coupled KdV-mKdV nonlinear system as: 

𝐷𝜂
𝛼𝜌 + 𝜌3𝜉 − 6𝜌𝜌𝜉 + 3𝜔𝜔3𝜉 + 3𝜔𝜉𝜔2𝜉 − 3𝜌𝜉𝜔

2 + 6𝜌𝜔𝜔𝜉 = 0,  𝜂 > 0,  𝜉 ∈ 𝑅,  0 < 𝛼 ≤ 1, 

𝐷𝜂
𝛼𝜔 + 𝜔3𝜉 − 3𝜔2𝜔𝜉 − 3𝜌𝜔𝜉 + 3𝜌𝜉𝜔 = 0,   𝜂 > 0,  𝜉 ∈ 𝑅,  0 < 𝛼 ≤ 1,    (4.1) 

with the initial condition  

𝜌 𝜉,  0 = 𝑐 − 2𝑐 𝑠𝑒𝑐𝑕2  𝑐𝜉 ,               

𝜔 𝜉,  0 = 2 𝑐 𝑠𝑒𝑐𝑕  𝑐𝜉 .             (4.2) 

Using Sumudu transform on Eq. (4.1) by the application of initial condition given by Eq. (4.2), we 

get 

𝑆 𝜌 𝜉,  𝜂  = 𝑐 − 2𝑐 𝑠𝑒𝑐𝑕2  𝑐𝜉 − 𝑢𝛼𝑆 𝜌3𝜉 − 6𝜌𝜌𝜉 + 3𝜔𝜔3𝜉 + 3𝜔𝜉𝜔2𝜉 − 3𝜌𝜉𝜔
2 + 6𝜌𝜔𝜔𝜉  , 

𝑆 𝜔 𝜉,  𝜂  = 2 𝑐 𝑠𝑒𝑐𝑕  𝑐𝜉 − 𝑢𝛼𝑆 𝜔3𝜉 − 3𝜔2𝜔𝜉 − 3𝜌𝜔𝜉 + 3𝜌𝜉𝜔 .      (4.3) 

Apply inverse Sumudu transform, we get 

𝜌 𝜉,  𝜂 = 𝑐 − 2𝑐 𝑠𝑒𝑐𝑕2  𝑐𝜉                

−𝑆−1  𝑢𝛼𝑆 𝜌3𝜉 − 6𝜌𝜌𝜉 + 3𝜔𝜔3𝜉 + 3𝜔𝜉𝜔2𝜉 − 3𝜌𝜉𝜔
2 + 6𝜌𝜔𝜔𝜉   , 

𝜔 𝜉,  𝜂 = 2 𝑐 𝑠𝑒𝑐𝑕  𝑐𝜉 − 𝑆−1  𝑢𝛼𝑆 𝜔3𝜉 − 3𝜔2𝜔𝜉 − 3𝜌𝜔𝜉 + 3𝜌𝜉𝜔  .   (4.4) 

Use HPM on Eq. (4.4), we get 
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 𝑝𝑛𝜌𝑛 𝜉,  𝜂 ∞
𝑛=0 =  𝑐 − 2𝑐 𝑠𝑒𝑐𝑕2  𝑐𝜉              

−𝑝 𝑆−1  𝑢𝛼𝑆    𝑝𝑛𝜌𝑛 𝜉,  𝜂 
∞

𝑛=0
 

3𝜉

+   𝑝𝑛𝐻𝑛 𝜌 
∞

𝑛=0
    , 

 𝑝𝑛𝜔𝑛 𝜉,  𝜂 ∞
𝑛=0 = 2 𝑐 𝑠𝑒𝑐𝑕  𝑐𝜉              

   −𝑝 𝑆−1  𝑢𝛼𝑆    𝑝𝑛𝜔𝑛 𝜉,  𝜂 ∞
𝑛=0  

3𝜉
+   𝑝𝑛𝐻𝑛 𝜔 ∞

𝑛=0     .          (4.5) 

Nonlinear steps given by He’s polynomials 𝐻𝑛 𝜌  and 𝐻𝑛 𝜔 , which are given as [23,24]: 

 𝑝𝑛𝐻𝑛 𝜌 
∞
𝑛=0 = −6𝜌𝜌𝜉 + 3𝜔𝜔3𝜉 + 3𝜔𝜉𝜔2𝜉 − 3𝜌𝜉𝜔

2 + 6𝜌𝜔𝜔𝜉 ,       

 𝑝𝑛𝐻𝑛 𝜔 ∞
𝑛=0 = −3𝜔2𝜔𝜉 − 3𝜌𝜔𝜉 + 3𝜌𝜉𝜔.               (4.6) 

Values of components of He’s polynomials are given by 

𝐻0 𝜌 = −6𝜌0 𝜌0 𝜉 + 3𝜔0 𝜔0 3𝜉 + 3 𝜔0 𝜉 𝜔0 2𝜉 − 3 𝜌0 𝜉𝜔0
2 + 6𝜌0𝜔0 𝜔0 𝜉     

𝐻1 𝜌 = −6𝜌1 𝜌0 𝜉 − 6𝜌0 𝜌1 𝜉 + 3𝜔1 𝜔0 3𝜉 + 3𝜔0 𝜔1 3𝜉 + 3 𝜔0 𝜉 𝜔1 2𝜉     

+3 𝜔0 2𝜉 𝜔1 𝜉 − 3 𝜌1 𝜉𝜔0
2 − 6 𝜌0 𝜉𝜔0𝜔1 + 6𝜌0𝜔1 𝜔0 𝜉 + 6𝜌0𝜔0 𝜔1 𝜉  

+ 6𝜌1𝜔0 𝜔0 𝜉               (4.7) 

