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1. Introduction

In 1922, Banach [1] proved his noted contraction mapping theorem which is now popularly referred
to as Banach contraction principle (in short BCP) which asserts that, every contraction mapping on a
complete metric space admits a unique fixed point. Due to the enormous utility and applications of
this classical result, BCP has further been extended and generalized in various directions [2–16]. In
1986, Turinici [17] was the first mathematician who initiated the idea of an order-theoretic fixed point
result. In 2004, Ran and Reurings [18] established a relatively more natural order-theoretic version
of BCP besides presenting an application of their result to matrix equations. Thereafter, Samet and
Turinici [19] obtained fixed point results under symmetric closure of an amorphous binary relation for
nonlinear contractions. Recently, Alam and Imdad [20] obtained a relation-theoretic analogue of BCP
employing an arbitrary binary relation which unify several well-known relevant order-theoretic results.
In 2015, Khojasteh et al. [21] introduced the notion ofZ-contraction using a family of control functions
known as simulation functions and unified several types of linear as well as nonlinear contractions of
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the existing literature. Recently, Sawangsup and Sintunavarat [22] have combined these two ideas to
define the notion ofZR-contraction and utilized the same to prove some fixed point results in complete
metric spaces equipped with a transitive binary relation.

In 2009, Suzuki [23] introduced yet another new contraction often referred as Suzuki contraction
which enunciates that a self-mapping S on a metric space (M, d) is called a Suzuki contraction if for
all r, s ∈ M with r , s and 1

2d(r, S r) < d(r, s) implies d(S r, S s) < d(r, s) and utilized this contraction
to prove fixed point result which remains yet another substantial generalization of BCP. In recent past,
Kumam et al. [24] introduced the idea of Suzuki type Z-contraction and utilized the same to prove a
fixed point theorem.

In this article, we define the notion of Suzuki type ZR-contraction, where R is an amorphous
binary relation and also provide some examples to exhibit the genuineness of our newly introduced
contraction over Z-contraction, Suzuki type Z-contraction and ZR-contraction. We prove an
existence and corresponding uniqueness fixed point results for Suzuki typeZR-contraction employing
an amorphous binary relation on metric spaces without completeness which in turn generalizes many
well-known results of the existing literature. An example is adopted to demonstrate the utility of our
newly proved results over earlier ones especially due to Sawangsup and Sintunavarat [22] and
Kumam et al. [24]. Finally, we utilize our main results to discuss the existence and uniqueness of
solutions of a family of nonlinear matrix equations.

2. Preliminaries

To make our paper self-contained, we recall the following terminological and notational
conventions. In what follows N,Q and R respectively denote the sets of natural numbers, rational
numbers and real numbers wherein N0 = N ∪ {0}.
In 2015, Khojasteh et al. [21] initiated the idea of simulation functions as follows:

Definition 2.1. A mapping ζ : [0,∞) × [0,∞)→ R is said to be a simulation function if the following
conditions are satisfied:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(x, y) < y − x for all x, y > 0;

(ζ3) if {xn}, {yn} are sequences in (0,∞) such that lim
n→∞

xn = lim
n→∞

yn > 0, then lim sup
n→∞

ζ(xn, yn) < 0.

From now on, the family of all simulation functions will be denoted by Z. Some well-known
examples of simulation functions available in the existing literature are as follows:

Example 2.1. [21, 25–27] We define the mappings ζi : [0,∞) × [0,∞) → R for i = 1, 2, 3, 4, 5, as
follows:

• ζ1(x, y) = Ψ(y) − Φ(x) for all x, y ∈ [0,∞), where Φ,Ψ : [0,∞) → [0,∞) are two continuous
functions such that Ψ(x) = Φ(x) = 0 if and only if x = 0 and Ψ(x) < x ≤ Φ(x) for all x > 0.

• ζ2(x, y) = y − η(y) − x for all x, y ∈ [0,∞), where η : [0,∞) → [0,∞) is a lower semi continuous
function and η(x) = 0 if and only if x = 0.

• ζ3(x, y) = αy − x for all x, y ∈ [0,∞), where α ∈ [0, 1).

AIMS Mathematics Volume 5, Issue 3, 2071–2087.



2073

• ζ4(x, y) = y −
∫ x

0
ϕ(x)dx for all x, y ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is a function such that∫ ε

0
ϕ(x)dx exists and

∫ ε

0
ϕ(x)dx > ε for all ε > 0.

