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Abstract: Let a, b and n be positive integers and S = {x1, ..., xn} be a set of n distinct positive integers.
The set S is called a divisor chain if there is a permutation σ of {1, ..., n} such that xσ(1)|...|xσ(n). We say
that the set S consists of two coprime divisor chains if we can partition S as S = S 1 ∪ S 2, where S 1

and S 2 are divisor chains and each element of S 1 is coprime to each element of S 2. For any arithmetic
function f , we define the function f a for any positive integer x by f a(x) := ( f (x))a. The matrix ( f a(S ))
is the n× n matrix having f a evaluated at the the greatest common divisor of xi and x j as its (i, j)-entry
and the matrix ( f a[S ]) is the n×n matrix having f a evaluated at the least common multiple of xi and x j

as its (i, j)-entry. In this paper, when f is an integer-valued arithmetic function and S consists of two
coprime divisor chains with 1 < S , we establish the divisibility theorems between the determinants of
the power matrices ( f a(S )) and ( f b(S )), between the determinants of the power matrices ( f a[S ]) and
( f b[S ]) and between the determinants of the power matrices ( f a(S )) and ( f b[S ]). Our results extend
Hong’s theorem obtained in 2003 and the theorem of Tan, Lin and Liu gotten in 2011.
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1. Introduction

We denote by (x, y) (resp. [x, y]) the greatest common divisor (resp. least common multiple) of any
given integers x and y. Let a, b and n be positive integers and S = {x1, ..., xn} be a set of n distinct
positive integers. Let f be an arithmetic function and we denote by ( f (S )) (resp. ( f [S ])) the n × n
matrix having f evaluated at (xi, x j) (resp. [xi, x j]) as its (i, j)-entry. Particularly, the n × n matrix
(S a) = ((xi, x j)a), having the ath power (xi, x j)a as its (i, j) -entry, is called the ath power GCD matrix
on S . The n × n matrix [S a] = ([xi, x j]a), having the ath power [xi, x j]a as its (i, j)-entry, is called the
ath power LCM matrix on S . These are simply called the GCD matrix and LCM matrix respectively if
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a = 1. The set S is said to be factor closed (FC) if it contains every divisor of x for any x ∈ S . The set
S is said to be gcd closed (resp. lcm closed) if for all i and j, (xi, x j) (resp. [xi, x j]) is in S . Evidently,
an FC set is gcd closed but not conversely. In 1875, Smith [33] published his famous theorem stating
that the determinant of the GCD matrix (S ) defined on the set S = {1, ..., n} is the product

∏n
k=1 ϕ(k),

where ϕ is Euler’s totient function. Since then many interesting generalizations of Smith’s determinant
and related results have been published (see, for example, [1, 3–32] and [34–42]).

Divisibility is an important topic in the field of power GCD matrices and power LCM matrices.
Bourque and Ligh [5] showed that if S is an FC set, then the GCD matrix (S ) divides the LCM matrix
[S ] in the ring Mn(Z) of n × n matrices over the set Z of integers. That is, there exists an A ∈ Mn(Z)
such that [S ] = (S ) A or [S ] = A (S ). Hong [19] showed that such factorization is no longer true in
general if S is gcd closed. Bourque and Ligh [8] extended their own result showing that if S is factor
closed, then the power GCD matrix (S a) divides the power LCM matrix [S a] in the ring Mn(Z). The set
S is called a divisor chain if there exists a permutation σ on {1, ..., n} such that xσ(1)|...|xσ(n). Obviously
a divisor chain is gcd closed but the converse is not true. For x, y ∈ S , and x < y, if x |y and the
conditions x|d|y and d ∈ S imply that d ∈ {x, y}, then we say that x is a greatest-type divisor of y in S .
For x ∈ S , we denote by GS (x) the set of all greatest-type divisors of x in S . By [19], we know that
there is gcd-closed set S with max

x∈S
{|GS (x)|} = 2 such that (S )−1 [S ] < Mn (Z). In [26], Hong, Zhao

and Yin showed that if S is gcd closed and max
x∈S
{|GS (x)|} = 1, then the GCD matrix (S ) divides the

LCM matrix [S ] in Mn(Z). In [20], Hong showed that ( f (S ))|( f [S ]) holds in the ring Mn(Z) when S
is a divisor chain and f is an integer-valued multiplicative function satisfying that f (min(S ))| f (x) for
any x ∈ S .

