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1. Introduction and definitions

Let A denote the family of all functions f which are analytic in the open unit disc U = {z : |z| < 1} and
satisfying the normalization

fR=2+) az", (1.1)
n=2

while by S we mean the class of all functions in 2 which are univalent in U. Also let S* and C denote
the familiar classes of starlike and convex functions, respectively. If f and g are analytic functions in
U, then we say that f is subordinate to g, denoted by f < g, if there exists an analytic Schwarz function
win U with w (0) = 0 and |w(z)| < 1 such that f(z) = g (w(z)) . Moreover if the function g is univalent
in U, then

[ (@) <g@) & f(0) = g0) and f(U) C g(U).

For arbitrary fixed numbers A, B and b such that A, B are real with —1 < B < A < 1 and b € C\{0},
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let P[b, A, B] denote the family of functions

p@=1+) p.2, (1.2)
n=1

analytic in U such that
1+ Az

1+ Bz
Then, p € P[b, A, B] can be written in terms of the Schwarz function w by
b(1+Aw(z))+ (1 =b)(1 + Bw(2))

1 + Bw(z) '
By taking b = 1 — o with 0 < o < 1, the class P[b, A, B] coincides with P[c, A, B], defined by Polatog
Iu [17, 18] (see also [2]) and if we take b = 1, then P|[b, A, B] reduces to the familiar class P[A, B]
defined by Janowski [10]. Also by taking A = 1, B = —1 and b = 1 in P[b, A, B], we get the most
valuable and familiar set # of functions having positive real part. Let S*[A, B, b] denote the class of
univalent functions g of the form

1
1+E{p(z)—1}<

p(z) =

g@) =z+ ) b2, (1.3)
n=2

in U such that

NES 1+A4
+_{Zg(Z)_1}<l,—1ﬁB<A§1’ zel.
b\ g 1+ Bz

Then S*[A, B] := S*[A, B, 1] and the subclass S*[1, -1, 1] coincides with the usual class of starlike
functions.

The set of Bazilevi¢ functions in U was first introduced by Bazilevi¢ [7] in 1955. He defined the
Bazilevi€ function by the relation

z a+ip
f(2) = {(a/+ iB) f g"(t)p(t)tiﬁldt} ,
0

where p € P, g € §*, Bisreal and @ > 0. In 1979, Campbell and Pearce [8] generalized the Bazilevic¢
functions by means of the differential equation

2f"(2) o @ 8@ ') .
o TP T % e TP

where @ + i € C — {negative integers}. They associate each generalized Bazilevi¢ functions with the
Now we define the following subclass.

Definition 1.1. Let g be in the class S*[A, B] and let p € P[b, A, B]. Then a function f of the form (1.1)
is said to belong to the class of generalized Bazilevi¢ function associated with the quadruple (e, S, g, p)
if f satisfies the differential equation

() .
_ 1 —
TE TR T Mo were

where a + i € C — {negative integers}.

1+

2f' (@) 728 () N zp'(2) +i.

1+
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The above differential equation can equivalently be written as

of'@) _ (g(z))“( z )WB @
o \z ) \fo) 7%

or .
Zl—lﬁf/(z)
fl—(a+i/3’)ga/(z)
Since p € P[b, A, B], it follows that

=p@), zeU.

1+

1 Z7%f(2) A 1+Az
b fl—(a+i,3)ga(z) 1+ BZ,

where g € S*[A, B].
Several research papers have appeared recently on classes related to the Janowski functions,
Bazilevic functions and their generalizations, see [3-5,13,16,21,22].

2. Lemmas

The following are some results that would be useful in proving the main results.

Lemma 2.1. Let p € P[b,A, Bl withb # 0, -1 < B < A < 1, and has the form (1.2) . Then for z = re",

Lo o L+[pr@a-B2 -1
ﬂfo |p(re™)|" a6 < - :

Proof. The proof of this lemma is straightforward but we include it for the sake of completeness. Since
p € Plb, A, B], we have
p@@) =bp(zx)+(1-b), pePlA, Bl

Let p(z) = 1+ 3.7, ¢, 2" Then

1+§:pnz” :b[1+icnz”)+(1 - b).
n=1

Comparing the coefficients of 7", we have
pn = bc,,.