Now, we add the following example to this effect.

• ζ5(x, y) =
y

αy+1 − x for all x, y ∈ [0,∞) and α > 0.

For more examples and related results on simulation functions, one can consult e.g. [21,25–33] and
references cited therein.
Now, we recollect the definition ofZ-contraction as follows:

Definition 2.2. [21] Let (M, d) be a metric space and S : M → M. Then S is said to be aZ-contraction
w.r.t. some ζ ∈ Z if

ζ(d(S r, S s), d(r, s)) ≥ 0 for all r, s ∈ M. (2.1)

If we take ζ(x, y) = αy− x for all x, y ∈ [0,∞) with α ∈ [0, 1), thenZ-contraction reduces to Banach
contraction.

Remark 2.1. Due to the condition (ζ2), we have ζ(x, x) < 0 for all x > 0. Therefore, if a mapping S is
aZ-contraction then it cannot be an isometry.

Using Z-contraction, Khojasteh et al. [21] obtained the following theorem and deduced several
known as well as unknown new results by varying simulation functions.

Theorem 2.1. [21] Let (M, d) be a complete metric space and S : M → M be a Z-contraction w.r.t.
some ζ. Then S has a unique fixed point.

Recently, Kumam et al. [24] extended the result of Khojasteh et al. [21] by introducing the concept
of Suzuki typeZ-contraction.

Definition 2.3. [24] Let (M, d) be a metric space and S : M → M. Given ζ ∈ Z, we say that S is
Suzuki typeZ-contraction w.r.t. some ζ if the following holds:

1
2

d(r, S r) < d(r, s) implies ζ(d(S r, S s), d(r, s)) ≥ 0 (2.2)

for all r, s ∈ M with r , s.

Also, authors in [24] obtained the following fixed point result with an additional assumption on the
involved mapping as follows:

Theorem 2.2. [24] Let (M, d) be a complete metric space and S : M → M a Suzuki type
Z-contraction w.r.t. some ζ. Then S has a unique fixed point and for every r0 ∈ M, the Picard
sequence S n(r0) for all n ∈ N, converges to the fixed point of S , provided S enjoys the property (K)
(see Definition 2.5, [24]).

In order to prove our results, we require some basic relation theoretic notions, definitions and
relevant results described in the following.
Any subset R of M × M is said to be a binary relation on a non-empty set M. Trivially, ∅ and M × M
are known as the empty relation and the universal relation on M, respectively. From now on, a
non-empty binary relation will be denoted by R. If (r, s) ∈ R and (s, t) ∈ R imply (r, t) ∈ R, for any

AIMS Mathematics Volume 5, Issue 3, 2071–2087.



2074

r, s, t ∈ M, then R is said to be transitive relation on M. Furthermore, if S is a self mapping on M, then
R is said to be S -transitive if it is transitive on S (M). The inverse of R is denoted by R−1 and is
defined as R−1 := {(r, s) ∈ M × M : (s, r) ∈ R} and Rs := R ∪ R−1. Two elements r and s of M are said
to be R-comparable if (r, s) ∈ R or (s, r) ∈ R and is denoted by [r, s] ∈ R.

Proposition 2.1. [8] For a binary relation R defined on a non-empty set M,

(r, s) ∈ Rs if and only if [r, s] ∈ R.

Definition 2.4. [8] Let R be a binary relation on a non-empty set M. A sequence {rn} ⊂ M is called
R-preserving if

(rn, rn+1) ∈ R for all n ∈ N0.

Definition 2.5. [8] Let R be a binary relation on a non-empty set M and S : M → M. Then R is said
to be S -closed if for any r, s ∈ M,

(r, s) ∈ R implies (S r, S s) ∈ R.

Definition 2.6. [34] Let (M, d) be a metric space and R be binary relation on M. We say M is R-
complete if every R-preserving Cauchy sequence converges to some point of M.

Remark 2.2. Every complete metric space is R-complete for arbitrary binary relation R. On the other
hand, under the universal relation R-completeness coincides with the usual completeness.

Definition 2.7. [8] Let (M, d) be a metric space and R a binary relation on M. We say R is d-self-
closed if whenever R-preserving sequence {rn} converges to r, then there exists a subsequence {rn(l)} of
{rn} with [rn(l), r] ∈ R for all l ∈ N0.