Hong [22] initiated the investigation of divisibility among power GCD matrices and among power
LCM matrices. In fact, Hong [22] proved that the power GCD matrix (S a) divides the power GCD
matrix (S b) if a|b and S is a divisor chain. Hong also showed that the power LCM matrix [S a] divides
the power LCM matrix [S b] if a|b and S is a divisor chain. But such factorizations are not true if a 6 |b
and gcd(S ) = 1 as well |S | ≥ 2, where by |S | and gcd(S ) we denote the cardinality of the set S and
the greatest common divisor of all the elements in S , respectively. We say that the set S consists of
two coprime divisor chains if we can partition S as S = S 1 ∪ S 2, where S 1 and S 2 are divisor chains
and each element of S 1 is coprime to each element of S 2. Later on, Hong’s results were extended by
Tan et al. These results confirm partially Conjectures 4.2-4.4 of [22]. It was proved in [36] that if a|b,
then (S a)|(S b), [S a]|[S b] and (S a)|[S b] hold in the ring Mn(Z) if and only if both xayb−1

xaya−1 and xbya−1
xaya−1 are

integers, where S = S 1 ∪ S 2 with S 1 and S 2 being divisor chains and x = min(S 1) and y = min(S 2).
From this one can read that even though a|b and S consists of two coprime divisor chains, but if 1 < S ,
then the divisibility theorems among power GCD matrices and among power LCM matrices need not
always hold. Meanwhile, Tan, Lin and Liu found surprisingly that the divisibility theorems among
determinants of power GCD matrices and among determinants of power LCM matrices should always
hold. That is, they showed that if a|b and S consists of two coprime divisor chains as well 1 < S , then
det(S a)| det(S b), det[S a]| det[S b] and det(S a)| det[S b].

The main aim of this paper is to generalize this interesting result to the matrices of the forms
det( f a(S )) and det( f a[S ]), where the arithmetic function f a is defined for any positive integer x by
f a(x) = ( f (x))a. We will study the divisibility among det( f a(S )) and det( f b(S )) and among det( f a[S ])
and det( f b[S ]) when a|b. We also investigate the divisibility among det( f (S a)) and det( f (S b)) and
among det( f [S a]) and det( f [S b]) when a|b, where S a := {xa|x ∈ S } is the ath power set of S . In
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particular, we show that if S consists of two coprime divisor chains with 1 < S and f is an
integer-valued multiplicative function (see, for instance, [2]), then for any positive integer a, we have
det( f (S a))| det( f [S a]). But it is unclear whether or not the n × n matrix ( f [S a]) is divisible by the
n × n matrix ( f (S a)) in the ring Mn(Z) when S consists of two coprime divisor chains with 1 < S and
f is integer-valued and multiplicative. This problem remains open. We guess that the answer to this
question is affirmative.

This paper is organized as follows. First of all, we recall in Section 2 Hong’s formulas for det( f (S ))
and det( f [S ]) when S is gcd closed, and then use them to give formulae for the determinants of matrices
associated with arithmetic functions on divisor chains. Consequently, in Section 3, we use these results
to derive the formulae for the determinants of matrices associated with arithmetic functions on two
coprime divisor chains. The final section is to present the main results and their proofs. Our results
extend Hong’s results [20, 22] and the Tan-Lin-Liu results [36].

In the close future, we will explore the divisibility among the power matrices associated with
integer-valued arithmetic functions.

2. Determinants of matrices associated with arithmetic functions on divisor chains

In the present section, we provide formulas for the determinants of matrices associated with
arithmetic functions on divisor chains. For this purpose, we need the concept of greatest-type divisor
introduced by Hong in 1996 (see, for example, [16] and [17]). Notice that the concept of greatest-type
divisor played central roles in Hong’s solution [16, 17] to the Bourque-Ligh conjecture [5], in Cao’s
partial answer [9] to Hong’s conjecture [18] as well as in Li’s partial answer [28] to Hong’s
conjecture [21]. We begin with the following formulas due to Hong.