𝐻2 𝜌 = −6𝜌2 𝜌0 𝜉 − 6𝜌1 𝜌1 𝜉 − 6𝜌0 𝜌2 𝜉 + 3𝜔2 𝜔0 3𝜉 + 3𝜔1 𝜔1 3𝜉 + 3𝜔0 𝜔2 3𝜉  

 +3 𝜔0 𝜉 𝜔2 2𝜉 + 3 𝜔1 𝜉 𝜔1 2𝜉 + 3 𝜔0 2𝜉 𝜔2 𝜉 − 3 𝜌2 𝜉𝜔0
2 − 6 𝜌1 𝜉𝜔0𝜔1  

−6 𝜌0 𝜉𝜔0𝜔2 + 6𝜌0𝜔2 𝜔0 𝜉 + 6𝜌1𝜔1 𝜔0 𝜉 + 6𝜌2𝜔0 𝜔0 𝜉 + 6𝜌0𝜔1 𝜔1 𝜉    

+6𝜌1𝜔0 𝜔1 𝜉 + 6𝜌0𝜔0 𝜔2 𝜉              

𝐻3 𝜌 = −6𝜌3 𝜌0 𝜉 − 6𝜌2 𝜌1 𝜉 − 6𝜌1 𝜌2 𝜉 − 6𝜌0 𝜌3 𝜉 + 3𝜔3 𝜔0 3𝜉 + 3𝜔2 𝜔1 3𝜉  

 +3𝜔1 𝜔2 3𝜉 + 3𝜔0 𝜔3 3𝜉 + 3 𝜔0 𝜉 𝜔3 2𝜉 + 3 𝜔1 𝜉 𝜔2 2𝜉 + 3 𝜔1 2𝜉 𝜔2 𝜉   

+3 𝜔0 2𝜉 𝜔3 𝜉 − 3 𝜌3 𝜉𝜔0
2 − 6 𝜌2 𝜉𝜔0𝜔1 − 6 𝜌1 𝜉𝜔0𝜔2 − 3 𝜌1 𝜉𝜔1

2   

+𝜌0𝜔3 𝜔0 𝜉 + 6𝜌1𝜔2 𝜔0 𝜉 + 6𝜌2𝜔1 𝜔0 𝜉 + 6𝜌3𝜔0 𝜔0 𝜉 + 6𝜌0𝜔2 𝜔1 𝜉    

+66𝜌1𝜔1 𝜔1 𝜉 + 6𝜌2𝜔0 𝜔1 𝜉 + 6𝜌0𝜔1 𝜔2 𝜉 + 6𝜌1𝜔0 𝜔2 𝜉 + 6𝜌0𝜔0 𝜔3 𝜉   

⋮                     

and 

𝐻0 𝜔 = −3𝜔0
2 𝜔0 𝜉 − 3𝜌0 𝜔0 𝜉 + 3𝜔0 𝜌0 𝜉            

𝐻1 𝜔 = −3𝜔0
2 𝜔1 𝜉 − 6𝜔0𝜔1 𝜔0 𝜉 − 3𝜌1 𝜔0 𝜉 − 3𝜌0 𝜔1 𝜉 + 3𝜔1 𝜌0 𝜉 + 3𝜔0 𝜌1 𝜉   
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𝐻2 𝜔 = −3𝜔0
2 𝜔2 𝜉 − 6𝜔0𝜔1 𝜔1 𝜉 − 6𝜔0𝜔2 𝜔0 𝜉 − 3𝜔2

2 𝜔0 𝜉 − 3𝜌2 𝜔0 𝜉     

   −3𝜌1 𝜔1 𝜉 − 3𝜌0 𝜔2 𝜉 + 3𝜔2 𝜌0 𝜉 − 3𝜔1 𝜌1 𝜉 − 3𝜔0 𝜌2 𝜉            (4.8) 

𝐻3 𝜔 = −3𝜔0
2 𝜔3 𝜉 − 6𝜔0𝜔1 𝜔2 𝜉 − 6𝜔0𝜔2 𝜔1 𝜉 − 6𝜔0𝜔3 𝜔0 𝜉 − 6𝜔1𝜔2 𝜔0 𝜉   

−3𝜔3
2 𝜔0 𝜉 − 3𝜌3 𝜔0 𝜉 − 3𝜌2 𝜔1 𝜉 − 3𝜌1 𝜔2 𝜉 − 3𝜌0 𝜔3 𝜉 + 3𝜔3 𝜌0 𝜉   

−3𝜔2 𝜌1 𝜉 − 3𝜔1 𝜌2 𝜉 − 3𝜔0 𝜌3 𝜉            

⋮                     

Comparing the coefficients of same powers of p, we have 

𝑝0:  𝜌0 𝜉,  𝜂 = 𝑐 − 2𝑐𝑠𝑒𝑐𝑕2  𝑐𝜉 ,              

𝑝1:  𝜌1 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜌0 3𝜉 + 𝐻0 𝜌              

= 8𝑐5 2 𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕3  𝑐𝜉 
𝜂𝛼

𝛤 𝛼+1 
,        (4.9) 

𝑝2:  𝜌2 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜌1 3𝜉 + 𝐻1 𝜌              

   = −16𝑐4 2𝑐𝑜𝑠𝑕2  𝑐𝜉 − 3 𝑠𝑒𝑐𝑕4  𝑐𝜉 
𝜂2𝛼

𝛤 2𝛼+1 
,        

𝑝3:  𝜌3 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜌2 3𝜉 + 𝐻2 𝜌              

   = 128 𝑐11 2  𝑐𝑜𝑠𝑕2  𝑐𝜉 − 3 𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕5  𝑐𝜉 
𝜂3𝛼