Definition 2.8. [20] Let (M, d) be a metric space, S : M → M and R be a binary relation on M. Then

S is said to be R-continuous at r ∈ M if for any R-preserving sequence {rn} in M with rn
d
−→ r, implies

S rn
d
−→ S r. If S is R-continuous at each point of M, then we say that S is R-continuous.

Remark 2.3. Every continuous mapping can be treated as R-continuous mapping (irrespective of a
binary relation R). On the other hand, R-continuity coincides with the usual continuity under the
universal relation.

Definition 2.9. [35] For r, s ∈ M, a path (of length n, n ∈ N) in R from r to s is a sequence (finite)
{r0, r1, r2, ..., rn} ⊆ M such that r0 = r, rn = s with (ri, ri+1) ∈ R for each i ∈ {0, 1, ..., n − 1}.

Notice that a path of length n involves n+1 elements of M, although they are not necessarily distinct.

Definition 2.10. [20] A subset N ⊆ M is said to be R-connected if for each r, s ∈ N, there exists a
path from r to s in R.

We use the following notations to this effect.

(•) M(S ;R) := {r ∈ M : (r, S r) ∈ R}, where S : M → M be any given mapping;

(•) Υ(r, s,R) := the family of all paths from r to s in R, where r, s ∈ M.
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In 2018, Sawangsup and Sintunavarat [22] introduced the notation ofZR-contraction as follows:

Definition 2.11. [22] Let (M, d) be a metric space equipped with a binary relation R and ζ ∈ Z. A
mapping S : M → M is said to be aZR-contraction w.r.t. ζ if the following holds:

ζ(d(S r, S s), d(r, s)) ≥ 0 for all r, s ∈ M with (r, s) ∈ R. (2.3)

In [22] authors obtained the following relation theoretic fixed point result in the setting of a complete
metric space equipped with a transitive binary relation.

Theorem 2.3. Let (M, d) be a metric space, R a binary relation on M and S : M → M. If the following
hold:

(i) M(S ;R) , ∅;

(ii) R is S -closed;

(iii) R is transitive;

(iv) S is a (Z,R)-contraction w.r.t. some ζ ∈ Z;

(v) M is complete;

(vi) either S is continuous or R is d-self-closed,

then S has a fixed point. Furthermore, if Υ(r, s,R) is non-empty for all r, s ∈ M, then the fixed point of
S is unique.

3. Main results

In this section, motivated by the notion of Suzuki typeZ-contraction, we define the notion of Suzuki
typeZR-contraction as follows:

Definition 3.1. Let R be a binary relation on metric space (M, d) and S : M → M. Given ζ ∈ Z, we
say that S is Suzuki typeZR-contraction if the following holds:

for all r, s ∈ M with (r, s) ∈ R∗ and
1
2

d(r, S r) < d(r, s) implies ζ(d(S r, S s), d(r, s)) ≥ 0 (3.1)

where (r, s) ∈ R∗ := {(r, s) ∈ R : S r , S s}.

Due to the symmetricity of the metric d, we have the following proposition.

Proposition 3.1. Let (M, d) be a metric space equipped with a binary relation R and S : M → M. For
a given ζ ∈ Z, the below mentioned conditions are equivalent:

(i) for all r, s ∈ M with (r, s) ∈ R∗ and 1
2d(r, S r) < d(r, s) implies ζ(d(S r, S s), d(r, s)) ≥ 0;

(ii) for all r, s ∈ M with [r, s] ∈ R∗ and 1
2d(r, S r) < d(r, s) implies ζ(d(S r, S s), d(r, s)) ≥ 0.

The following implications involving Definitions 2.2, 2.3, 2.11 and 3.1 naturally holds.
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Z-contraction −→ Suzuki typeZ-contraction
↓ ↓

ZR-contraction −→ Suzuki typeZR-contraction,

but the reverse implications are not true in general (see Examples 3.4. and 3.5. in [22] for
ZR-contraction and Example 3.1. in [24] for Suzuki type Z-contraction which are not
Z-contraction). Here, we provide an example of Suzuki type ZR-contraction which is neither Suzuki
typeZ-contraction norZR-contraction.

Example 3.1. Let
(
M = (−2, 8), d

)
be a metric space endowed with a binary relation

R := {(0, 2), (3, 4), (5, 2), (5, 3), (6, 1), (6, 6), (6, 7)}, where d is usual metric on M. Define a mapping
S : M → M by

S r =


7, i f r = 0;
5, i f r = 2;
6, elsewhere.