Lemma 2.1. ( [21]) Let f be an arithmetic function and S be a gcd-closed set. Then

det( f (S )) =
∏
x∈S

∑
J⊂GS (x)

(−1)|J| f (gcd(J ∪ {x})))

and if f is multiplicative, then

det( f [S ]) =
∏
x∈S

f (x)2
∑

J⊂GS (x)

(−1)|J|

f (gcd(J ∪ {x}))
.

We can now use Hong’s formulae to deduce the formulae for det(S a) and det[S a] when S is a divisor
chain.

Theorem 2.2. Let f be an arithmetic function and S = {x1, ..., xn} be a divisor chain such that x1|...|xn

and n ≥ 2. Then

det( f (S )) = f (x1)
n∏

i=2

( f (xi) − f (xi−1))

and if f is multiplicative, then

det( f [S ]) = (−1)n−1 f (xn)
n∏

i=2

( f (xi) − f (xi−1)).
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Proof. Since x1|x2|...|xn, we have GS (x1) = φ and GS (xi) = {xi−1} for 2 ≤ i ≤ n. Then Theorem 2.2
follows immediately from Lemma 2.1.

This completes the proof of Theorem 2.2. �

3. Determinants of matrices associated with arithmetic functions on two coprime divisor chains

In this section, we give the formulae calculating the determinants of matrices associated with
arithmetic functions on two coprime divisor chains.

Theorem 3.1. Let f be an arithmetic function and S = {x1, ..., xn, y1, ..., ym}, where x1|...|xn, y1|...|ym

and gcd(xn, ym) = 1. Then

det( f (S )) = ( f (x1) f (y1) − f (1)2)
( n−1∏

i=1

( f (xi+1) − f (xi))
)( m−1∏

j=1

( f (y j+1) − f (y j))
)

and if f is multiplicative, then

det( f [S ]) =(−1)m+n−1 f (xn) f (ym)( f (x1) f (y1) − 1)
( n−1∏

i=1

( f (xi+1) − f (xi))
)( m−1∏

j=1

( f (y j+1) − f (y j))
)
.

Proof. Write S i := {x1, ..., xi} and T j := {y1, ..., y j} for all integers i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Then S = S n ∪ Tm.

First let n = 1. Then

det( f (S )) = det( f (S 1 ∪ Tm))

= det


f (x1) f (1) f (1) · · · f (1)
f (1) f (y1) f (y1) · · · f (y1)
f (1) f (y1) f (y2) · · · f (y2)
· · · · · · · · · · · · · · ·

f (1) f (y1) f (y2) · · · f (ym)


.

Let f (y1) = 0. If m = 1, then it is clear that

det( f (S )) = f (x1) f (y1) − f (1)2

as expected. If m ≥ 2, then we can calculate that

det( f (S )) = − f (1)2 det( f (T̃m−1)),

where T̃m−1 := Tm \ {y1}. If m = 2, then det( f (S )) = − f (1)2 f (y2) since det( f (T̃1)) = f (y2). If m ≥ 3,
then it follows from Theorem 2.2 that

det( f (S )) = − f (1)2 f (y2)
m−1∏
j=2

( f (y j+1) − f (y j))

as desired.
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Now let f (y1) , 0. Then replacing the first row by the sum of itself and − f (1)
f (y1) multiple of the second

row and using Theorem 2.2, one arrives at

det( f (S )) = det


f (x1) − f (1)2

f (y1) 0 0 · · · 0
f (1) f (y1) f (y1) · · · f (y1)
f (1) f (y1) f (y2) · · · f (y2)
· · · · · · · · · · · · · · ·

f (1) f (y1) f (y2) · · · f (ym)


=

(
f (x1) −

f (1)2

f (y1)

)
det( f (Tm))