Since |c,| < A — B [20], it follows that |p,| < |b| (A — B) and so
1 o i0N |2 1 I n_ind
| Ipeen[do= 5| 3 purte
0 0 n=0
l 2 R 5
2n
= R deo
7 fo (Z:(; |pal” 7 ]
= D Il r

n=0

2
do
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<1+bP(A- 3)22 P2

=1+b"(A-B) 2
1+ (IbP A - B? - 1)
1-r2 ’
Thus the proof is complete. O

Lemma 2.2. []] Let Q be the family of analytic functions w on U, normalized by w(0) = 0, satisfying
the condition |w(z)| < 1. If v € Q and

w@) =wz+wd+, (eU),

then for any complex number t,
|z — tw}| < max {1, 11}

The above inequality is sharp for w(z) = z or w(z) = 2%
Lemma 2.3. Let p(z) = 1 + io: pd" € Plb,A,B], b € C\{0}, —1 < B < A < 1. Then for any complex
n=1
number y,
|p> = upi| < bl (A = Bymax {1, |ub(A - B) + BI}

bl (A - B), if lub(A-B)+ Bl <1,
b (A — B)|ub(A— B)+ B|, if lub(A—B)+B|>1.

This result is sharp.
Proof. Let p € P[b, A, B]. Then we have

1+ Az
1+ B7

1+%{p(z)—1}<

or, equivalently
1+[PA+ (1 -b)B]z

=1+bA-B -B)y" 'z,
() < T h + b( >;< 'z
which would further give
L+ piz+p2+---=14+bA - Bw(z) + b(A — BY(-B)w(z) + - - -

=1+b(A - B) (wiz+ w2z’ +--)
+ A= BY-B)(wiz+ w4 ) +---
=1+ b(A - Blwiz + b(A - B){w; - Bwj| 2 + -+

Comparing the coefficients of z and z?, we obtain

p1 =b(A - B)w,
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P2 = b(A — B)w, — b(A — B)Bw?.
By a simple computation,
|p2 = upi| = 161 (A = B)|w; — (ub(A ~ B) + B) wi .

Now by using Lemma 2.2 with t = ub(A — B) + B, we get the required result. Equality holds for the
functions

1+(bA+(1-bB)Z

= - 2 —_ —_ 4 oo
po(2) = T+ B2 =1+bA-BZ +b(A-B)(-B)" +--,
p](z):1+(bA+(1_b)B)Z:1+b(A—B)z+b(A—B)(—B)z2+~~-. g
1+ Bz

Now we prove the following result by using a method similar to the one in Libera [12].

Lemma 2.4. Suppose that N and D are analytic in U with N(0) = D(0) = 0 and D maps U onto a
many sheeted region which is starlike with respect to the origin. If Y& e P[b, A, B), then

D'(2)

N(z)

—— e P|b,A, B].

DG) [ ]

Proof. Let o é) € P[b, A, B]. Then by using a result due to Attiya [6], we have
N'(2)
—c(n|<d(r), <r, O<r<l,

D) (r) (r) Iz|

where c(r) = %f{‘;w andd (r) = %. We choose A (z) such that |A ()| < d (r) and

A(@)D'(2) =N'(@) —c(r) D'(2).

Now for a fixed zy in U, consider the line segment L joining 0 and D (zy) which remains in one sheet
of the starlike image of U by D. Suppose that L™! is the pre-image of L under D. Then

¥ - e D] = | [ (V0 - cnphas

f AD'(t) dt‘
L1

<d(r) | 1dD()

L1

= d(r)D(zp).
This implies that
N(zo)
'D(Zo) —c(r)|<d@).
Therefore NG
Z
% € p[b,A, B] O
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For A = —B = b = 1, we have the following result due to Libera [12].

Lemma 2.5. If N and D are analytic in U with N(0) = D(0) = 0 and D maps U onto a many sheeted
region which is starlike with respect to the origin, then

N'(z) .. N@
Do € P implies FZ) €P.

Lemma 2.6. [I/4]If -1 < B < A < 1,681 > 0 and the complex number 7y satisfies Re{y} >
—B1 (1 —A) /(1 — B), then the differential equation

zq' (2) _1+Az
Big@+y 1+BZ

q(z)+ zeU,

has a univalent solution in U given by

DBy p
q(2) =

Bi foz P11 (14 B 1A-B/B gy B’
Zﬁ1+y e,BlAZ 7
B fy Arv-tePidiar  pi?

If p(z) = 1 + piz+ p22? + -+ is analytic in U and satisfies

zp’ (2) <1+Az
Bip@+y 1+Bz

p(2)+

then
1+ Az

1+ Bz

p(@) <q2) <

and q (7) is the best dominant.
3. Some auxiliary results

Before proving the results for the generalized Bazilevic functions, let us discuss a few results related
to the function g € S*[A, B].