𝛤 3𝛼+1 
,     

𝑝4:  𝜌4 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜌3 3𝜉 + 𝐻3 𝜌              

= −256 𝑐7 2𝑐𝑜𝑠𝑕4  𝑐𝜉 − 15𝑐𝑜𝑠𝑕2  𝑐𝜉 + 15 𝑠𝑒𝑐𝑕6  𝑐𝜉 
𝜂4𝛼

𝛤 4𝛼+1 
,   

⋮                     

and 

𝑝0: 𝜔0 𝜉,  𝜂 = 2 𝑐𝑠𝑒𝑐𝑕  𝑐𝜉 ,              

𝑝1:  𝜔1 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜔0 3𝜉 + 𝐻0 𝜔              

= −4𝑐2𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕2  𝑐𝜉 
𝜂𝛼

𝛤 𝛼+1 
,            (4.10) 

𝑝2:  𝜔2 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜔1 3𝜉 + 𝐻1 𝜔              

= 8𝑐7 2  𝑐𝑜𝑠𝑕2  𝑐𝜉 − 2 𝑠𝑒𝑐𝑕3  𝑐𝜉 
𝜂2𝛼

𝛤 2𝛼+1 
,        

𝑝3:  𝜔3 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜔2 3𝜉 + 𝐻2 𝜔              
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   = −16𝑐5 𝑐𝑜𝑠𝑕2  𝑐𝜉 − 6 𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕4  𝑐𝜉 
𝜂3𝛼

𝛤 3𝛼+1 
,     

𝑝4:  𝜔4 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜔3 3𝜉 + 𝐻3 𝜔               

= 32𝑐13 2  𝑐𝑜𝑠𝑕4  𝑐𝜉 − 20𝑐𝑜𝑠𝑕2  𝑐𝜉 + 24 𝑠𝑒𝑐𝑕5  𝑐𝜉 
𝜂4𝛼

𝛤 4𝛼+1 
,   

⋮                     

Hence series solution is given by 

𝜌 𝜉,  𝜂 =  𝜌𝑖 𝜉,  𝜂 ∞
𝑖=0                 

= 𝑐 − 2𝑐𝑠𝑒𝑐𝑕2  𝑐𝜉 + 8𝑐5 2 𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕3  𝑐𝜉 
𝜂𝛼

𝛤 𝛼+1 
      

−16𝑐4 2𝑐𝑜𝑠𝑕2  𝑐𝜉 − 3 𝑠𝑒𝑐𝑕4  𝑐𝜉 
𝜂2𝛼

𝛤 2𝛼+1 
+ 128𝑐11 2  𝑐𝑜𝑠𝑕2  𝑐𝜉 − 3   

𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕5  𝑐𝜉 
𝜂3𝛼

𝛤 3𝛼 + 1 
− 256𝑐7 2𝑐𝑜𝑠𝑕4  𝑐𝜉 − 15𝑐𝑜𝑠𝑕2  𝑐𝜉 + 15  

𝑠𝑒𝑐𝑕6  𝑐𝜉 
𝜂4𝛼

𝛤 4𝛼+1 
+ ⋯,           (4.11) 

and 

𝜔 𝜉,  𝜂 =  𝜔𝑖 𝜉,  𝜂 ∞
𝑖=0                 

= 2 𝑐𝑠𝑒𝑐𝑕  𝑐𝜉 − 4𝑐2𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕2  𝑐𝜉 
𝜂𝛼

𝛤 𝛼 + 1 
+ 8𝑐7 2  𝑐𝑜𝑠𝑕2  𝑐𝜉 − 2  

𝑠𝑒𝑐𝑕3  𝑐𝜉 
𝜂2𝛼

𝛤 2𝛼+1 
− 16𝑐5 𝑐𝑜𝑠𝑕2  𝑐𝜉 − 6 𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕4  𝑐𝜉 

𝜂3𝛼

𝛤 3𝛼+1 
  

+32𝑐13 2  𝑐𝑜𝑠𝑕4  𝑐𝜉 − 20𝑐𝑜𝑠𝑕2  𝑐𝜉 + 24 𝑠𝑒𝑐𝑕5  𝑐𝜉 
𝜂4𝛼

𝛤 4𝛼+1 
− ⋯. (4.12) 

Putting α = 1 in (4.11) and (4.12), we get solution of the problem as: 

𝜌 𝜉,  𝜂 = 𝑐 − 2𝑐𝑠𝑒𝑐𝑕2  𝑐𝜉 + 8𝜂𝑐5 2 𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕3  𝑐𝜉 − 8𝜂2𝑐4     

 2𝑐𝑜𝑠𝑕2  𝑐𝜉 − 3 𝑠𝑒𝑐𝑕4  𝑐𝜉 +
64

3
𝜂3𝑐11 2  𝑐𝑜𝑠𝑕2  𝑐𝜉 − 3 𝑠𝑖𝑛𝑕  𝑐𝜉    

𝑠𝑒𝑐𝑕5  𝑐𝜉 
𝜂3𝛼

𝛤 3𝛼+1 
−

32

3
𝜂4𝑐7 2𝑐𝑜𝑠𝑕4  𝑐𝜉 − 15𝑐𝑜𝑠𝑕2  𝑐𝜉 + 15     

𝑠𝑒𝑐𝑕6  𝑐𝜉 + ⋯,            (4.13) 

and 

𝜔 𝜉,  𝜂 = 2 𝑐𝑠𝑒𝑐𝑕  𝑐𝜉 − 4𝜂𝑐2𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕2  𝑐𝜉 + 4𝜂2𝑐7 2  𝑐𝑜𝑠𝑕2  𝑐𝜉 − 2   

