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The algorithm is designed for practicing engineers or applied mathematicians who need a practical tool
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1. Introduction

Singularly perturbed boundary value problems (SPBVPs), also known as stiff, are not easily treated
analytically or numerically [1–20] and so that having a simple program to obtain analytical and
numerical solutions of these problems would be interesting and helpful. The most common analytical
method to study SPBVPs is the method of matched asymptotic expansions which involves finding
outer and inner solutions of the problem and their matching [1–7]. Recently, Wang [9] present a
Maple program and its corresponding algorithm to obtain a rational approximate solution for a class
of nonlinear SPBVPs. Such an algorithm is based on the boundary value method presented by
Wang [8] and using Taylor series and Pade expansion to approximate the boundary condition at
infinity. In fact, the accuracy of the obtained boundary layer solution in [8,9] depends upon how far
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the Pade expansion approximates the solution, which consequently depends upon the radius of
convergence and how many terms considered in the expansion [21]. Therefore, to get accurate results
over the boundary layer region, more higher-order terms may be needed [10]. Moreover, the technique
of using Taylor series and Pade expansion for solving boundary layer problems with a boundary
condition at infinity often results in nonlinear algebraic equations and hence multiple solutions appear
which leads to unsatisfied results. To overcome these drawbacks, we have established a new and
simple Maple program spivp, based on a new initial value method [11], to obtain approximate
analytical and numerical solutions of SPBVPs. The algorithm is designed for practicing engineers or
applied mathematicians who need a practical tool for solving these problems. Some examples are
solved to illustrate the implementation of the program and the accuracy of the algorithm. Analytical
and numerical results are compared with results in literature. The results confirm that the present
method is accurate and offers a simple and easy practical tool for obtaining approximate analytical and
numerical solutions of SPBVPs.

2. Boundary value method [8]

Let us first recall the basic principles of the boundary value method presented in [8].
Consider the nonlinear SPBVP of the form

ε
d2y
dx2 + p(x, y)

dy
dx
+ q(x, y) = 0, x ∈ [0, 1], (2.1)

with conditions
y(0) = α, y( 1) = β, (2.2)

where 0 < ε � 1, α and β are given constants, p(x, y) and q(x, y) are assumed to be sufficiently
continuously differentiable functions on [0, 1], and p(x, y) ≥ M > 0 for every x ∈ [0, 1], where M is a
positive constant. Under these assumptions, the SPBVP (2.1-2.2) has a unique solution y(x) which in
general displays a boundary layer at x = 0 for small values of ε.

Theorem 1. The solution y(x) of the nonlinear SPBVP (2.1-2.2) can be expressed as:

y(x) = u(x) + v(t) + O(ε), t =
x
ε
,

where u(x) and v(t) are the solutions of the following IVP and BVP given respectively by:{
p(x, u)du

dx + q(x, u) = 0,
u(1) = β,

(2.3)

and  d2v
dt2 + p(0, u(0) + v(t)) dv

dt = 0,
v(0) = α − u(0), lim

t→+∞
v(t) = 0. (2.4)

Proof. See Ref. [8].
In fact, v(t) cannot be always solved from Eq. (2.4) and so that one can assume that v′(0) = δ and use

Taylor series and Pade expansion to determine the value of δ using the condition at infinity and obtain
an approximate rational solution for Eq. (2.4) [8,9].
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3. Initial value method

In this section, an initial value method is established from the boundary value method in Theorem1
for solving SPBVP (2.1-2.2).

Theorem 2. The solution y(x) of the nonlinear SPBVP (2.1-2.2) can be expressed as:

y(x) = u(x) + v(t) + O(ε), t =
x
ε
, (3.1)

where u(x) and v(t) are the solutions of the following IVPs:{
p(x, u)du

dx + q(x, u) = 0,
u(1) = β,

(3.2)

and { dv
dt + f (0, u(0) + v(t)) = f (0, u(0))
v(0) = α − u(0).

(3.3)

where
f (0, u(0) + v(t)) =

∫
p(0, u(0) + v(t)) dv

Proof. Integrating Eq. (2.4) results in∫ ∞

t

d2v
ds2 ds +

∫ ∞

t

(
p(0, u(0) + v(s))

dv
ds

)
ds = 0, (3.4)

[
dv
ds
+ f (0, u(0) + v(s))

]s→+∞

s=t
= 0, (3.5)

where f ( 0, u(0) + v(s) ) =
∫

p( 0, u(0) + v(s) ) dv.
Thus we have

dv
dt
+ f (0, u(0) + v(t)) = lim

s→+∞

dv
ds
+ f (0, u(0) + lim

s→+∞
v(s)) , (3.6)

which results in a first order initial value problem given by

dv
dt
+ f ( 0, u(0) + v(t) ) = f ( 0, u(0)), (3.7)

with the initial condition
v(0) = α − u(0).