Theorem 3.1. Let g € S*[A, B] and of the form (1.3). Then for any complex number p,
(A-B)

|by — ub3| < max {1, [2(A — B)yu — (A — 2B))|}.

Proof. The proof of the result is the same as of Lemma 2.3. The result is sharp and equality holds for
the function defined by

(2) = W +BHT =z+1A-B) P+, B#0,
81 ZE%Z2:Z+%ZS+”" BZO’

or

21+ Bz)%, B#0,
8(2) =

ze™, B =0,
|2+ A-BZ+3A-BA-2B)+---, B#0, o
e+ A2+ 1A 4 B=0.
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Theorem 3.2. Let g € S*[A, B]. Then for ¢ > 0, a > 0 and 3 any real number,

c+a+if (*

G(z) = o ) 48160 gy,
is in S*[A, B]. In addition )
Rezg(S) > 5= rllzflli? Re q(2),
where _
10 ={7 7T “ﬁliﬁg):fﬁzﬁ“”; ol I
o TP arprerTi—ann — (€ +iB), B=0.

Proof. From (3.1), we have
Y4
FGY2) = (c+a +ip) f 110 (1)dt.
0

Differentiating and rearranging gives

cra+ripED = (c+ip)+ap)
G(Y(Z)
_ G2 . o . .
where p(z) = ¢ 6(5 . Then differentiating (3.2) logarithmically, we have
78" (2) zp'(2)
8@ _ () + P( _
8(z) ap(z) + (¢ +iB)

Since g € S*[A, B], it follows that

zp'(2) - 1+Az

P+ ap()+(c+iB) 1+Bz

Now by using Lemma 2.6 , for 8; = @ and y = ¢ + i3, we obtain

1+ Az

(2) <gq(2) < ——,

P 1 1+ Bz

where . A
Zc+a+l (1+BZ)0 - _ ﬂ

_ ) afjererBl (4B @B B gy «> B#O0,
‘Z(Z) - Zc+a+iﬁeaAz _ ﬂg B _ O
QJ(‘)Z feta+if—1paAt gy a ? - M

Now by using the properties of the familiar hypergeometric functions proved in [15], we have

1 a+if+c .
4(2) = @ Fy (1 a(1-8); atire+; B5) (c+ip), B#0,
a+if+c . _
1F1(1; a+if+c+1; —aAz) - (C + lﬁ) ? B = O
This implies that
1 a+iff+c _ .
() < q(2) = L0 By wwiprert iy~ D B#0.
1 a+if+c . _
o TP arprerTi—ann — (€ T iB), B =0,
and G/
z2G'(z .
Re = Re p(z) > & = min Re q(2).
GQ) p(2) mir q(2)

(3.1)

(3.2)
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Theorem 3.3. Let g € S*[A, B]. Then

Y4
S(2) = f 1481 6%(5) dt,
0

is (@ + c)-valent starlike, where a > 0, ¢ > 0 and B is a real number.

Proof. Let Di(z) = z8'(z) = P g%(z) and N;(z) = S(z). Then

D\(2) : z8'(2)
Re—Dl(Z) = Re {(c +if) +a 2 }
=c+ a/Rezg(g).

Since g € S*[A,B] ¢ S* (%), see [10], it follows that

D’ -
Re'Z 1(Z)>c+cx(1 A)>O.
Di(2) 1-B

Also

Reiggi = Re {(c + i) + azg‘ig)} >c+ a(i :2) > 0.

Now by using Lemma 2.5, we have

eDl(Z) > 0or ReZS/(Z)
Ni(z) S(2)

By the mean value theorem for harmonic functions,

, 1 o 0Qr (. 0
L@ 1 f RS .
S@ l—o 27 Jo S (ret?)

R > 0.

R

Therefore

2 i6Q 1 (i !
f ReL(’_;e) df = 2nRe {c +iB + a/Zg (Z)}
0 S (re") 8()

z=0
= 2n(c + a).

Now by using a result due to [9, p 212] , we have that S is (¢ + a)-valent starlike function. O
4. Main results

Now we are ready to discuss some results related to the defined generalized Bazilevi¢ functions.

