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1. Introduction

The mathematical modeling of physical phenomena mostly leads towards integral equations.
There are two major types of integral equations, Fredholm integral equation and Volterra integral
equation. Further these equations are subdivided into two categories of first and second kind. There
are many works on developing and analyzing numerical methods for solving one-dimensional integral
equations [1–3]. But little work has been done for two and higher dimensional integral
equations [4–8]. Here we are dealing with two-dimensional linear Fredholm integral equations
(2DFIEs) of first kind. These equations occurs in various physical and engineering models such as
chemical kinetics, fluid dynamics, image processing, electromagnetic, signal processing of radar and
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many more. Tari and Shahmorad [9] presented a computational method for solving two-dimensional
linear Fredholm integral equations of the second kind which based on Legendre or any orthogonal
polynomial. Xie and Lin [10] solve the 2DFIEs of second kind by using matrix-vector multiplication
algorithms and efficient preconditioners. Guoqiang and Jiong [11] introduced the extrapolation of
nystrom solution for 2D non-linear Fredholm integral equations. One of the well-known numerical
methods is finite difference method for the solution of integral and differential equations [12–14]. The
main disadvantage of this method is to generate computational mesh for any solution which takes
time even bigger than meshless methods. The literature on this subject is very dense and it is still
expanding as several authors discussed many analytical and numerical technique to solve differential
and integral equations [15–20]. The use of Berstein polynomial to solve differential and integral
equations has been recently increased because of the fast convergence and less computational cost.
This paper develops a numerical technique to solve 2DFIE of first kind by using Bernstein
approximation. It gives good accuracy even for lower degree Bernstein polynomial. As degree of the
Bernstein polynomial is increased, the convergence of approximate solution to the exact solution is
also increased. So, this technique is faster, simple and effectual. This paper is divided into five
sections. Second section deals with the basic concepts. In section 3, numerical technique based on 2D
Bernstein basis functions is given. In Section 4, some results about convergence analysis are
provided. In the last section some numerical problems are carried out. All the computations are
performed using MATLAB.

2. Basic concepts

The Bernstein approximation of a function u : I1 × I2 → R is defined as

Bm,n(u(x, y)) =

m∑
i=0

n∑
j=0

Bi,m
j,n (x, y)u

(
a +

α

m
i, c +

β

n
j
)
, (2.1)

where Bi,m
j,n (x, y) = ηi jµi j(x, y) is known as the 2D Bernstein polynomial basis with x ∈ I1 and y ∈ I2.

Here

ηi j =
Cm

i Cn
j

αmβn , α = b − a, β = d − c, µi j(x, y) = (x − a)i(b − x)m−i(c − y) j(d − y)n− j, (2.2)

i = 0, . . . ,m, j = 0, . . . , n,

for I1 = [a, b], I2 = [c, d] and m, n are arbitrary positive integers.

Theorem 2.1. (Uniformly Convergence) [5] Let u ∈ C2[I1 × I2] and X ∈ I1 × I2. Then the Bm,nu(X)
converges uniformly to function u for m, n→ ∞.

Now consider the asymptotic formula for 2D Bernstein polynomial approximation for the case
m = n.

Theorem 2.2. (Asymptotic Formula) [5] Let u ∈ C2[I1 × I2] and X ∈ I1 × I2 then

lim
m→∞

m((Bm,mu(X)) − u(X)) =

2∑
i=1

(xi − ai)(bi − xi)
2

∂2u(X)
∂x2

i
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≤
1
8

2∑
i=1

((ai − bi)2)
∂2u(X)
∂x2

i

. (2.3)

Proof. See in [5]. �

3. The proposed numerical technique

Consider the 2D Fredholm integral equation of first kind

g(x1, y1) = λ

∫ b

a

∫ d

c
K(x, x1, y, y1)u(x, y)dxdy, (3.1)

where g(x1, y1) andK(x, x1, y, y1) are analytic functions, u(x, y) is the unknown function and x, x1 ∈ I1;
y, y1 ∈ I2.

To find the numerical solution of (3.1), unknown function is approximated with the help of
Bernstein’s approximation given in (2.1).

Equation (3.1) can be written as

g(x1,k, y1,l) =

m∑
i=0

n∑
j=0

u
(
a +

α

m
i, c +

β

n
j
)
ηi j

[
λ

∫ b

a

∫ d

c
K(x, x1,k, y1,l, y)µi j(x, y)dxdy

]
(3.2)

where ηi j, µi j(x, y) are defined in (2.2). To find the values of u
(
a + α

m i, c +
β

n j
)
, equation (3.2) is

converted into a set of algebraic equations by substituting x1 as x1,k = a + α
mk + ε, k = 0, . . . ,m − 1 and

x1,m = b − ε, and y1 as y1,l = c +
β

n l + ε, l = 0, . . . , n − 1 and y1,n = d − ε, where ε is arbitrary small
positive number.