=
(

f (x1) −
f (1)2

f (y1)

)
f (y1)

m−1∏
j=1

( f (y j+1) − f (y j))

= ( f (x1) f (y1) − f (1)2)
m−1∏
j=1

( f (y j+1) − f (y j))

as required. Thus the first formula of Theorem 3.1 is true when n = 1.
Consequently, let n > 1. Then we deduce that

det( f (S )) = det( f (S n ∪ Tm))

= det



f (x1) f (x1) · · · f (x1) f (x1) f (1) f (1) · · · f (1)
f (x1) f (x2) · · · f (x2) f (x2) f (1) f (1) · · · f (1)
...

...
. . .

...
...

...
...

. . .
...

f (x1) f (x2) · · · f (xn−1) f (xn−1) f (1) f (1) · · · f (1)
f (x1) f (x2) · · · f (xn−1) f (xn) f (1) f (1) · · · f (1)
f (1) f (1) · · · f (1) f (1) f (y1) f (y1) · · · f (y1)
f (1) f (1) · · · f (1) f (1) f (y1) f (y2) · · · f (y2)
...

...
. . .

...
...

...
...

. . .
...

f (1) f (1) · · · f (1) f (1) f (y1) f (y2) · · · f (ym)



.

Replacing nth row by the sum of itself and (−1) multiple of (n − 1)th row gives us that

det( f (S ))

= det



f (x1) f (x1) · · · f (x1) f (x1) f (1) f (1) · · · f (1)
f (x1) f (x2) · · · f (x2) f (x2) f (1) f (1) · · · f (1)
...

...
. . .

...
...

...
...

. . .
...

f (x1) f (x2) · · · f (xn−1) f (xn−1) f (1) f (1) · · · f (1)
0 0 · · · 0 f (xn) − f (xn−1) 0 0 · · · 0

f (1) f (1) · · · f (1) f (1) f (y1) f (y1) · · · f (y1)
f (1) f (1) · · · f (1) f (1) f (y1) f (y2) · · · f (y2)
...

...
. . .

...
...

...
...

. . .
...

f (1) f (1) · · · f (1) f (1) f (y1) f (y2) · · · f (ym)


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=( f (xn) − f (xn−1)) det( f (S n−1 ∪ Tm))
=( f (xn) − f (xn−1))( f (xn−1) − f (xn−2)) . . . ( f (x2) − f (x1)) det( f (S 1 ∪ Tm))

=( f (x1) f (y1) − f (1)2)
( n−1∏

i=1

(
f (xi+1) − f (xi)

))( m−1∏
j=1

(
f (y j+1) − f (y j)

))
as desired. This concludes the proof of the first part of Theorem 3.1.

We are now in the position to show the second part of Theorem 3.1. Since f is multiplicative, one
has f (1) = 1 and

f (gcd(xi, x j)) f (lcm(xi, x j)) = f (xi) f (x j).

It then follows that

( f [S ]) = Λ ·
(1

f
(S )

)
· Λ,

where
Λ := diag( f (x1), ..., f (xn), f (y1), ..., f (ym))

is the (n + m) × (n + m) diagonal matrix with f (x1), ..., f (xn), f (y1), ..., f (ym) as its diagonal elements.
Therefore

det( f [S ]) =
( n∏

i=1

f 2(xi)
)( m∏

j=1

f 2(y j)
)

det
(1

f
(S )

)
.

By the first part of Theorem 3.1, one derives that

det
(1

f
(S )

)
=
( 1

f (x1) f (y1)
−

1
f 2(1)

)
·

n−1∏
i=1

( 1
f (xi+1)

−
1

f (xi)

)
·

m−1∏
j=1

( 1
f (y j+1)

−
1

f (y j)

)

=
1 − f (x1) f (y1)

f (x1) f (y1)
·

n−1∏
i=1

(
f (xi) − f (xi+1)

)
f (x1) f 2(x2) · · · f 2(xn−1) f (xn)

·

m−1∏
j=1

(
f (y j) − f (y j+1)

)
f (y1) f 2(y2) · · · f 2(ym−1) f (ym)

.