𝑠𝑒𝑐𝑕3  𝑐𝜉 −
8

3
𝜂3𝑐5 𝑐𝑜𝑠𝑕2  𝑐𝜉 − 6 𝑠𝑖𝑛𝑕  𝑐𝜉 𝑠𝑒𝑐𝑕4  𝑐𝜉 +

4

3
𝜂4𝑐13 2    

 𝑐𝑜𝑠𝑕4  𝑐𝜉 − 20𝑐𝑜𝑠𝑕2  𝑐𝜉 + 24 𝑠𝑒𝑐𝑕5  𝑐𝜉 − ⋯.    (4.14) 

The solution represents by Eq. (4.14) is similar to exact solution in closed form as:  
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𝜌 𝜉, 𝜂 = 𝑐 − 2𝑐𝑠𝑒𝑐𝑕2  𝑐 𝜉 + 2𝑐𝜂  ,             

𝜔 𝜉, 𝜂 = 2 𝑐𝑠𝑒𝑐𝑕  𝑐 𝜉 + 2𝑐𝜂  .            (4.15) 

Example 4.2. Assume homogeneous two component time fractional coupled third order KdV system 

as: 

𝐷𝜂
𝛼𝜌 − 𝜌3𝜉 − 𝜌𝜌𝜉 − 𝜔𝜔𝜉 = 0,  𝜂 > 0,  𝜉 ∈ 𝑅,  0 < 𝛼 ≤ 1,         

𝐷𝜂
𝛼𝜔 + 2𝜔3𝜉 − 𝜌𝜔𝜉 = 0,   𝜂 > 0,  𝜉 ∈ 𝑅,  0 < 𝛼 ≤ 1,        (4.16) 

with the initial condition  

𝜌 𝜉,  0 = 3 − 6 𝑡𝑎𝑛𝑕2  
𝜉

2
 ,               

𝜔 𝜉,  0 = −3𝑐 2 𝑡𝑎𝑛𝑕2  
𝜉

2
 .             (4.17) 

Using Sumudu transform on Eq. (4.16) by the application of initial condition given by Eq. (4.17), we 

get 

𝑆 𝜌 𝜉,  𝜂  = 3 − 6 𝑡𝑎𝑛𝑕2  
𝜉

2
 + 𝑢𝛼𝑆 𝜌3𝜉 + 𝜌𝜌𝜉 + 𝜔𝜔𝜉  ,       

𝑆 𝜔 𝜉,  𝜂  = −3𝑐 2 𝑡𝑎𝑛𝑕2  
𝜉

2
 − 𝑢𝛼𝑆 2𝜔3𝜉 − 𝜌𝜔𝜉  .         (4.18) 

Apply inverse Sumudu transform, we get 

𝜌 𝜉,  𝜂 = 3 − 6 𝑡𝑎𝑛𝑕2  
𝜉

2
 + 𝑆−1  𝑢𝛼𝑆 𝜌3𝜉 + 𝜌𝜌𝜉 + 𝜔𝜔𝜉   ,        

𝜔 𝜉,  𝜂 = −3𝑐 2 𝑡𝑎𝑛𝑕2  
𝜉

2
 − 𝑆−1  𝑢𝛼𝑆 2𝜔3𝜉 − 𝜌𝜔𝜉   .       (4.19) 

Use HPM on Eq. (4.19), we get 

 𝑝𝑛𝜌𝑛 𝜉,  𝜂 ∞
𝑛=0 = 3 − 6 𝑡𝑎𝑛𝑕2  

𝜉

2
              

+𝑝 𝑆−1  𝑢𝛼𝑆    𝑝𝑛𝜌𝑛 𝜉,  𝜂 ∞
𝑛=0  

3𝜉
+   𝑝𝑛𝐻𝑛 𝜌 

∞
𝑛=0     ,    

 𝑝𝑛𝜔𝑛 𝜉,  𝜂 ∞
𝑛=0 = −3𝑐 2 𝑡𝑎𝑛𝑕2  

𝜉

2
              

−𝑝 𝑆−1  𝑢𝛼𝑆  2  𝑝𝑛𝜔𝑛 𝜉,  𝜂 ∞
𝑛=0  

3𝜉
−   𝑝𝑛𝐻𝑛 𝜔 ∞

𝑛=0     . (4.20) 

Nonlinear steps given by He’s polynomials 𝐻𝑛 𝜌  and 𝐻𝑛 𝜔 , which are given as: 

 𝑝𝑛𝐻𝑛 𝜌 
∞
𝑛=0 = 𝜌𝜌𝜉 + 𝜔𝜔𝜉 ,               

 𝑝𝑛𝐻𝑛 𝜔 ∞
𝑛=0 = −𝜌𝜔𝜉 .              (4.21) 

Values of factors of He’s polynomials are given as [23,24]: 

𝐻0 𝜌 = 𝜌0 𝜌0 𝜉 + 𝜔0 𝜔0 𝜉                

𝐻1 𝜌 = 𝜌1 𝜌0 𝜉 + 𝜌0 𝜌1 𝜉 + 𝜔1 𝜔0 𝜉 + 𝜔0 𝜔1 𝜉         (4.22) 
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𝐻2 𝜌 = 𝜌2 𝜌0 𝜉 + 𝜌1 𝜌1 𝜉 + 𝜌0 𝜌2 𝜉 + 𝜔2 𝜔0 𝜉 + 𝜔1 𝜔1 𝜉 + 𝜔0 𝜔2 𝜉      