Theorem 4.1. Let f be a generalized Bazilevic function associated by the quadruple («, 8, g, p) , where
g € S*[A, B] of the form (1.3) and p € P|[b, A, B] of the form (1.2). Then for ¢ > 0,

1
. z _ =B
HQ—-H'B f tc_lf““ﬁ(t)dt] 4.1)
Vad 0

is a generalized Bazilevi¢ function associated by the quadruple (a, 3, G, p), where G € S*[A, B, 6], as
defined by (3.1).

F(z) =

AIMS Mathematics Volume 5, Issue 3, 2040-2056.
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Proof. From (4.1), we have

F05+i,3(z) — C+(ZI—L+lﬁ fz tc—l(f(t))(l+l,3dt
0

This implies that
"z
ZFF™(Z) = (c+a+iB) f N @) Pt
0

Differentiate both sides and rearrange, we get

T PP @) + (@ + B FTTQF (2) = (e + a+ iB) 2 (f)",
and ,
Zl—lﬂF/(Z) B 1
Fl-@+B) () o+ iB
Now from (3.1), we have

{(c +a+iB)z P frb(z) — ez PFOHP (Z)} -

Zl—i,BF/ (Z)
Fl—(a/+i,6')Ga/(Z)
e+ @t B E Q) — e+t iB) [ N (F) P
B [ el ga(nydt
(y-}l-iﬁ {(Zcfaﬂ'ﬁ(z) —c j(')z tc—l(f(t))aﬂﬁdt}

fo < perip-1 g(n)dt

S

With this, note that

NG a5 (@@ @) + (@ + iBZ [P D f (@) - e (@)™
D'(z) e B1ga(y)

27

T fl@i(z)ge(z)’

which implies 37 € P[b, A, B]. By Theorem 3.3, we know that D(z) = [ 1%~ g*(¢)dt is (ar+c)-valent

starlike. Therefore by using Lemma 2.4, we obtain

Z1 —iﬁFl (Z)
F'=@+iB)()Ge(z)

€ P[b, A, B].

This is the equivalent form of Definition 1.1. Hence the result follows. O

Corollary 4.2. Let A=1,B=—1and B =0 in Theorem 4.1. Then

G = 29 f g (s
0

<

AIMS Mathematics Volume 5, Issue 3, 2040-2056.
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belong to S* (6,), where

— 2
5 = (1+2c)+ V(1 +20) +8a’(see 116]).

! da

Hence G is starlike when g € S*, and

Fo = 20 f g
0

<

belongs to the class of Bazilevic functions associated by the quadruple (a,0, G, p).

Theorem 4.3. Let f of the form (1.1) be a generalized Bazilevic function associated by the quadruple
(a,B, g, p), with g € S*[A, B] of the form (1.3) and p € P|b, A, B] of the form (1.2). Then

A-B

3+a+ifp o] - [
T 2R+ a+ i

T 22+a+ip™?

as a + |b|max {2, |b(A — B) + 2B|}] .

This inequality is sharp.

Proof. Since f is a generalized Bazilevic function associated by the quadruple («, S, g, p), we have

" % +(a+iB- 1)Z]J: (S) - QZ;S) " ZIIZ (g) +iB. 4.2)
As f, g and p respectively have the form (1.1), (1.3) and (1.2), it i easy to get
1+ ZJ{(S) = 1+2az + (6a — 4a2) 2+ ,
O e o)+
Zj(g) = 14 by + (203 -B3) 2+,
2D s oo

Putting these values in (4.2) and comparing the coefficients of z, we obtain
(1 +a+iB)a, = ab, + p;. “4.3)
Similarly by comparing the coefficients of z> and rearranging, we have
22 + a + iB)az = a(2bs — b3) + 2py — p? + a5(3 + a + if). (4.4)
From (4.4), we have

a(bs — 1b3) + (p2 - 1pd)
2+a+iB

_ 3+a+iB |
22+a+iB) "

as
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_ole=2 -t
T R+a+ifl 2+a+if

Now by using Theorem 3.1 and Lemma 2.3, both with u = %, we obtain
1 A-B A-B
by — Ebg < —5— max{L,|Bl} = ——,

and

1 1
P2 — Ep% <|bl(A - B)max{l, §|b(A -B)+ 2B|}.

Therefore, we have

3+a+if , A-B

[ 1
@ + 2 |b| max {1, 5|b(A -B)+ ZB|}] .

- <
B2 ra+ BT 22 1a+ Bl
The equality
1| A-B
by— b =22
%2 2

for B # 0 can be obtained for

@) = 21+B)F =2+ (A-B)Z2+1(A-B)(A-2B)7 +---,
1+ BAF =z+3A-B)Z+--.