So we obtain that

det( f [S ]) =
( n∏

i=1

f 2(xi)
)( m∏

j=1

f 2(y j)
)

×
1 − f (x1) f (y1)

f (x1) f (y1)
·

n−1∏
i=1

(
f (xi) − f (xi+1)

)
f (x1) f 2(x2) · · · f 2(xn−1) f (xn)

·

m−1∏
j=1

(
f (y j) − f (y j+1)

)
f (y j) f 2(y2) · · · f 2(ym−1) f (ym)

=(−1)m+n−1 f (xn) f (ym)( f (x1) f (y1) − 1)
( n−1∏

i=1

( f (xi+1) − f (xi))
)( m−1∏

j=1

( f (y j+1) − f (y j))
)

as desired.
This ends the proof of Theorem 3.1. �
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4. Divisibility among determinants of power matrices associated with integer-valued arithmetic
functions

In this last section, we first study the divisibility among determinants of power matrices associated
with integer-valued arithmetic functions. We begin with the following result that is the first main result
of this section.

Theorem 4.1. Let f be an integer-valued arithmetic function and let a and b be positive integers
such that a|b. Let S consist of two coprime divisor chains with 1 < S . Then det( f a(S ))| det( f b(S )).
Furthermore, if f is multiplicative, then det( f a[S ])| det( f b[S ]) and det( f a(S ))| det( f b[S ]).

Proof. Since S consists of two coprime divisor chains and 1 < S , without loss of any generality, we
may let S = {x1, ..., xn, y1, ..., ym}, where x1|...|xn, y1|...|ym and gcd(xn, ym) = 1. Then with f replaced by
f a and f b, Theorem 3.1 tells us that

det( f a(S )) = ( f a(x1) f a(y1) − f (1)2a)
( n−1∏

i=1

( f a(xi+1) − f a(xi))
)( m−1∏

j=1

( f a(y j+1) − f a(y j))
)
,

det( f b(S )) = ( f b(x1) f b(y1) − f (1)2b)
( n−1∏

i=1

( f b(xi+1) − f b(xi))
)( m−1∏

j=1

( f b(y j+1) − f b(y j))
)
,

det( f a[S ]) =(−1)m+n−1 f a(xn) f a(ym)( f a(x1) f a(y1) − 1)

×
( n−1∏

i=1

( f a(xi+1) − f a(xi))
)( m−1∏

j=1

( f a(y j+1) − f a(y j))
)

and

det( f b[S ]) =(−1)m+n−1 f b(xn) f b(ym)( f b(x1) f b(y1) − 1)
( n−1∏

i=1

( f b(xi+1) − f b(xi))
)( m−1∏

j=1

( f b(y j+1) − f b(y j))
)
.

Now let det( f a(S )) = 0. Then f a(x1) f a(y1) − f (1)2a = 0, or f a(xi+1) − f a(xi) = 0 for some integer i
with 1 ≤ i ≤ n − 1, or f a(y j+1) − f a(y j)) = 0 for some integer j with 1 ≤ j ≤ m − 1. Since a|b, one then
deduces that f b(x1) f b(y1) − f (1)2b = 0, or f b(xi+1) − f b(xi) = 0 for some integer i with 1 ≤ i ≤ n − 1,
or f b(y j+1) − f b(y j)) = 0 for some integer j with 1 ≤ j ≤ m − 1. Thus det( f b(S )) = det( f b[S ]) = 0
which infers that det( f a(S ))| det( f b(S )), det( f a[S ])| det( f b[S ]) and det( f a(S ))| det( f b[S ]) as desired.
Likewise, if det( f a[S ]) = 0, then we can deduce that det( f b[S ]) = 0. Hence det( f a[S ])| det( f b[S ]) as
expected. So Theorem 4.1 holds in this case.