Thus, we have replaced the second order BVP (2.4) by the approximate first order IVP (3.7). Obviously
Theorem 2 agrees with the theoretical results in [11].

Remark. The value of δ used in the boundary value method [8,9] is easily obtained from Eq. (3.3)
as δ = f (0, u(0)) − f (0, α)
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3.1. Theoretical results for linear problems

Using the initial value method presented in Theorem 2 for linear problems results in some useful
theoretical results.
Let’s consider the linear SPBVP

ε
d2y
dx2 + p(x)

dy
dx
+ q(x)y = 0, x ∈ [0, 1], (3.8)

with conditions
y(0) = α, y(1) = β, (3.9)

where 0 < ε � 1, α and β are given constants, p(x) and q(x) are assumed to be sufficiently
continuously differentiable functions on [0, 1], and p(x) ≥ M > 0 for every x ∈ [0, 1], where M is a
positive constant. The assumption merely implies that the boundary layer will be in the neighborhood
of x = 0.

Theorem 3. The solution of the linear SPBVP (3.8-3.9) can be approximated by:

y(x) = βe
∫ x

1
−q(x)
p(x) ds +

(
(α − u(0)) e

−p(0)x
ε

)
+ O(ε) (3.10)

Proof. According to the initial value method presented in Theorem 2, we have

y(x) = u(x) + v(t) + O(ε), t =
x
ε
, (3.11)

where u(x) and v(t) are the solutions of the following IVPs:{
p(x)du

dx + q(x)u = 0,
u(1) = β,

(3.12)

and { dv
dt + p(0)v(t) = 0
v(0) = α − u(0).

(3.13)

The reduced problem (3.12) and the boundary layer corrected problem (3.13) are easily solvable
since they are separable and thus (3.11) results in the asymptotic analytical solution given by

y(x) = βe
∫ x

1
−q(x)
p(x) ds +

(
(α − u(0))e

−p(0)x
ε

)
+ O(ε),

which is the well known asymptotic solution given in [2,11].
Obviously, the value of δ used in the boundary value method in Theorem 1 can be obtained directly

from (3.13) as δ = v′(0) = −p(0) (α − u(0) ) which agrees with the theoretical results in [8,9].

4. Approximate analytical solution in Maple

Mathematical mechanization is one of the important methods of mathematical studies
[9,12–13,22–26]. In Maple, obtaining analytical solution of the nonlinear SPBVP (2.1-2.2) through
solving the IVPs (3.2) and (3.3) can be well established a very simple symbolic program that can
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easily calculate the approximate analytical and numerical solutions. Now if we want to solve SPBVP
(2.1-2.2) using the initial value method in Theorem 2, everything we have to do is just to input
information about the SPBVP, and the program will give out the solution. The program spivp is as
follows:

spivp := proc (p, q, alpha, beta)
local p0, q0, pu, qu, f, us, k, vs, sol, vx, iniu, iniv;
p0 := unapply(p, x, y);
q0 := unapply(q, x, y);
pu := p0(x, u(x));
qu := q0(x, u(x));
f := unapply(int(p, y), x, y);
iniu := u(1) = beta;
us := rhs(dsolve(pu*(diff(u(x), x))+qu = 0, iniu, u(x))); k := eval(us, x = 0);
iniv := v(0) = alpha-k;
vs := rhs(dsolve(diff(v(t), t)+f(0, v(t)+k) = f(0, k), iniv, v(t)));
vx := subs(t = x/ε, vs);
sol := simplify(us+vx, size)
end proc

For convenience, in the program spivp, we always let x represents the independent variable, and set the
parameters as following:
p: the coefficient, p( x, y) , in the equation which to be solved.
q: the coefficient, q( x, y) , in the equation which to be solved.
α, β : the boundary values.

For example, if we consider the SPBVP:

ε
d2y
dx2 + ey dy

dx
−
π

2
sin

(
πx
2

)
e2y = 0, y(0) = 0, y(1) = 0.

One just input the following command

spivp(exp(y),−pi/2.sin(pi.x/2).exp(2.y), 0, 0);

5. Examples

In this section, four examples are solved to illustrate the implementation and the accuracy of the
method.

Example 1. Consider the nonlinear SPBVP from Bender and Orszag [6]

ε
d2y
dx2 + 2

dy
dx
+ ey = 0, y(0) = y(1) = 0. (5.1)
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To solve this problem, we input the following command:

spivp(2, exp(y), 0, 0)

The output is:

y(x) − ln
(

1
2 x + 1

2

)
− ln(2)e− 2x

ε

which is the uniform valid approximate solution given by Bender and Orszag [6]. The solution of
Example 1 at different values of ε is presented in Figure 1.