The following matrices A, B and U represent the system of algebraic equations produced by (3.2).

A = ηi j

[
λ

∫ b

a

∫ d

c
K(x, x1,k, y1,l, y)µi j(x, y)dxdy

]
= [Ai jkl](m+1)×(n+1) (3.3)

=



Ai j00 Ai j01 . . . Ai j0n

Ai j10 Ai j11 Ai j1n
...

...
. . .

Ai j(m−1)n

Ai jm0 Ai jm1 Ai jmn


where

Ai jνω=



η00
[
λ
∫ b
a

∫ d
c K(x,x1,ν,y1,ω,y)µ00(x,y)dxdy

]
. . . η0n

[
λ
∫ b
a

∫ d
c K(x,x1,ν,y1,ω,y)µ0n(x,y)dxdy

]
η10

[
λ
∫ b
a

∫ d
c K(x,x1,ν,y1,ω,y)µ10(x,y)dxdy

]
η1n

[
λ
∫ b
a

∫ d
c K(x,x1,ν,y1,ω,y)µ1n(x,y)dxdy

]
...

. . .

ηm0
[
λ
∫ b
a

∫ d
c K(x,x1,ν,y1,ω,y)µm0(x,y)dxdy

]
ηmn

[
λ
∫ b
a

∫ d
c K(x,x1,ν,y1,ω,y)µmn(x,y)dxdy

]


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for ν = 0, 1, . . . ,m, ω = 0, 1, . . . , n respectively. Meanwhile matrix U is given by

U =

[
u
(
a +

α

m
i, c +

β

n
j
)]t

= [Ui j]t
(n+1)×(1) =



Ui0

Ui1

...

Uin


where

Ui j =

[
u
(
a +

α

m
i, c +

β

n
j
)]t

=



u
(
a, c +

β

n j
)

u
(
a + α

m , c +
β

n j
)

...

u
(
b, c +

β

n j
)


for j = 0, 1, 2, . . . , n and

B =
[
g(x1,k, y1,l)

]t
= [Bkl]t

(n+1)×(1) =



Bk0

Bk1

...

Bkn


where

Bkl =
[
g(x1,k, y1,l)

]t
=



g(x1,1, y1,l)
g(x1,2, y1,l)

...

g(x1,m, y1,l)


.

Here u
(
a + α

m i, c +
β

n j
)

are our solutions at nodes
(
a + α

m i, c +
β

n j
)

for i = 0, . . . ,m; j = 0, . . . , n and
by imposing it in (2.1), we obtain Bm,n(u(x1,k, y1,l)), the approximate solution of (3.1).

Error bound

Theorem 3.1. Suppose that K(x, x1, y, y1) and g(x1, y1) are analytical functions of 2DFIE (3.1) on
I2
1 × I2

2 and I1 × I2 respectively. If A defined in (3.3) is invertible then

sup
x1,k∈I1,y1,l∈I2

|u(x1,k, y1,l) − Bm,n(um,n(x1,k, y1,l))|

≤ (1 + αβM‖A−1‖)
[
α2

8m
‖ux1 x1‖ +

β2

8n
‖uy1y1‖

]
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where x1,k = a + k α
m , y1,l = c + lβn , k = 0, . . . ,m ; l = 0, . . . , n, u(x1, y1) is the actual solution,

M = sup
x,x1∈I1,y,y1∈I2

|λK(x, x1, y, y1)|

and Bm,n(um,n(x1,k, y1,l) is proposed solution of (3.1).

Proof. Consider

sup
x1,k∈I1,y1,l∈I2

|u(x1,k, y1,l) − Bm,n(um,n(x1,k, y1,l))|

≤ sup
x1,k∈I1,y1,l∈I2

|u(x1,k, y1,l) − um,n(x1,k, y1,l)|+ (3.4)

sup
x1,k∈I1,y1,l∈I2

|um,n(x1,k, y1,l) − Bm,n(um,n(x1,k, y1,l))|

From Theorem 2.2 the following bound is obtained:

sup
x1,k∈I1,y1,l∈I2

|um,n(x1,k, y1,l) − Bm,n(um,n(x1,k, y1,l))| ≤
α2

8m
‖ux1 x1‖ +

β2

8n
‖uy1y1‖. (3.5)