In what follows, we let det( f a(S )) , 0 and det( f a[S ]) , 0. Since a|b, we may let b = ka for some
integer k. Therefore

det( f b(S ))
det( f a(S ))
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=

( f b(x1) f b(y1) − f (1)2b)
( n−1∏

i=1
( f b(xi+1) − f b(xi))

)( m−1∏
j=1

( f b(y j+1) − f b(y j))
)

( f a(x1) f a(y1) − f (1)2a)
( n−1∏

i=1
( f a(xi+1) − f a(xi))

)( m−1∏
j=1

( f a(y j+1) − f a(y j))
)

=

( f ka(x1) f ka(y1) − f (1)2ka)
( n−1∏

i=1
( f ka(xi+1) − f ka(xi))

)( m−1∏
j=1

( f ka(y j+1) − f ka(y j))
)

( f a(x1) f a(y1) − f (1)2a)
( n−1∏

i=1
( f a(xi+1) − f a(xi))

)( m−1∏
j=1

( f a(y j+1) − f a(y j))
)

=
( k∑

t=1

( f (x1) f (y1))(k−t)a f 2(t−1)a(1)
)( n−1∏

i=1

k∑
t=1

( f (xi+1))(k−t)a f (t−1)a(xi)
)

×
( m−1∏

j=1

k∑
t=1

( f (y j+1))(k−t)a f (t−1)a(y j)
)
∈ Z.

This implies that det( f a(S ))| det( f b(S )).
Similarly, if f is multiplicative and integer-valued, then one deduces that f (1) = 1,

det( f b[S ])
det( f a[S ])

=

f b(xn) f b(ym)( f b(x1) f b(y1) − 1)
( n−1∏

i=1
( f b(xi+1) − f b(xi))

)( m−1∏
j=1

( f b(y j+1) − f b(y j))
)

f a(xn) f a(ym)( f a(x1) f a(y1) − 1)
( n−1∏

i=1
( f a(xi+1) − f a(xi))

)( m−1∏
j=1

( f a(y j+1) − f a(y j))
)

=( f (xn) f (ym))(k−1)a
( k∑

t=1

( f (x1) f (y1))(k−t)a
)( n−1∏

i=1

k∑
t=1

( f (xi+1))(k−t)a f (t−1)a(xi)
)

×
( m−1∏

j=1

k∑
t=1

( f (y j+1))(k−t)a f (t−1)a(y j)
)
∈ Z

and

det( f b[S ])
det( f a(S ))

=(−1)m+n−1 ×

f b(xn) f b(ym)( f b(x1) f b(y1) − 1)
( n−1∏

i=1
( f b(xi+1) − f b(xi))

)( m−1∏
j=1

( f b(y j+1) − f b(y j))
)

( f a(x1) f a(y1) − 1)
( n−1∏

i=1
( f a(xi+1) − f a(xi))

)( m−1∏
j=1

( f a(y j+1) − f a(y j))
)

=(−1)m+n−1 f b(xn) f b(ym)
( k∑

t=1

( f (x1) f (y1))(k−t)a
)

×
( n−1∏

i=1

k∑
t=1

( f (xi+1))(k−t)a f (t−1)a(xi)
)( m−1∏

j=1

k∑
t=1

( f (y j+1))(k−t)a f (t−1)a(y j)
)
∈ Z
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as one requires. Thus Theorem 4.1 is true if det( f a(S )) , 0 and det( f a[S ]) , 0.
This finishes the proof of Theorem 4.1. �

We point out that the condition a|b in Theorem 4.1 is not necessary as the following example
shows.

Example 4.1. (i). Let f (x) = x + 1, a = 2, b = 5 and S = {2, 4, 3}. Then a 6 |b. Clearly, one has

( f 2(S )) =


9 9 4
9 25 4
4 4 16

 and ( f 5(S )) =


243 243 32
243 3125 32
32 32 1024

 .
So we can compute and get that

det( f 2(S )) = 2048 and det( f 5(S )) = 714182656.

Hence
det( f 5(S ))
det( f 2(S ))

= 348722 ∈ Z.