𝐻3 𝜌 = 𝜌3 𝜌0 𝜉 + 𝜌2 𝜌1 𝜉 + 𝜌1 𝜌2 𝜉 + 𝜌0 𝜌3 𝜉 + 𝜔3 𝜔0 𝜉 + 𝜔2 𝜔1 𝜉      

+𝜔1 𝜔2 𝜉 + 𝜔0 𝜔3 𝜉                

⋮                     

and 

𝐻0 𝜔 = −𝜌0 𝜔0 𝜉                (4.23) 

𝐻1 𝜔 = −𝜌1 𝜔0 𝜉 − 𝜌0 𝜔1 𝜉                

𝐻2 𝜔 = −𝜌2 𝜔0 𝜉 − 𝜌1 𝜔1 𝜉 − 𝜌0 𝜔2 𝜉             

𝐻3 𝜔 = −𝜌3 𝜔0 𝜉 − 𝜌2 𝜔1 𝜉 − 𝜌1 𝜔2 𝜉 − 𝜌0 𝜔3 𝜉           

⋮                     

Comparing coefficients of same powers of p, we have 

𝑝0:  𝜌0 𝜉,  𝜂 = 3 − 6 𝑡𝑎𝑛𝑕2  
𝜉

2
 ,              

𝑝1:  𝜌1 𝜉,  𝜂 = 𝑆−1  𝑢𝛼𝑆  𝜌0 3𝜉 + 𝐻0 𝜌               

= −6 𝑠𝑒𝑐𝑕2  
𝜉

2
 𝑡𝑎𝑛𝑕  

𝜉

2
 

𝜂𝛼

𝛤 𝛼+1 
,         (4.24) 

𝑝2:  𝜌2 𝜉,  𝜂 = 𝑆−1  𝑢𝛼𝑆  𝜌1 3𝜉 + 𝐻1 𝜌               

   = 3  2 + 7 𝑠𝑒𝑐𝑕2  
𝜉

2
 − 15 𝑠𝑒𝑐𝑕4  

𝜉

2
  𝑠𝑒𝑐𝑕2  

𝜉

2
 

𝜂2𝛼

𝛤 2𝛼+1 
,      

𝑝3:  𝜌3 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜌2 3𝜉 + 𝐻2 𝜌              

⋮                     

and 

𝑝0: 𝜔0 𝜉,  𝜂 = −3𝑐 2 𝑡𝑎𝑛𝑕2  
𝜉

2
 ,              

𝑝1:  𝜔1 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆 2 𝜔0 3𝜉 − 𝐻0 𝜔              

= 3𝑐 2 𝑠𝑒𝑐𝑕2  
𝜉

2
 𝑡𝑎𝑛𝑕  

𝜉

2
 

𝜂𝛼

𝛤 𝛼+1 
,    (4.25) 

𝑝2:  𝜔2 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜔1 3𝜉 − 𝐻1 𝜔              

   =
3𝑐 2

2
 2 + 21 𝑠𝑒𝑐𝑕2  

𝜉

2
 − 24 𝑠𝑒𝑐𝑕4  

𝜉

2
  𝑠𝑒𝑐𝑕2  

𝜉

2
 

𝜂2𝛼

𝛤 2𝛼+1 
,     

𝑝3:  𝜔3 𝜉,  𝜂 = −𝑆−1  𝑢𝛼𝑆  𝜔2 3𝜉 − 𝐻2 𝜔              

⋮                     

Hence series solution is given by 

𝜌 𝜉,  𝜂 =  𝜌𝑖 𝜉,  𝜂 ∞
𝑖=0                 

=  3 − 6 𝑡𝑎𝑛𝑕2  
𝜉

2
 − 6 𝑠𝑒𝑐𝑕2  

𝜉

2
 𝑡𝑎𝑛𝑕  

𝜉

2
 

𝜂𝛼

𝛤 𝛼+1 
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+3  2 + 7 𝑠𝑒𝑐𝑕2  
𝜉

2
 − 15 𝑠𝑒𝑐𝑕4  

𝜉

2
  𝑠𝑒𝑐𝑕2  

𝜉

2
 

𝜂2𝛼

𝛤 2𝛼+1 
− ⋯,   (4.26) 

and 

𝜔 𝜉,  𝜂 =  𝜔𝑖 𝜉,  𝜂 ∞
𝑖=0                 

= −3𝑐 2 𝑡𝑎𝑛𝑕2  
𝜉

2
 + 3𝑐 2 𝑠𝑒𝑐𝑕2  

𝜉

2
 𝑡𝑎𝑛𝑕  

𝜉

2
 

𝜂𝛼

𝛤 𝛼+1 
       

+
3𝑐 2

2
 2 + 21 𝑠𝑒𝑐𝑕2  

𝜉

2
 − 24 𝑠𝑒𝑐𝑕4  

𝜉

2
  𝑠𝑒𝑐𝑕2  

𝜉

2
 

𝜂2𝛼

𝛤 2𝛼+1 
+ ⋯.  (4.27) 

Putting α = 1 in (4.26) and (4.27), we get solution of the problem as: 