To obtain a bound of

sup
x1,k∈I1,y1,l∈I2

|u(x1,k, y1,l) − um,n(x1,k, y1,l)|

we have AU = B , AÛ = B̂ where

B = g(x1, y1), B̂ = ĝ(x1, y1),U = Bm,n(u(x1, y1)) and Û = Bm,n(um,n(x1, y1))

and we obtain ĝ by replacing u(x1, y1) with um,n(x1, y1) defined in (3.1). Now by replacing x1 with
a + α k

m and y1 with c + β k
n lead us to:

g(x1,k, y1,l) = u(x1,k, y1,l)A, ĝ(x1,k, y1,l) = um,n(x1,k, y1,l)A (3.6)

and consequently,

sup
x1,k∈I1,y1,l∈I2

|(u(x1,k, y1,l) − um,n(x1,k, y1,l))| = |g(x1,k, y1,l) − ĝ(x1,k, y1,l)|‖A−1‖. (3.7)

Now consider

g(x1, y1) − ĝ(x1, y1) = λ

∫ b

a

∫ d

c
K(x, x1, y, y1)((u(x, y) − Bm,n(u(x, y)))dxdy.

This implies that

sup
x1∈I1,y1∈I2

|g(x1, y1) − ĝ(x1, y1)| ≤ sup
x1,x∈I1,y1,y∈I2

|λ

∫ b

a

∫ d

c
K(x, x1, y, y1)(u(x, y) − Bm,n(u(x, y)))dxdy|
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≤

(
α2

8m
‖ux1 x1‖ +

β2

8n
‖uy1y1‖

)
(αβM)

where

M = sup
x,x1εI1,y,y1εI2

|λK(x, x1, y, y1)|.

Now (3.7) becomes

sup
x1,k∈I1,y1,l∈I2

|u(x1,k, y1,l) − um,n(x1,k, y1,l)| ≤ ‖A−1‖

[(
α2

8m
‖ux1 x1‖ +

β2

8n
‖uy1y1‖

)
(αβM)

]
, (3.8)

using (3.5) and (3.8), Inequality (3.4) becomes

sup
x1,kεI1,y1,lεI2

|u(x1,k, y1,l) − Bm,n(um,n(x1,k, y1,l))|

≤

(
α2

8m
‖ux1 x1‖ +

β2

8n
‖uy1y1‖

)
+ (αβM)

(
α2

8m
‖ux1 x1‖ +

β2

8n
‖uy1y1‖

)
‖A−1‖

≤ [1 + αβM‖A−1‖]
[
α2

8m
‖ux1 x1‖ +

β2

8n
‖uy1y1‖

]
.

That completes the proof.
�

Lemma 3.2. Suppose that ‖A − I‖ = r2 < 1, I is the identity matrix of same order as A, ‖.‖ is the
maximum norm of rows. Then

‖(A−1‖ ≤
1

1 − r2
, Cond(A) ≤

r1αβ

1 − r2
,

where

max
k,l
|λK(x1,k, y1,l, x, y)| = r1 and max

k,l
|

m∑
i=0

n∑
j=0

ηi jµi j(x1,k, y1,l)| = 1.

Proof. Let Cond(A) = ‖A‖.‖A−1‖, to get a bound of ‖A‖, consider (3.3)

‖A‖ = max
k,l

∣∣∣∣∣∣∣
m∑

i=0

n∑
j=0

ηi j

[
λ

∫ b

a

∫ d

c
K(x1,k, y1,l, x, y)µi j(x, y)dxdy

]∣∣∣∣∣∣∣
= max

k,l

∣∣∣∣∣∣∣λ
∫ b

a

∫ d

c

m∑
i=0

n∑
j=0

K(x1,k, y1,l, x, y)ηi jµi j(x, y)dxdy

∣∣∣∣∣∣∣
≤ r1

∫ b

a

∫ d

c
dxdy = r1αβ, (3.9)
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where ηi j, α, β, µi j are defined in (2.2) and

max
k,l
|λK(x, x1,k, y, y1,l)| = r1.

Let D = A − I, which implies ‖D‖ = ‖A − I‖ = r2 ≤ 1. Now, to find the bound for ‖A−1‖, then by
applying geometric series sum on ‖A−1‖ = ‖(I + D)−1‖ we get

‖A−1‖ =
1

1 − r2
. (3.10)

Hence from (3.9) and (3.10)

Cond(A) ≤
r1αβ

1 − r2
.