That is, one has det( f 2(S ))| det( f 5(S )).
(ii). Let f (x) = ϕ(x), a = 2, b = 3 and S = {2, 4, 7}. Then a 6 |b and

(ϕ2(S )) =


1 1 1
1 4 1
1 1 36

 , (ϕ2[S ]) =


1 4 36
4 4 144
36 144 36


and

(ϕ3[S ]) =


1 8 216
8 8 1728

216 1728 216

 .
One can easily calculate and obtain that

det(ϕ2(S )) = 105, det(ϕ2[S ]) = 15120 and det(ϕ3[S ]) = 2600640.

Thus
det(ϕ3[S ])
det(ϕ2(S ))

= 24768 ∈ Z and
det(ϕ3[S ])
det(ϕ2[S ])

= 172 ∈ Z.

In other words, we have det(ϕ2[S ])| det(ϕ3[S ]) and det(ϕ2(S ))| det(ϕ3[S ]). �

It is also remarked that the condition that f is multiplicative in Theorem 4.1 is necessary as the
following example shows.

Example 4.2. Letting f (x) := x + 1, a := 1, b := 3 and S := {2, 4, 3} gives us that

( f (S )) =


3 3 2
3 5 2
2 2 4

 , ( f [S ]) =


3 5 7
5 5 13
7 13 4


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and

( f 3(S )) =


27 27 8
27 125 8
8 8 64

 , ( f 3[S ]) =


27 125 343
125 125 2197
343 2197 64

 .
So we obtain that det( f (S )) = 16, det( f [S ]) = 118, det( f 3(S )) = 163072 and det( f 3[S ]) = 42578782.
Thus

det( f 3(S ))
det( f (S ))

= 10192 ∈ Z,
det( f 3[S ])
det( f (S ))

=
21289391

8
< Z and

det( f 3[S ])
det( f [S ])

=
21289391

59
< Z.

So det( f (S ))| det( f 3(S )), det( f (S )) 6 | det( f 3[S ]) and det( f [S ]) 6 | det( f 3[S ]). �

Subsequently, we explore the divisibility of determinants of the matrices associated to the integer-
valued multiplicative function on the power set S a. We present the second main result of this section
as follows.

Theorem 4.2. Let f be an integer-valued arithmetic function and let a and b be positive integers such
that a|b. Let S consist of two coprime divisor chains with 1 < S . Then each of the following is true:

(i). If f is multiplicative, then det( f (S a))| det( f [S a]).
(ii). If f is completely multiplicative, then we have det( f (S a))| det( f (S b)), det( f [S a])| det( f [S b])

and det( f (S a))| det( f [S b]).
Moreover, there exist multiplicative functions f , positive integers a and b with a|b and b > a,

and a set S consisting of two coprime divisor chains with 1 < S , such that det( f (S a)) - det( f (S b)),
det( f [S a]) - det( f [S b]) and det( f (S a)) - det( f [S b]).

Proof. We begin with the proof of the first part of Theorem 4.2.
(i). Since S consists of two coprime divisor chains with 1 < S , the power set S a consists of two

coprime divisor chains with gcd(S a) = 1 < S a. Furthermore, since f is multiplicative, one has either
f (1) = 0 or f (1) = 1. If f (1) = 0, then f is the zero function and so one has det( f (S a)) = det( f [S a]) =

0. Thus det( f (S a))| det( f [S a]) as desired. Now let f (1) = 1. Then by Lemma 3.1, we have

(−1)m+n−1 f (xa
n) f (ya

m) det( f (S a))

=(−1)m+n−1 f (xa
n) f (ya

m)( f (xa
1) f (ya

1) − 1)
( n−1∏

i=1

( f (xa
i+1) − f (xa

i ))
)( m−1∏

j=1

( f (ya
j+1) − f (ya

j))
)

= det( f [S a])

However, since f is integer valued, one has f (xa
n) f (ya

m) ∈ Z. Therefore the desired result
det( f (S a))| det( f [S a]) follows. Part (i) is proved.

(ii). If f is complete multiplicative, then it is clear that f (xa) = f a(x) for any positive integers a and
x. So one has

( f (S a)) = ( f a(S )), ( f (S b)) = ( f b(S )), ( f [S a]) = ( f a[S ]) and ( f [S b]) = ( f b[S ]).