𝜌 𝜉,  𝜂 = 3 − 6 𝑡𝑎𝑛𝑕2  
𝜉

2
 − 6𝜂 𝑠𝑒𝑐𝑕2  

𝜉

2
 𝑡𝑎𝑛𝑕  

𝜉

2
 +         

3

2
𝜂2  2 + 7 𝑠𝑒𝑐𝑕2  

𝜉

2
 − 15 𝑠𝑒𝑐𝑕4  

𝜉

2
  𝑠𝑒𝑐𝑕2  

𝜉

2
 − ⋯,  (4.28) 

and 

𝜔 𝜉,  𝜂 = −3𝑐 2 𝑡𝑎𝑛𝑕2  
𝜉

2
 + 3 𝜂𝑐 2 𝑠𝑒𝑐𝑕2  

𝜉

2
 𝑡𝑎𝑛𝑕  

𝜉

2
         

+
3𝑐 2

4
𝜂2  2 + 21 𝑠𝑒𝑐𝑕2  

𝜉

2
 − 24 𝑠𝑒𝑐𝑕4  

𝜉

2
  𝑠𝑒𝑐𝑕2  

𝜉

2
 + ⋯.  (4.29) 

The solution given by Eq. (4.29) is similar to closed form solution as:  

𝜌 𝜉, 𝜂 = 3 − 6 𝑡𝑎𝑛𝑕2  
𝜉+𝜂

2
 ,               

𝜔 𝜉, 𝜂 = −3𝑐 2 𝑡𝑎𝑛𝑕2  
𝜉+𝜂

2
 .            (4.30) 

5. Results and discussions 

Figure 1 (a)–(b) shows profile of the closed form solution and HPSTM solution at 𝛼 = 1. The 

profile of error between both results  𝜌𝐸𝑥𝑎𝑐𝑡 − 𝜌𝐻𝑃𝑆𝑇𝑀   for nonlinear time fractional Kersten-

Krasil’shchik coupled KdV-mKdV nonlinear system when 𝑐 = 1 and 𝛼 = 1 for 0 ≤ 𝜂 ≤ 0.01 and 

−3 ≤ 𝜉 ≤ 3 for Eq. (4.1) by the application of initial condition represented by the Eq. (4.2) of 

𝜌 𝜉, 𝜂  is shown by Figure 1(c). Figure 1 (a)–(c) shows that profile of the HPSTM solution is 

analogous to exact solution of 𝜌 𝜉, 𝜂 . The analytical solutions gained by HPSTM have high 

precisions at sixth term approximation. The numerical solutions represent high level of precisions 

between exact solution and HPSTM solution for 𝜌 𝜉, 𝜂 . It can be analyzed by the Figure 2 that as 

spatial coordinate vary with time it gives to first decrease and then increase in the 𝜌 𝜉, 𝜂  for wave 

propagation in nonlinear plasma medium at 𝜂 = 0.01. Figure 3 shows the comparison of profile of 

𝜌 𝜉, 𝜂  at different values of 𝛼 for −3 ≤ 𝜉 ≤ 3 and 𝜂 ≤ 0.01. 

Table 1 represents that exact solution is analogous to HPSTM solution and have large level 

accuracy between the numerical results. Table 1 indicates that absolute error is 10−9order between 

numerical results for 𝜌 𝜉, 𝜂 . 
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Figure 1. Profile of solution of 𝜌(𝜉, 𝜂) for Eq. (4.1) when 𝑐 = 1: (a) Exact solution, (b) 

HPSTM solution at 𝛼 = 1 , (c) Absolute Error  𝜌𝐸𝑥𝑎𝑐𝑡 − 𝜌𝐻𝑃𝑆𝑇𝑀   for 0 ≤ 𝜂 ≤ 0.01,

−3 ≤ 𝜉 ≤ 3 and 𝛼 = 1. 
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Figure 2. Profile of exact solution and HPSTM solution of 𝜌 𝜉, 𝜂  for 𝜂 = 0.01 and −3 ≤ 𝜉 ≤ 3. 

 

 

Figure 3. Comparison of profile of 𝜌 𝜉, 𝜂  at different values of 𝛼 for−3 ≤ 𝜉 ≤ 3 and 𝜂 = 0.01. 
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Table 1. Variation of exact solution with HPSTM solution of 𝜌 𝜉, 𝜂  at 𝜂 = 0.01. 

𝝃 Exact Solution HPSTM Solution Absolute Error 

3.0 0.9810379547 0.9810379579 1.957810944E−09 

2.5 0.9488741084 0.9488741131 4.588520200E−09 

2.0 0.8640471736 0.8640471812 7.500972059E−09 

1.5 0.6514628688 0.6514628649 3.864259000E−09 

1.0 0.1853889664 0.1853888931 7.330837940E−08 

0.5 −0.5436053970 −0.5436054423 4.527637000E−08 

0.0 −0.9992002130 −0.9992000000 2.130000000E−07 

−0.5 −0.6017332810 −0.6017333223 4.129203000E−08 

−1.0 0.1342165142 0.1342164396 7.470826874E−08 

−1.5 0.6252890662 0.6252890617 4.510941000E−09 

−2.0 0.8531473885 0.8531473961 7.543603848E−09 

−2.5 0.9446752749 0.9446752795 4.629439800E−09 

−3.0 0.9794667886 0.9794667902 1.994434944E−09 

 

Figure 4 (a)–(b) shows profile of the closed form solution and HPSTM solution at 𝛼 = 1.The 

profile of error between both solutions  𝜔𝐸𝑥𝑎𝑐𝑡 − 𝜔𝐻𝑃𝑆𝑇𝑀   for nonlinear time fractional Kersten-

Krasil’shchik coupled KdV-mKdV nonlinear system when 𝑐 = 1 and 𝛼 = 1 for 0 ≤ 𝜂 ≤ 0.01 and 