Observe that R∗ = {(0, 2), (5, 2)} but the condition 1
2d(r, S r) < d(r, s) is mate out merely by one element

(r, s) = (5, 2) ∈ R∗. Now, if we take ζ∗(x, y) =
y
3 − x for all x, y ∈ [0,∞), then S remains a Suzuki type

ZR-contraction w.r.t. ζ∗ but notZR-contraction, as (0, 2) ∈ R and

d(S 0, S 2) = 2 = d(0, 2),

then in view of (ζ2), we can not find any ζ ∈ Z such that equation (2.3) is satisfied. Also, 2, 0 ∈ M with
S 2 , S 0 such that 1

2d(2, S 2) < d(2, 0) but d(S 0, S 2) = 2 = d(0, 2), then again due to (ζ2), there does
not exist any ζ ∈ Z such that equation (2.2) is satisfied and hence S is not a Suzuki typeZ-contraction.

Our first new result is the next:

Theorem 3.1. Let (M, d) be a metric space, R be a binary relation on M and S : M → M. Suppose
that the following conditions hold:

(i) M(S ;R) is non-empty;

(ii) R is S -closed and S -transitive;

(iii) S is Suzuki typeZR-contraction w.r.t. some ζ ∈ Z;

(iv) M is R-complete;

(v) either S is R-continuous or R is d-self-closed.

Then S has a fixed point. Moreover, for each r0 ∈ M(S ;R), the Picard sequence S n(r0) for all n ∈ N,
converges to a fixed point of S .

Proof. Since M(S ;R) , ∅, let r0 be an arbitrary point such that r0 ∈ M(S ;R). Now define a sequence
{rn} by rn = S nr0, for all n ∈ N0. Since (r0, S r0) ∈ R, then by S -closedness of R, we have

(rn, S rn) ∈ R for all n ∈ N0. (3.2)

AIMS Mathematics Volume 5, Issue 3, 2071–2087.



2077

Now, if there exists some n0 ∈ N0 such that d(rn0 , S rn0) = 0 then the result follows immediately.
Otherwise, for all n ∈ N0, d(rn, S rn) > 0 so that S rn , S rn+1 which implies that (rn, rn+1) ∈ R∗ and
1
2d(rn, S rn) < d(rn, S rn). Since S is Suzuki typeZR-contraction, we have

0 ≤ ζ
(
d(S rn, S rn+1), d(rn, rn+1))

< d(rn, rn+1) − d(S rn, S rn+1)
d(S rn, S rn+1) < d(rn, rn+1), (3.3)

which implies that d(rn+1, rn+2) < d(rn, rn+1) for all n ∈ N0. Therefore, {d(rn, rn+1)}∞n=0 is a monotonically
decreasing sequence of positive real numbers and hence there exists l ≥ 0, such that lim

n→∞
d(rn, rn+1) = l.

We claim that l = 0. On contrary, assume that l > 0 then using (3.1) and (ζ3), we obtain

0 ≤ lim sup
n→∞

ζ
(
d(S rn, S rn+1), d(rn, rn+1)

)
< 0,

which is a contradiction and hence l = 0, i.e.,

lim
n→∞

d(rn, rn+1) = 0. (3.4)

Next, we wish to show the Cauchy-ness of the sequence {rn}. To accomplish this, on contrary assume
that {rn} is not Cauchy, then there exists ε > 0 and l0 ∈ N0 with m(l) > n(l) > l ≥ l0, such that

d(rm(l), rn(l)) ≥ ε and d(rm(l)−1, rn(l)) < ε.

Thus, we can have

ε ≤ d(rm(l), rn(l)) ≤ d(rm(l), rm(l)−1) + d(rm(l)−1, rn(l)) < d(rm(l), rm(l)−1) + ε,

taking l→ ∞ and using (3.4), we get

lim
l→∞

d(rm(l), rn(l)) = ε, (3.5)

and hence
lim
l→∞

d(rm(l)+1, rn(l)+1) = ε. (3.6)

Then from (3.4) and (3.5), one can select a positive integer N ∈ N such that

1
2

d(rm(l), S rm(l)) <
1
2
ε < d(rm(l), rn(l)) for all l ≥ N.