Similarly, the equality

1 A
by — =bi| ==
2772
for B = 0 can be obtained for the function g.(z) = 72 =7+ %z3 +--- . Also equality for the functional
| P2 — % pﬂ can be obtained by the functions
= @A -bBz ()_1+(bA+(1—b)B)z2 o
P = 1+ Bz prier= 1+ B2 '

Corollary 4.4. For A =1, B= -1 and b = 1, we have the result proved in [8]:

a+2

3+a+if , <
T R+a+iBl

T 22+a+ip?

as

Fora =1, 8 =0, we have f € K, the class of close-to-convex functions, and

2
as — —a%

<1.
3

The latter result has been proved in [11].

Theorem 4.5. Let f of the form (1.1) be a generalized Bazilevic function associated by the quadruple
(a,B, g, p), with g € S*[A, B] and of the form (1.3) and p € P|b, A, B] of the form (1.2). Then
(i)

(A - B)(a + |bl)

| < ;
la2| I1+a+if]

AIMS Mathematics Volume 5, Issue 3, 2040-2056.
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(ii) If @ = 0, then

lasz| < ———— bl(A -~ B) max{l,
2 + Bl

Both the above inequalities are sharp.

b(A—B)( (3+l,8)) B‘}
2 (1+iB) '

Proof. (i) From (4.3), we have
(1 +a+ iﬁ)az = (sz + p1.
This implies that
alby| + |pi
+a+iB
By using the coefficient bound for S*[A, B] along with the coefficient bound of P[b, A, B], we have

las| <

|b,] < A—Band |p| <|b|(A - B).

This implies that
_(@+b)@A-B)

las| < :
|1 +a+ i)

Equality can be obtained by the functions

1+ [bA+ (1 -0b)B]z

o = 1 B %,B ° =
8.(2) = z(1 + Bz) # 0 and p.(2) T+ B2

(i1) Let @ = 0. Then from (4.3) and (4.4), we have

1 G +iB)p?
2 . — _ - 2 1
2 +iBas = p» 21 21+ 87

1

2

e (1 (3+zﬁ))

(1+iB)*
This implies
las| = |2+ B |P2 upil,
where u = % - % Now by using Lemma 2.3, we obtain

bl (A — B)
|as]| £ ————— max <1,

2 +ip]

Sharpness can be attained by the functions

b(A—B)( -2 - ﬁ2+l,3)) ‘}
2 (1 +iB)* '

1+ (bA+ (1 -b)B) >

Po(2) = =1 +b(A-B)Z +bA-B)(-B)Z +---,
1 + Bz?
PK@=1+{M?T; DB +b(A - B)z+b(A—-B)(-B)Z* + - . O
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Corollary 4.6. For A=1,B = —1and b = 1, we have

2(a+1)

a £ ——,
|2||1+a+zﬁ

and

(3 +iB)
(1 +iB)*

2
= — 1 .
|as| PR maX{ : }

In the final part of this paper, we look at some results for the generalized Bazilevi¢ functions asso-
ciated with 8 = 0.

Let C, denote the closed curve which is the image of the circle |z| = r < 1 under the mapping w =
f(2), and L, (f(z)) denote the length of C,. Also let M(r) = max,-, |f(z)| and m(r) = miny, | f(z)|. We
now prove the following result.

Theorem 4.7. Let f be a generalized Bazilevic function associated by the quadruple (,0, g, p). Then
for B £ 0,
C(a, b, A, BYM'~(r) [1 —(1- r)a(%)] , O<a<l,

L(f(2) < {C(a,b,A,B)ml_a(r) [1 -(1- r)"(A%B)] , a>1,

where

1
C(a,b,A, B) = 2nlb|B [(A -B)+—
«

Proof. As f is a generalized BazileviC function associated by the quadruple (e, 0, g, p), we have

2f'(2) = (28" (@),

where g € S*[A, B] and p € P[b, A, B]. Since forz = re?, 0 < r < 1,
27
L.(f(2) = f lzf'(2)] d6,
0
we haveforO < a <1,

L(f(2))
27
= fo |f ()8 (2)p(2)| 46,

27 r
<) [7 [ (o @8 @@+ @ ©ldsas
0 0

2 r a 27 r
< M'(r) {f f lg") |h () p(z)|ds do + f f
0 0 s 0 0

where % = h(z) € P[A, B] . Now by using the distortion theorem for Janowski starlike functions
when B # 0 (see [10]) and the Cauchy-Schwarz inequality, we have

|ga;Z)| |Zp/(Z)|dS d@} ,

L(f(2)) < M'™(r)
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r 27 271 21
X f { \/ f b I de\/ f P2 db + f 2p’ @)l d@}
o (1-|B| s)“ 5 0