 
Figure 1. Solution of Example 1 at different values of ε.

Example 2. Consider the nonlinear SPBVP from O’Malley [2]

ε
d2y
dx2 + ey dy

dx
−
π

2
sin

(
πx
2

)
e2y = 0 , y(0) = y(1) = 0. (5.2)

Input the following command in Maple

spivp(exp(y),−Pi/2.sin(Pi.x/2).exp(2.y), 0, 0);

The output is

y(x) = − ln
(
cos(

1
2
πx) + 1

)
+ ln

(
−2

e−
1
2

x
ε − 2

)
,

which is the uniform valid approximate solution given by O’Malley [2]. The solution of Example 2 at
different values of ε is presented in Figure 2.

AIMS Mathematics Volume 5, Issue 3, 2272–2284.



2278

 
Figure 2. Solution of Example 2 at different values of ε.

As shown from the previous two examples, the present algorithm offers a simple and easy tool for
obtaining asymptotic analytical and approximate numerical solutions for SPBVPs.

Example 3. Consider the nonlinear SPBVP from Kevorkian and Cole [7]

ε
d2y
dx2 + y

dy
dx
− y = 0, y(0) = −1, y(1) = 3.9995 (5.3)

For comparison purpose, we write the uniform approximation provided by Kevorkian and Cole [7] as

y(x) = x + c1 tanh[c1(x/ε + c2)/2], (5.4)

where c1 = 2.9995 and c2 = 1/c1 ln[(c1 − 1)/(c1 + 1)].
For this problem, Wang [9] has obtained a solution given by:

y(x) = x + 2.9995 +
L(t)
Q(t)

, (5.5)

where t = x/ε, and

L(t) = −3.9995 + (1.99975 + δ) t − 0.39995(1 + 2δ) t2 + [0.0333292(1 + 2δ)
−0.25δ + 0.1δ(1 + 2δ) + 0.166667(δ − δ2)] t3 ,

Q(t) = 1 − 0.5δ + 0.1(1 + 2δ)t2 − 0.0083333(1 + 2δ)t3,

 , (5.6)

where δ = −1.999791999.
Here we apply the present method by inputting the following command in Maple
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spivp(y,−y,−1, 3.9995);
The output is

y(x) = x +
5999
2000

−
47986001

1000
(
7999 + 3999e

5999
2000

x
ε

) . (5.7)

 
Figure 3. Comparison of the numerical solutions of Example 3 at ε = 0.001.

Table 1. Comparison of the numerical solutions of Example 3 at ε = 10−3.
x Present Results in[16] Results in[17] Results in[7]
0.00 -1.000000 -1.000000 -1.000000 -1.0000000
0.5ε 1.1484593 2.1363630 1.1484592 1.1484592
1.0ε 2.4569397 2.8140590 2.4569396 2.4569396
0.1 3.0994999 3.0995020 3.0962686 3.0994999
0.2 3.1995000 3.1995020 3.1963699 3.1995000
0.3 3.2995000 3.2995020 3.2964650 3.2995000
0.4 3.3995000 3.3995010 3.3965544 3.3995000
0.5 3.4995000 3.4995010 3.4466386 3.4995000
0.6 3.5995000 3.5995000 3.5967184 3.5995000
0.7 3.6995000 3.6995000 3.6967939 3.6995000
0.8 3.7995000 3.7995000 3.7968656 3.7995000
0.9 3.8995000 3.8995000 3.8969335 3.8995000
1.0 3.9995000 3.9995000 3.9969980 3.9995000
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Table 2. Solution of Example 3 at different values of ε.
x ε = 10−2 ε = 10−4 ε = 10−5 ε = 10−6

0.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000
0.5ε 1.1529593 1.1480093 1.1479643 1.1479598
1.0ε 2.4659397 2.4560397 2.4559497 2.4559407
0.1 3.0995000 3.0995000 3.0995000 3.0995000
0.2 3.1995000 3.1995000 3.1995000 3.1995000
0.3 3.2995000 3.2995000 3.2995000 3.2995000
0.4 3.3995000 3.3995000 3.3995000 3.3995000
0.5 3.4995000 3.4995000 3.4995000 3.4995000
0.6 3.5995000 3.5995000 3.5995000 3.5995000
0.7 3.6995000 3.6995000 3.6995000 3.6995000
0.8 3.7995000 3.7995000 3.7995000 3.7995000
0.9 3.8995000 3.8995000 3.8995000 3.8995000
1.0 3.9995000 3.9995000 3.9995000 3.9995000