As the sequence {rn} is R-preserving and R is S -transitive, therefore (rm(l), rn(l)) ∈ R∗ and we get

ζ
(
d(S rm(l), S rn(l)), d(rm(l), rn(l))

)
≥ 0 for all l ≥ N.

Now taking l→ ∞ and on using (3.5), (3.6) and (ζ3), we deduce

0 ≤ lim sup
l→∞

ζ
(
d(S rm(l), S rn(l)), d(rm(l), rn(l))

)
< 0,
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which is a contradiction. Thus, the sequence {rn} is an R-preserving Cauchy sequence in M. Owing to

the R-completeness of M ensures the existence of r∗ ∈ M such that rn
d
−→ r∗.

Firstly, assume that S is R-continuous, then we have

r∗ = lim
n→∞

rn+1 = lim
n→∞

S rn = S ( lim
n→∞

rn) = S r∗,

and hence r∗ is a fixed point of S .
Alternatively, suppose that R is d-self-closed. Then, there exists a subsequence {rn(l)} of {rn} with

[rn(l), r∗] ∈ R for all l ∈ N0. Now, we assert that

1
2

d(rn(l), S rn(l)) < d(rn(l), r∗) or
1
2

d(S rn(l), S 2rn(l)) < d(S rn(l), r∗) for all l ∈ N0. (3.7)

Let on contrary that there exists k ∈ N such that

1
2

d(rn(k), S rn(k)) ≥ d(rn(k), r∗) and
1
2

d(S rn(k), S 2rn(k)) ≥ d(S rn(k), r∗),

so that
2d(rn(k), r∗) ≤ d(rn(k), S rn(k)) ≤ d(rn(k), r∗) + d(r∗, S rn(k)),

and
d(rn(k), r∗) ≤ d(r∗, S rn(k)) ≤

1
2

d(S rn(k), S 2rn(k)). (3.8)

Now, from (3.3) and (3.8), we have

d(S rn(k), S 2rn(k)) < d(rn(k), S rn(k))
≤ d(rn(k), r∗) + d(r∗, S rn(k))

≤
1
2

d(S rn(k), S 2rn(k)) +
1
2

d(S rn(k), S 2rn(k))

= d(S rn(k), S 2rn(k)),

which is a contradiction and therefore (3.7) remains true.
Now, without loss of generality, we may assume that rn(l) , r∗ for all l ∈ N0. Since S is Suzuki type
ZR-contraction then it follows from (3.7), either

ζ(d(S rn(l), S r∗), d(rn(l), r∗)) ≥ 0

or
ζ(d(S 2rn(l), S r∗), d(S rn(l), r∗)) ≥ 0,

hold, for all l ∈ N.
We show that r∗ is a fixed point of S . On contrary, suppose that if it is not so, then
S r∗ , r∗, i.e., d(S r∗, r∗) > 0.
If the first inequality holds then using (ζ2), we obtain

0 ≤ ζ(d(S rn(l), S r∗), d(rn(l), r∗))
d(S rn(l), S r∗) < d(rn(l), r∗)
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lim sup
l→∞

d(S rn(l), S r∗) ≤ lim sup
l→∞

d(rn(l), r∗) = 0

or, lim sup
l→∞

d(rn(l)+1, S r∗) ≤ 0

implies d(S r∗, r∗) ≤ 0,

which is a contradiction. Hence, d(S r∗, r∗) = 0, i.e., r∗ remains fixed under S . Similar arguments
can be utilized to prove this conclusion in the event of second inequality as well. This concludes the
proof. �

Next, we prove corresponding uniqueness fixed point result as follows:

Theorem 3.2. In addition to the assumptions of Theorem 3.1, if Υ(r, s;R|S (M)) is non-empty for all
r, s ∈ S (M), then the fixed point of S is unique.

Proof. On the lines of the proof of Theorem 3.1, one can show that Fix(S ) is non-empty. Now, if
Fix(S ) is singleton then there is nothing to prove. Otherwise, there exists two distinct elements r∗, s∗ ∈
Fix(S ). As Υ(r, s;R|S (M)) is non-empty for all r, s ∈ S (M), there exists a path of some finite length n
from r∗ to s∗ in R|S (M) say {S r0, S r1, S r2, ..., S rn} such that r∗ = S r0, s∗ = S rn with (S ri, S ri+1) ∈ R|S (M)

for each i = 0, 1, 2, ..., n − 1. As R is S -transitive, we conclude

(r∗, S r1) ∈ R, (S r1, S r2) ∈ R, · · · , (S rn−1, s∗) ∈ R implies (r∗, s∗) ∈ R.