−3 ≤ 𝜉 ≤ 3 for Eq. (4.1) by the application of initial condition represented by the Eq. (4.2) of 

𝜔 𝜉, 𝜂  is given by Figure 4(c). Figure 4 (a)–(c) shows that profile of the HPSTM solution is 

analogous to exact solution of 𝜔 𝜉, 𝜂 . The analytical solutions gained by HPSTM have high 

precisions at sixth term approximation. The numerical solutions represent large level of precisions 

between exact solution and HPSTM solution for 𝜔 𝜉, 𝜂 . It can be analyzed by the Figure 5 that as 

spatial coordinate vary with time it gives to first increase and then decrease in the 𝜔 𝜉, 𝜂  for wave 

propagation in nonlinear plasma medium at 𝜂 = 0.01. Figure 6 shows the comparison of profile of 

𝜔 𝜉, 𝜂  at different values of 𝛼 for −3 ≤ 𝜉 ≤ 3 and 𝜂 ≤ 0.01. 

Table 2 represents that exact solution is analogous to HPSTM solution and have large level 

accuracy between the numerical results. Table 2 indicates that absolute error is 10−12order between 

numerical results for 𝜔 𝜉, 𝜂 . 
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Figure 4. Profile of 𝜔(𝜉, 𝜂) for Eq. (4.1) when 𝑐 = 1: (a) Exact solution, (b) HPSTM 

solution at 𝛼 = 1, (c) Absolute Error  𝜔𝐸𝑥𝑎𝑐𝑡 − 𝜔𝐻𝑃𝑆𝑇𝑀   for 0 ≤ 𝜂 ≤ 0.01, −3 ≤ 𝜉 ≤
3 and 𝛼 = 1. 

 

Figure 5. Profile of exact solution and HPSTM solution of 𝜔 𝜉, 𝜂  for 𝜂 = 0.01 and −3 ≤ 𝜉 ≤ 3. 



2361 

AIMS Mathematics Volume 5, Issue 3, 2346–2368. 

 

 

Figure 6. Comparison of profile of 𝜔 𝜉, 𝜂  at different values of 𝛼 for −3 ≤ 𝜉 ≤ 3 and 𝜂 = 0.01. 

Table 2. Variation of exact solution with HPSTM solution of 𝜔 𝜉, 𝜂  at 𝜂 = 0.01. 

𝝃 Exact Solution HPSTM Solution Absolute Error 

3.0 0.1947410861 0.1947410860 1.001455080E−10 

2.5 0.3197683274 0.3197683273 1.358172040E−10 

2.0 0.5214457334 0.5214457333 6.868329502E−11 

1.5 0.8349097330 0.8349097328 2.056274600E−10 

1.0 1.2764098350 1.2764098350 3.489344755E−10 

0.5 1.7570460420 1.7570460420 6.046615540E−10 

0.0 1.9996000670 1.9996000670 3.333333500E−10 

−0.5 1.7898230530 1.7898230520 4.983904460E−10 

−1.0 1.3158901820 1.3158901820 3.908333123E−10 

−1.5 0.8656915546 0.8656915546 3.031660000E−12 

−2.0 0.5419457750 0.5419457750 7.044098959E−11 

−2.5 0.3326401212 0.3326401213 5.249600400E−11 

−3.0 0.2026485202 0.2026485201 2.472076832E−10 

 

Figure 7 (a)–(b) shows profile of the closed form solution and HPSTM solution at 𝛼 = 1. The 

error between both solutions  𝜌𝐸𝑥𝑎𝑐𝑡 − 𝜌𝐻𝑃𝑆𝑇𝑀   for nonlinear two component homogeneous time 

fractional coupled third order KdV system when 𝛼 = 1 for 0 ≤ 𝜂 ≤ 0.0001 and −5 ≤ 𝜉 ≤ 5  for 

Eq. (4.16) by the application of initial condition represented by the Eq. (4.17) of 𝜌 𝜉, 𝜂  is given by 
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Figure 7(c). Figure 7 (a)–(c) shows that profile of the HPSTM solution is analogous to exact solution 

of 𝜌 𝜉, 𝜂 . The analytical solutions gained by HPSTM have high accuracy at 4
th

 term approximation. 

The numerical solutions represent very high level of agreement between exact solution and HPSTM 

solution for 𝜌 𝜉, 𝜂 . It can be analyzed by the Figure 8 that as spatial coordinate vary with time it 

gives to first increase and then decrease in the 𝜌 𝜉, 𝜂  for wave propagation in nonlinear plasma 

medium at 𝜂 = 0.01. Figure 9 shows the comparison of profile of 𝜌 𝜉, 𝜂  at different values of 𝛼 for 

−5 ≤ 𝜉 ≤ 5 and 𝜂 ≤ 0.1. 

Table 3 represents that exact solution is analogous to HPSTM solution and have large level 

accuracy between the numerical results. Table 3 indicates that absolute error is 10−10order between 

numerical results for 𝜌 𝜉, 𝜂 . 

 

 

 

Figure 7. Profile of 𝜌(𝜉, 𝜂) for Eq. (4.16): (a) Exact solution, (b) HPSTM solution at 

𝛼 = 1,  (c) Absolute Error  𝜌𝐸𝑥𝑎𝑐𝑡 − 𝜌𝐻𝑃𝑆𝑇𝑀   for 0 ≤ 𝜂 ≤ 0.0001, −5 ≤ 𝜉 ≤ 5 and 𝛼 = 1. 
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Figure 8. Profile of exact solution and HPSTM solution of 𝜌 𝜉, 𝜂  for 𝜂 = 0.01 and − 5 ≤ 𝜉 ≤ 5. 