Now by using Lemma 2.1 for both the classes P[b, A, B] and P[A, B], along with the result

2 b|(A-B
folzp()|<u

Bzz’

for p € P[b, A, B] (see [19]), we can write

L(f(2)) < 27xM'~(r)

Xfr g1 \/1+[(A_B)2_1]S2\/1+[|b|2(A—B)2—1]S2
—a
0 (1—|Bs)"7 -2 -

|b| (A — B) s Js
1 — B2s2 '

Since l = |Bjr>1—-rand1—-B*r>>1-7r%

" 1
L, (f(2)) < 22M"(r) [Ibl (A ~ B + bl (A - B)| f B —"
o (1—-5)*8"+
= C(a, b, A, BIM'(r) [1 - (1 = (5],

where C(a, b, A, B) = 2x|b|[(A — B) + (1/@)]B.
When a > 1, we can prove similarly as above to get

L, (f(2) < Cla, b, A, Bym'™(r) [1 = (1 = r*F)]. D
Corollary 4.8. For g € S* and p € P(b), we have

bl (2 + )M () [ A% - 1], O<ax1,

L.(f(z) < {2 Ibl( ) - oz(r)[(l - 1], a> 1.

Theorem 4.9. Let f be a generalized Bazilevic function associated by the quadruple (a,0, g, p), where
g€ S*[A,Bland p € P|b, A, B]. Then for B # 0,

ol < |b|B(A B+ )hmH1 M=), O<a<l,
an
;|b|B(A - B+ ;)hmﬁl- m=e(r), a>1.

Proof. By Cauchy’s theorem for z = re®, n > 2, we have

2
f Zf,(Z)e_medH.
0
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Therefore

nla, <

21

<5 f 12 (@)l d,
Y 0
1

= L(f(2)).

2mrt

By using Theorem 4.7 for the case 0 < @ < 1, we have
1 1y - A-B
nla,) < — 27bIB(A - B+ =|M'"()|1 - (1= »N"7 |].
2mrt a

Hence, by taking r approaches 17,

1 Ly .. -

la,| < —|b|B|A — B+ — | lim M ~“(r).

n ) r—1-

For a > 1, we have

r—1-

1 1
la,| < —|b|B(A - B+ —) lim m'~(r). o
n a

Theorem 4.10. Let f be a generalized Bazilevi¢ function represented by the quadruple (,0, g, p),
where g € S*[A, Bl and p € P|b, A, B]. Then for B # 0,

(1 — B%) + (A — B)(|b| — BRe(b))
1-B

A
FQI <a o F, (a/(l—E)+1;a;a+1;|B|r).

Proof. Since f is a generalized Bazilevic function associated by the quadruple (e, 0, g, p), by definition,

we have !
_d@ p(2)
[17*(2)g°(2) ’
where g € S*[A, B] and p € P[b, A, B]. This implies that

() =« fo g () p(r)dt,

and so

kd
lf@I" < Ozf 1~ Hlg™ @)l p(o)ldle,
0
=« f s~ g )llp(o)lds.
0
Now by using the results

18()| < (1 = |B|r)'7,B #0, (see [10]),

and
1 +|b|(A - B)r — B[(A — B)Re{b} + B] r*

1-|BFr?

Ip(2)] < » (see [6]),
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we have
N T s¢ 1 +|b|(A — B)s — B[(A — B)Re{b} + B] s*
d
V@ISQﬁs D T 5
_ R2 _ _ r
< oL =B+ - B) (b - BReD) f s*71(1 = |B| s)*(=5)"1 gs.
1 + B 0

Putting s = ru, we have

— B2 - — ! A
(1= B8) + (A= B) (bl = BReib)) r”f u"_l(l - |B|ru)“’(1‘§)‘1du
0

f@I <a —

1 — B?) + (A — B)(|b| — BRe{b A
:( )+ ( ) (1A el })r‘lel(a(l——)+1;a/;cy+1;|B|r),
1-B B
where , F (a; b; ¢; 7) is the hypergeometric function. |

Corollary 4.11. For g € S* and p € P, we have

lf@I* <2ar” ,F1 Qa+ 1l a,a+ 1;7r).
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