Now, using the fact that 1
2d(r∗, S r∗) < d(r∗, s∗) and S is Suzuki typeZR-contraction, we have

0 ≤ ζ(d(S r, S s), d(r, s)) < d(S r, S s) − d(r, s) = 0,

a contradiction. Therefore, the fixed point of S is unique. �

Observation 3.1. Observe that Theorem 3.2 has been proved without using any additional condition on
the mapping S unlike Kumam et al. [24] wherein authors required additional condition (i.e., property
(K)) to obtain the fixed point result for Suzuki type Z-contraction (see Theorem 2.2) which is easily
deducible from Theorem 3.2 by setting R to be universal relation (i.e.,R = M × M).

If we choose R = {(r, s) ∈ M × M | r � s} in Theorem 3.1, then we deduce the following corollary
which appears to be a new addition to the existing literature.

Corollary 3.1. Let (M, d,�) be an ordered metric space and S : M → M. Suppose that the following
conditions hold:

(i) there exists r0 ∈ M such that r0 � S r0;

(ii) S is increasing;

(iii) S is Suzuki typeZ�-contraction w.r.t. some ζ ∈ Z;

(iv) M is �-complete;

(v) either S is �-continuous or � is d-self-closed.

Then S has a fixed point. Moreover, for each r0 ∈ M such that r0 � S r0, the Picard sequence S n(r0)
for all n ∈ N converges to a fixed point of S .
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Next, we deduce the following corollary which remains a sharpened version of Theorem 2.3 due
to Sawangsup and Sintunavarat [22] wherein relatively weaker notions namely R-completeness of M,
R-continuity and S -transitivity of binary relation are utilized.

Corollary 3.2. Let (M, d) be a metric space, R be a binary relation on M and S : M → M. Suppose
that the following conditions hold:

(i) M(S ;R) is non-empty;

(ii) R is S -closed and S -transitive;

(iii) S isZR-contraction w.r.t. some ζ ∈ Z;

(iv) M is R-complete;

(v) either S is R-continuous or R is d-self-closed.

Then S has a fixed point. Moreover, for each r0 ∈ M(S ;R), the Picard sequence S n(r0) for all n ∈ N,
converges to a fixed point of S .

Now we have the following example to demonstrate the improvements accomplished in our newly
obtained results.

Example 3.2. Let
(
M = [0, 8), d

)
be a metric space endowed with a binary relation

R := {(0, 2), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (6, 5), (6, 6), (6, 7), (7, 5), (7, 6), (7, 7)}, where
d is usual metric on M. Define a mapping S : M → M by

S r =


7, i f r ∈ [0, 2);
5, i f r = 2;
6, i f r ∈ (2, 8),

then M(S ;R) , ∅ as (5, S 5) = (5, 6) ∈ R, S is R-continuous which is not continuous in usual sense.
Also, R is S -closed, M is R-complete and R is S -transitive. Observe that R∗ = {(0, 2), (5, 2)} but the
condition 1

2d(r, S r) < d(r, s) is satisfied only for (r, s) = (5, 2) ∈ R∗. Now, if we take ζ(x, y) = αy − x
for all x, y ∈ [0,∞) and for any α ∈ [ 1

3 , 1), then we obtain

ζ(d(S 5, S 2), d(5, 2)) ≥ 0,

which shows that S is a Suzuki type ZR-contraction with respect to ζ ∈ Z. Therefore, all the
conditions of Theorem 3.1 are satisfied and hence in view of Theorem 3.1, S has a fixed point.
Furthermore, as R is S -transitive, i.e., R|S (M) is transitive and (r, s) ∈ R for all r, s ∈ S (M), we have
Υ(r, s;R|S (M)) is non-empty for all r, s ∈ S (M). Thus in view of Theorem 3.2, fixed point of S is
unique (namely r = 6).

AIMS Mathematics Volume 5, Issue 3, 2071–2087.



2081

2 4 6 8 10
0

2

4

6

8

10

y=r
y=Sr

Figure 1. Graph of y = S r (red) and y = r (blue) in Example 3.2.

We have drawn Figure 1 with the help of MATLAB wherein the intersecting point of red and blue
lines represent the unique fixed point.