In Figure 3, the present solution (5.7) and the obtained solutions by Wang [9], Eqs. (5.5-5.6) are
compared with the uniform approximate solution in [7] at ε = 0.001. As shown from Figure 3 the
solution (5.5-5.6), solid red line, deviates much from our solution (5.7), dashed blue line, and the
uniform approximate solution, dotted blue line, in [7]. In fact, applying the condition lim

t→+∞
v(t) = 0 to

(5.6) results in two different values for δ (δ = −1.999791999, δ = −0.5) and each one of them leads to
unsatisfied results. The numerical results of Example 3 are compared with the results in literature in
Table 1. Moreover, the results for different values of ε are presented in Table 2.

Example 4. Finally, we consider the following linear SPBVP from Bender and Orszag [6]

ε
d2y
dx2 +

dy
dx
− y = 0, y(0) = y(1) = 1. (5.8)

For this problem, Wang [9] has obtained the following rational solution:

y(x) =
ex

e
+

L(x)
Q(x)

, (5.9)

where

L(x) = ε
(
−19115.326ε4 + 200691.9566x4 − 19115.32x3ε + 8427734.7x2ε2 − 1070458.24xε3

)
,

and
Q(x) = −30240ε5 + 196560xε4 + 102480x2ε3 + 22260x3ε2 + 2490x4ε + 125x5.

Using the following command :

spivp(1,−y, 1, 1),

AIMS Mathematics Volume 5, Issue 3, 2272–2284.



2281

the obtained solution is

y(x) = ex−1 + (e − 1)e−x/ε−1. (5.10)

The numerical results of Example 4 are shown in Tables 3, 4 and Figure 4.
Obviously, the solution in (5.9) needs more higher-order terms in Pade’s expansion to match the
boundary layer behavior [10].

 
Figure 4. Solution of Example 4 at different values of ε.

Table 3. Comparison of the numerical solutions of Example 4 at ε = 10−3.
x Present Results in[6] Results in[9] Results in[17] Exact solution
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.01 0.3716054 0.3716050 39.621608 0.3712379 0.3719724
0.02 0.3753111 0.3753109 34.943933 0.3749439 0.3756784
0.03 0.3790831 0.3790832 29.856212 0.3787160 0.3794502
0.04 0.3828929 0.3828929 25.706355 0.3825260 0.3832599
0.05 0.3867410 0.3867409 22.458425 0.3863742 0.3871079
0.10 0.4065697 0.4065696 13.632736 0.4062043 0.4069350
0.30 0.4965853 0.4965853 5.5064473 0.4962382 0.4969324
0.50 0.6065307 0.6065305 3.6923714 0.6062278 0.6068334
0.70 0.7408182 0.7408182 2.9700713 0.7405963 0.7410401
0.90 0.9048374 0.9048373 2.6496651 0.9047471 0.9049277
1.00 1.0000000 1.0000000 2.5738182 1.0000000 1.0000000
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Table 4. Solution of Example 4 at different values of ε.
x ε = 10−2 ε = 10−4 ε = 10−5 ε = 10−6

0.00 1.00000000 1.000000000 1.00000000 1.00000000
0.01 0.60412084 0.37157669 0.37157669 0.37157669
0.02 0.46085931 0.37531109 0.37531109 0.37531109
0.03 0.41055446 0.37908303 0.37908303 0.37908303
0.04 0.39447057 0.38289288 0.38289288 0.38289288
0.05 0.39100021 0.38674102 0.38674102 0.38674102
0.10 0.40659835 0.40656965 0.40656965 0.40656965
0.30 0.49658530 0.49658530 0.49658530 0.49658530
0.50 0.60653065 0.60653065 0.60653065 0.60653065
0.70 0.74081822 0.74081822 0.74081822 0.74081822
0.90 0.90483741 0.90483741 0.90483741 0.90483741
1.00 1.00000000 1.00000000 1.00000000 1.00000000

6. Conclusion

In this paper, we have presented approximate analytical and numerical solutions of SPBVPs using a
new and simple Maple program spivp . The method is based on an initial value method that replaces the
original SPBVP by two asymptotically approximate IVPs. These IVPs are solved analytically and their
solutions are combined to approximate the analytical solution of the original SPBVP. Themethod is very
easy to implement on any computer with a minimum problem preparation. We have implemented it in
Maple and applied it to four examples and compared the obtained results with the results in literature.
The results indicate that the method is accurate and offers a simple and easy practical tool for the
practicing engineers or applied mathematicians who need a practical tool for obtaining approximate
analytical and numerical solution of SPBVPs.
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