 

Figure 9. Comparison of profile of 𝜌 𝜉, 𝜂  at different values of 𝛼 for −5 ≤ 𝜉 ≤ 5 and 𝜂 = 0.1. 

Table 3. Variation of exact solution with HPSTM solution at 𝜂 = 0.0001. 

𝝃 Exact Solution HPSTM Solution Absolute Error 

5 −2.840462381 −2.840462380 1.444186835E−09 

4 −2.576135914 −2.576135916 7.505047070E−10 

3 −1.915858303 −1.915858299 4.760423501E−09 

2 −0.480345856 −0.480345845 1.127798505E−08 

1 1.718468335 1.718468318 1.736182461E−08 

0 2.999999985 2.999999910 7.500000002E−08 

−1 1.718904452 1.718904435 1.715811279E−08 

−2 −0.479962035 −0.479962025 1.021909119E−08 

−3 −1.915662023 −1.915662020 4.383116417E−09 

−4 −2.576054184 −2.576054186 1.160759310E−10 

−5 −2.840430898 −2.840430897 5.811609752E−10 
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Figure 10 (a)–(b) shows profile of the closed form solution and HPSTM solution at 𝛼 = 1. The 

error between both solutions  𝜔𝐸𝑥𝑎𝑐𝑡 − 𝜔𝐻𝑃𝑆𝑇𝑀   for nonlinear two component homogeneous time 

fractional coupled third order KdV System when 𝑐 = 0.00001 and 𝛼 = 1 for 0 ≤ 𝜂 ≤ 0.001 and 

−5 ≤ 𝜉 ≤ 5 for Eq. (4.16) by the application of initial condition represented by the Eq. (4.17) of 

𝜔 𝜉, 𝜂  is given by Figure 10(c). Figure 10 (a)–(c) shows that profile of the HPSTM solution is 

analogous to exact solution of 𝜔 𝜉, 𝜂 . The analytical solutions gained by HPSTM have high 

accuracy at 4
th

 term approximation. The numerical solutions represent high level of agreement 

between exact solution and HPSTM solution for 𝜔 𝜉, 𝜂 . It can be analyzed  by the Figure 11 that as 

spatial coordinate vary with time it gives to first increase and then decrease in the 𝜔 𝜉, 𝜂  for wave 

propagation in nonlinear plasma medium at 𝜂 = 0.001. Figure 12 shows the comparison of profile of 

𝜔 𝜉, 𝜂  at different values of 𝛼 for −5 ≤ 𝜉 ≤ 5 and 𝜂 ≤ 0.1. 

Table 4 represents that exact solution is analogous to HPSTM solution and have large level 

accuracy between the numerical results. Table 4 indicates that absolute error is 10−9 order between 

numerical results for 𝜔 𝜉, 𝜂 . 

 

 

 

Figure 10. Profile of 𝜔(𝜉, 𝜂) for Eq. (4.16) when 𝑐 = 0.00001 (a) Exact solution, (b) 

HPSTM solution at 𝛼 = 1, (c) Absolute Error  𝜔𝐸𝑥𝑎𝑐𝑡 − 𝜔𝐻𝑃𝑆𝑇𝑀  for 0 ≤ 𝜂 ≤ 0.001,

−5 ≤ 𝜉 ≤ 5 and 𝛼 = 1. 
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Figure 11. Profile of exact solution and HPSTM solution of 𝜔 𝜉, 𝜂  for 𝜂 = 0.001 and − 5 ≤ 𝜉 ≤ 5. 

 

Figure 12. Comparison of profile of 𝜔 𝜉, 𝜂  at different values of 𝛼 for −5 ≤ 𝜉 ≤ 5 and 𝜂 = 0.1. 
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Table 4. Variation of exact solution with HPSTM solution of 𝜔 𝜉, 𝜂  at 𝜂 = 0.001. 

𝝃 Exact Solution HPSTM Solution Absolute Error 

5 −0.00004129930679 −0.00004129708040 2.226375861E−09 

4 −0.00003943183452 −0.00003942605404 5.780438670E−09 

3 −0.00003476661022 −0.00003475272434 1.388587893E−08 

2 −0.00002462197136 −0.00002459480514 2.716621800E−08 

1 −0.000009075677432 −0.000009044805675 3.087175865E−08 

0 −1.060659995000000 −1.060660172000000 1.769181166E−07 

−1 −0.000009044839294 −0.000009075643815 3.080452365E−08 

−2 −0.00002459483119 −0.00002462194532 2.711411868E−08 

−3 −0.00003475273115 −0.00003476660340 1.387225658E−08 

−4 −0.00003942605525 −0.00003943183334 5.778090290E−09 

−5 −0.00004129708058 −0.00004129930661 2.226059143E−09 

6. Conclusions 

The HPSTM is applied precisely and accurately for study time fractional Kersten-Krasil’shchik 

coupled KdV-mKdV nonlinear system and time fractional two component homogeneous time 

fractional coupled third order KdV System. The obtained results compared with the exact solution 

and absolute errors between the HPSTM solution and exact solution find graphically as well as 

numerically. We find classical solution of these systems by putting 𝛼 = 1. The results reveals that 

the suggested algorithm is very efficient and powerful method for solving various types nonlinear 

fractional coupled systems occurring in various areas of physics and technology. At the end, the 

proposed technique may be taken as a new tool for over other available analytical methods and used 

to study many fractional nonlinear coupled systems occurring in plasma. 
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