To establish the genuineness of our extension over corresponding results, we show that S is neither
a Suzuki type Z-contraction nor a ZR-contraction. To substantiate the claim, we take 2, 0 ∈ M then
1
2d(2, S 2) < d(2, 0). Assume that there is a ζ ∈ Z such that equation (2.2) is satisfied, then

0 ≤ ζ(d(S 2, S 0), d(2, 0)) < d(2, 0) − d(S 2, S 0) = d(2, 0) − d(5, 7) = 0, (3.9)

a contradiction which amounting to say that one can not find any ζ ∈ Z such that equation (2.2) is
satisfied. Hence, S is not a Suzuki typeZ-contraction. Also, (0, 2) ∈ R and

d(S 0, S 2) = d(7, 5) = 2 = d(0, 2),

then for the same reason (as in (3.9)), we can not find any ζ ∈ Z such that equation (2.3) is satisfied
which shows that S is not a ZR-contraction. Also, notice that R is not transitive as {(4, 5), (5, 2)} ∈ R
but (4, 2) < R and M is incomplete, therefore, Theorem 2.2 of Kumam et al. [24] and Theorem 2.3
of Sawangsup and Sintunavarat [22] can not be applied to this example whereas our newly obtained
Theorems 3.1 and 3.2 are applicable. This leads us to conclude that our results are genuinely different
to the corresponding results due to Kumam et al. [24] and Sawangsup and Sintunavarat [22] in respect
of underlying space, involved binary relation and contractive condition.
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4. Applications to nonlinear matrix equations

Fixed point theory has a broad set of applications in other branches of mathematics as well as in
the other sciences [36–38]. Here we describe the application of our main result in nonlinear matrix
equations. In order to do so, we need the following notations and terminologies:
We write

• M(n) := family of all complex matrices of order n;

• H(n) := family of all Hermitian matrices in M(n);

• P(n) := family of all positive definite matrices in M(n);

• H+(n) := family of all positive semi-definite matrices in M(n).

If X ∈ P(n) ( X ∈ H+(n)), we write X � 0 ( X � 0). Moreover, X � Y ( X � Y) means X − Y � 0
(X − Y � 0). The symbol ‖ · ‖ denotes the spectral norm of a matrix R defined by ‖R‖ =

√
λ+(R∗R),

where λ+(R∗R) is the largest eigenvalue of R∗R and R∗ is the conjugate transpose of R. Also,
‖R‖tr =

∑n
k=1 sk(R), where sk(R) (1 ≤ k ≤ n) are the singular values of R ∈ M(n). Then, (H(n), ‖ · ‖tr) is

complete metric space [18, 39, 40].

Now, we apply our results to obtain a solution for the following nonlinear matrix equation:

X = G +

m∑
k=1

R∗kQ(X)Rk, (4.1)

where G be a positive definite Hermitian matrix and Q is an order preserving ∗ continuous mapping
from H(n) into P(n) with Q(0) = 0, Rk are arbitrary n × n matrices and R∗k their conjugates.

The following two lemmas will be needed in our forthcoming discussion.

Lemma 4.1. [18] If R � 0 and Q � 0 are n × n matrices, then 0 ≤ tr(RQ) ≤ ‖R‖tr(Q).

Lemma 4.2. [41] If R ∈ H(n) such that R ≺ In, then ‖R‖ < 1.

Theorem 4.1. Consider the matrix equation (4.1). Assume that there exist two real numbers τ > 0 and
h > 0 such that

(i) for every X,Y ∈ H(n) with X � Y such that
∑m

k=1 R∗kQ(X)Rk ,
∑m

k=1 R∗kQ(Y)Rk and
∣∣∣tr(X − G −∑m

k=1 R∗kQ(X)Rk
)∣∣∣ < 2

∣∣∣tr(Y − X)
∣∣∣ , we have∣∣∣tr(Q(Y) − Q(X)

)∣∣∣ ≤ |tr(Y−X)|

h
(

1+τ|tr(Y−X)|
) ;

(ii)
∑m

k=1 RkR∗k ≺ hIn and there exists G such that
∑m

k=1 R∗kQ(G)Rk � 0.

Then the matrix equation (4.1) has a solution. Furthermore, the iteration Mn = G +
∑n

k=1 R∗kQ(Xn−1)Rk

converges under the trace norm ‖ · ‖tr to the solution of the equation (4.1), where X0 ∈ H(n) such that
X0 �

∑m
k=1 R∗kQ(X0)Rk.