Since a|b and S consists of two coprime divisor chains with 1 < S , it then follows from Theorem 4.1
that det( f a(S ))| det( f b(S )), det( f a[S ])| det( f b[S ]) and det( f a(S ))| det( f b[S ]). Thus the desired results
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det( f (S a))| det( f (S b)), det( f [S a])| det( f [S b]) and det( f (S a))| det( f [S b]) follow immediately. Part (ii)
is proved.

Finally, we turn our attention to the proof of the second part of Theorem 4.2. Letting S := {2, 4, 3}
and a := 2, b := 4 gives us that

(S ) =


2 2 1
2 4 1
1 1 3

 , (S 2) =


4 4 1
4 16 1
1 1 9

 , (S 4) =


16 16 1
16 256 1
1 1 81


and

[S ] =


2 4 6
4 4 12
6 12 3

 , [S 2] =


4 16 36

16 16 144
36 144 9

 , [S 4] =


16 256 1296

256 256 20736
1296 20736 81

 .
Therefore picking f = ϕ to be the Euler’s totient function tells us that

( f (S 2)) = (ϕ(S 2)) =


2 2 1
2 8 1
1 1 6

 , ( f (S 4)) = (ϕ(S 4)) =


8 8 1
8 128 1
1 1 54


and

( f [S 2]) = (ϕ[S 2]) =


2 8 12
8 8 48

12 48 6

 , ( f [S 4]) = (ϕ[S 4]) =


8 128 432

128 128 6912
432 6912 54

 .
So one deduces that

det( f (S b))
det( f (S a))

=
det(ϕ(S 4))
det(ϕ(S 2))

=
51720

66
=

8620
11
< Z,

det( f [S b])
det( f [S a])

=
det(ϕ[S 4])
det(ϕ[S 2])

=
357488640

3168
=

1241280
11

< Z

and
det( f [S b])
det( f (S a))

=
det(ϕ[S 4])
det(ϕ(S 2))

=
357488640

66
=

59581440
11

< Z.

So det( f (S a)) - det( f (S b)), det( f [S a]) - det( f [S b]) and det( f (S a)) - det( f [S b]) as desired.
This concludes the proof of Theorem 4.2. �

Remark 4.3. (i). If S consists of at least three coprime divisor chains, then the divisibility result in
Theorem 4.2 (i) may be false. For instance, letting S := {2, 4, 3, 5} and a := 2 gives us that

(ϕ(S 2)) =


2 2 1 1
2 8 1 1
1 1 6 1
1 1 1 20

 and (ϕ[S 2]) =


2 8 12 40
8 8 48 160

12 48 6 120
40 160 120 20

 .
Hence

det(ϕ[S 2])
det(ϕ(S 2))

= −
148320

107
< Z.
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That is, det(ϕ(S 2)) 6 | det(ϕ[S 2]).
On the other hand, the condition that f is multiplicative in Theorem 4.2 (i) is necessary. For

example, let f (x) := x + 1 and S := {2, 4, 3}, a := 1. Then f is not multiplicative and

det( f [S ])
det( f (S ))

=
59
8
< Z.

Hence det( f (S )) 6 | det( f [S ]).
(ii). We remark that the condition a|b is not necessary for the divisibility result in Theorem 4.2 (ii).

For example, letting f (x) := x, S := {2, 6, 5}, a := 2 and b := 5 gives us that

(S 2) =


4 4 1
4 36 1
1 1 25

 , (S 5) =


32 32 1
32 7776 1
1 1 3125


and

[S 2] =


4 36 100

36 36 900
100 900 25

 , [S 5] =


32 7776 100000

7776 7776 24300000
100000 24300000 3125

 .
Then we compute and get that

det((S 5))
det((S 2))

= 244442 ∈ Z,
det([S 5])
det([S 2])

= 659993400 ∈ Z and
det([S 5])
det((S 2))

= 5939940600000 ∈ Z.

It follows immediately that det((S 2))| det((S 5)), det([S 2])| det([S 5]) and det((S 2))| det([S 5]).
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