This completes the proof. �

4. Numerical applications

In this section, precision of proposed technique is presently endorsed by considering some
examples. The numerical results of these examples are shown with the help of tables and figures. It is
also easy to see from Tables 1, 2 and 3 that the presented technique is very effectual and simple.
Absolute error of actual and numerical solution is measured as follows,

|em,n(x1,k, y1,l)| = |u(x1,k, y1,l) − Bm,n(u(x1,k, y1,l))|,

where a, b, c, d are limits of Fredholm integral equation defined in (3.1) for x1,k = a + α k
m + ε,

k = 0, . . . ,m − 1, x1,m = b − ε and y1,l = c + β l
n + ε, l = 0, . . . , n − 1, y1,n = d − ε.

Example 1. Consider 2DFIE of first kind

0.77364 sin(x1 + y1) =

∫ 1

0

∫ 1

0
sin(x1 + y1)u(x, y)dxdy, (4.1)

with exact solution u(x, y) = sin(x + y), where x, x1 ∈ [0, 1] and y, y1 ∈ [0, 1]. Table 1 shows absolute
error at x = y = 0.5 on various degree of Bernstein polynomial. The graphical representation of true
and numerical solution is illustrated in Figure 1.

Table 1. Comparison of true and numerical solutions of Example 1 at node (0.5,0.5). The
absolute error shows error decreases with the increase of the degree of Bernstein polynomial.

m=n True Numerical Absolute
Solution Solution Error

2 0.841500000 0.843547682 2.076697312E−3

3 0.841500000 0.841899649 4.286648348E−4

4 0.841500000 0.841467886 3.098606273E−6

5 0.841500000 0.841468738 2.246771569E−6

6 0.841500000 0.841470988 3.921261258E−9
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True Solution Numerical Solution

Figure 1. Comparison between true and numerical solutions of Example 1 at m=n=2
obtained by proposed technique.

Example 2. Consider the following 2DFIE

0.803116 =

∫ 1

−1

∫ 1

−1
x1 + y1 + 2yu(x, y)dxdy, (4.2)

with exact solution u(x, y) = x2 sin y, where x, x1 ∈ [−1, 1] and y, y1 ∈ [−1, 1]. The approximate
solutions of the integral equation is obtained by using Bernstein basis function technique. Table 2
shows true and numerical solutions at (0.0, 0.5) and Figure 2 is graphical representation of numerical
and true solutions.

Table 2. Comparison of true and numerical solutions of Example 2 at node (0,0.5). The
absolute error shows error decreases with the increase of the degree of Bernstein polynomial.

m=n True Numerical Absolute
Solution Solution Error

2 0.000000000 0.017104157 1.710415766E−2

3 0.000000000 0.000280012 2.800121081E−4

4 0.000000000 0.000156312 1.563121317E−4

5 0.000000000 0.000001719 1.719066267E−6

6 0.000000000 0.000001043 1.043939595E−6
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True Solution Numerical Solution

Figure 2. Comparison between true and numerical solutions of Example 2 at m=n=2
obtained by proposed technique.

Example 3. Consider the 2D FIE

2 − (x1 − y1)(e2 + 1) − 2e(x1 + y1 + 1) =

∫ 1

0

∫ 1

0
(x + y + x1 + y1)u(x, y)dxdy, (4.3)

with true solution u(x, y) = exey, where x, x1 ∈ [0, 1] and y, y1 ∈ [0, 1]. Table 3 shows comparison
between the exact and the numerical solutions by the proposed technique for m = n = 2, 3, 4, 5, 6 at
x = y = 0.6. Figure 3 is graphical representation of true and numerical solutions.

Table 3. Comparison of true and numerical solutions of Example 3 at node (0.6,0.6). The
absolute error shows error decreases with the increase of the degree of Bernstein polynomial.

m=n True Numerical Absolute
Solution Solution Error

2 3.320100000 3.332679029 1.256210720E−2

3 3.320100000 3.317111309 3.005613457E−3

4 3.320100000 3.320028028 8.889379901E−5

5 3.320100000 3.320113369 3.553719226E−6

6 3.320100000 3.320110937 1.515554617E−8
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True Solution Numerical Solution

Figure 3. Comparison between true and numerical solutions of Example 3 at m=n=2
obtained by proposed technique.

5. Conclusions

In this paper, two-dimensional Bernstein polynomial approximation is used to solve 2DFIEs of
first kind. This technique gives a good accuracy at relatively small values of m and n. It is also
observed that when degree of Bernstein polynomial is increased, it raised the accuracy of technique.
The required accuracy can be obtained by using lower degree Bernstein polynomials, so it is
concluded that technique gave excellent approximate solution with low computational cost. In future,
the technique can be extended to solve singular and non-linear 2D integral equations.
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