∗Q is order preserving if R,Q ∈ H(n) with R � Q implies that Q(R) � Q(Q).
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Proof. We define a map S : H(n)→ H(n) by

S(X) = G +

m∑
k=1

R∗kQ(X)Rk for all X ∈ H(n), (4.2)

and a binary relation
R = {(S ,T ) ∈ H(n) × H(n) : S � T }.

Then S is well defined, R-continuous, R is S-closed and S-transitive. As
∑m

k=1 R∗kQ(G)Rk � 0, for some
G ∈ H(n), we have (G,S(G)) ∈ R and therefore H(n)

(
S;R

)
, ∅. Now, X is a solution of the matrix

equation (4.1) if and only if it is a fixed point of S. To accomplish this, it is enough to show that S is a
Suzuki typeZR-contraction w.r.t. a mapping ζ : [0,∞) × [0,∞)→ R defined by

ζ(x, y) =
y

τy + 1
− x for all x, y ∈ [0,∞) and τ > 0.

Take any S ,T ∈ H(n) such that (S ,T ) ∈ R∗ := {(S ,T ) ∈ R : S(S ) , S(T )} with 1
2‖S − S(S )‖tr <

‖T − S ‖tr. Then,

‖S(T ) − S(S )‖tr = tr
(
S(T ) − S(S )

)
= tr

( m∑
k=1

R∗k
(
Q(T ) − Q(S )

)
Rk

)
=

m∑
k=1

tr
(
R∗k

(
Q(T ) − Q(S )

)
Rk

)
=

m∑
k=1

tr
(
R∗kRk

(
Q(T ) − Q(S )

))
= tr

(( m∑
k=1

R∗kRk

)(
Q(T ) − Q(S )

))
≤

∥∥∥∥ m∑
k=1

R∗kRk

∥∥∥∥‖Q(T ) − Q(S )‖tr

≤
1
h

∥∥∥∥ m∑
k=1

R∗kRk

∥∥∥∥( ‖T − S ‖tr
1 + τ‖T − S ‖tr

)
(by using condition (i))

<
‖T − S ‖tr

1 + τ‖T − S ‖tr
(by using condition (ii))

or,
‖T − S ‖tr

1 + τ‖T − S ‖tr
− ‖S(T ) − S(S )‖tr > 0

so,
ζ(‖S(T ) − S(S )‖tr, ‖T − S ‖tr) ≥ 0.
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This shows that S is a Suzuki type ZR-contraction. Therefore, all the hypotheses of Theorem 3.1 are
satisfied. Now, using Theorem 3.1, there exists Ŝ ∈ H(n) such that S(Ŝ)=Ŝ, i.e., the equation (4.1) has
a solution.
Due to the generality of condition (i) over all corresponding conditions utilized by all other authors, no
other corresponding theorem in the existing literature [18, 22, 28, 39, 40](other than Theorem 3.1) can
be utilized to prove the present theorem which establishes the genuineness of our present theorem. �

Theorem 4.2. In view of the assumptions of Theorem 4.1, solution of the matrix equation (4.1) is
unique.

Proof. In view of Theorem 4.1, we have Fix(S) is non-empty. Now, due to the existence a greatest
lower bound and a least upper bound for every S ,T ∈ S(H(n)), we have Υ(S ,T ;R|S(H(n))) is non-empty
for all S ,T ∈ S(H(n)). Therefore, using Theorem 3.2, we deduce that S has a unique solution and
hence the matrix equation (4.1) has a unique solution in H(n). This concludes the proof. �

Remark 4.1. In [22], authors proposed an application to matrix equations by considering the relation
R :=�, which has an obvious flaw in the proof of Theorem 5.3, because, with X = Y , line +12 on page
15 [22] gives rise 0 < 0, which is indeed a contradiction.

5. Conclusion

In this article, we have presented an existence along with corresponding uniqueness fixed point
results for newly introduced Suzuki type ZR-contraction employing an amorphous binary relation on
metric spaces without completeness which are genuine extensions over the corresponding results due
to Kumam et al. [24] and Sawangsup and Sintunavarat [22] in respect of underlying space, involved
binary relation and contractive condition. Also, we have utilized our main results to discuss the
existence and uniqueness of solutions of a family of nonlinear matrix equations. On the similar lines
we can undertake the investigation of the existence of a common fixed point for two or more maps
under suitable conditions.
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