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Abstract: Let Ω be a bounded domain in Rn with C1,1 boundary. We consider problems of the form
−∆u = χ{u>0} (au−α − g (., u)) in Ω, u = 0 on ∂Ω, u ≥ 0 in Ω, where Ω is a bounded domain in Rn,
0 . a ∈ L∞ (Ω) , α ∈ (0, 1) , and g : Ω × [0,∞) → R is a nonnegative Carathéodory function.
We prove, under suitable assumptions on a and g, the existence of nontrivial and nonnegative weak
solutions u ∈ H1

0 (Ω)∩ L∞ (Ω) of the stated problem. Under additional assumptions, the positivity, a.e.
in Ω, of the found solution u, is also proved.
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1. Introduction and statement of the main results

Let Ω be a bounded and regular enough domain in Rn, let α > 0, and let a : Ω → R be a nonnegative
and nonidentically zero function. Singular elliptic problems like to

−∆u = au−α in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(1.1)

arise in many applications to physical phenomena, for instance, in chemical catalysts process, non-
Newtonian fluids, and in models for the temperature of electrical conductors (see e.g., [3,5,13,16] and
the references therein). Starting with the pioneering works [6, 13, 16, 26], and [11], the existence of
positive solutions of singular elliptic problems has been intensively studied in the literature.

Bifurcation problems whose model is −∆u = au−α + f (., λu) in Ω, u = 0 on ∂Ω, u > 0 in Ω, were
studied by Coclite and Palmieri [4], under the assumptions a ∈ C1

(
Ω
)
, a > 0 in Ω, f ∈ C1

(
Ω × [0,∞)

)
and λ > 0. Problems of the form −∆u = Ku−α + λsp in Ω, u = 0 on ∂Ω, u > 0 in Ω, were studied
by Shi and Yao [35], when p ∈ (0, 1) , K is a regular enough function that may change sign, and
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λ ∈ R. Ghergu and Rădulescu [19] addressed multi-parameter singular bifurcation problems of the
form −∆u = g (u) + λ |∇u|p + µ f (., u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, where g is Hölder continuous,
nonincreasingt and positive on (0,∞) , and singular at the origin; f : Ω × [0,∞) → [0,∞) is Hölder
continuous, positive on Ω × (0,∞) , and such that f (x, s) is nondecreasing with respect to s, 0 <

p ≤ 2, and λ > 0. Dupaigne, Ghergu and Rădulescu [14] studied Lane–Emden–Fowler equations
with convection and singular potential; and Rădulescu [32] addressed the existence, nonexistence, and
uniqueness of blow-up boundary solutions of logistic equations and of singular Lane-Emden-Fowler
equations with convection term. Cı̂rstea, Ghergu and Rădulescu [7] considered the problem of the
existence of classical positive solutions for problems of the form −∆u = a(x)h (u) + λ f (u) in Ω, u = 0
on ∂Ω, u > 0 in Ω, in the case when Ω is a regular enough domain, f and h are positive Hölder
continuous functions on [0,∞) and (0,∞) respectively satisfying some monotonicity assumptions, h
singular at the origin, and h (s) ≤ cs−α for some positive constant c and some α ∈ (0, 1) .

Multiplicity results for positive solutions of singular elliptic problems were obtained by Gasiński
and Papageorgiou [17] and by Papageorgiou and G. Smyrlis [30]; in both articles the singular term of
the considered nonlinearity has the form a (x) s−α, with 0 ≤ a ∈ L∞ (Ω) , a . 0 in Ω, and α positive.

Recently, problem (1.1) has been addressed by Chu, Gao and Gao [8], under the assumption that
α = α (x) (i.e., with a singular nonlinearity with a variable exponent).

Concerning the existence of nonnegative solutions of singular elliptic problems, Dávila and
Montenegro [9] studied the free boundary singular bifurcation problem

−∆u = χ{u>0} (−u−α + λ f (., u)) in Ω,

u = 0 on ∂Ω,

u ≥ 0 in Ω, u . 0 in Ω,

where 0 < α < 1, λ > 0, and f : Ω × [0,∞) → [0,∞) is a Carathéodory function f such that, for
a.e. x ∈ Ω, f (x, s) is nondecreasing and concave in s, and satisfies lims→∞ f (x, s) /s = 0 uniformly on
x ∈ Ω. and where, for h : Ω × (0,∞) → R, χ{s>0}h (x, s) stands for the function defined on Ω × [0,∞)
by χ{s>0}h (x, s) := h (x, s) if s > 0, and χ{s>0}h (x, s) := 0 if s = 0. Let us mention also the work [10],
where a related singular parabolic problem was treated.

For a systematic study of singular problems and additional references, we refer the reader to [18,32],
see also [12].

Our aim in this work is to prove an existence result for nonnegative weak solutions of singular
elliptic problems of the form 

−∆u = χ{u>0} (au−α − g (., u)) in Ω,

u = 0 on ∂Ω,

u ≥ 0 in Ω, u . 0 in Ω,

(1.2)

where Ω is a bounded domain in Rn with C1,1 boundary, α ∈ (0, 1] , a : Ω → R, and
g : Ω × [0,∞)→ R, with a and g satisfying the following conditions h1)-h4):

h1) 0 ≤ a ∈ L∞ (Ω) and a . 0,
h2) {x ∈ Ω : a (x) = 0} = Ω0 ∪ N for some (possibly empty) open set Ω0 ⊂ Ω and some measurable set
N ⊂ Ω such that |N | = 0,
h3) g is a nonnegative Carathéodory function on Ω × [0,∞) , i.e., g (., s) is measurable for any
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s ∈ [0,∞) , and g (x, .) is continuous on [0,∞) for a.e. x ∈ Ω,
h4) sup0≤s≤M g (., s) ∈ L∞ (Ω) for any M > 0.

Here and below, χ{u>0} (au−α − g (., u)) stands for the function h : Ω → R defined by
h (x) := a (x) u−α (x) − g (x, u (x)) if u (x) , 0, and h (x) := 0 otherwise; u . 0 in Ω means
|{x ∈ Ω : u (x) , 0}| > 0 and, by a weak solution of (1.2), we mean a solution in the sense of the
following:

Definition 1.1. Let h : Ω → R be a measurable function such that hϕ ∈ L1 (Ω) for all ϕ in H1
0 (Ω) ∩

L∞ (Ω) . We say that u : Ω→ R is a weak solution to the problem{
−∆u = h in Ω,

u = 0 on ∂Ω
(1.3)

if u ∈ H1
0 (Ω) , and

∫
Ω
〈∇u,∇ϕ〉 =

∫
Ω

hϕ for all ϕ in H1
0 (Ω) ∩ L∞ (Ω) .

We will say that, in weak sense,

−∆u ≤ h in Ω (respectively − ∆u ≥ h in Ω),
u = 0 on ∂Ω

if u ∈ H1
0 (Ω) , and

∫
Ω
〈∇u,∇ϕ〉 ≤

∫
Ω

hϕ (respectively
∫

Ω
〈∇u,∇ϕ〉 ≥

∫
Ω

hϕ) for all nonnegative ϕ in
H1

0 (Ω) ∩ L∞ (Ω) .

Our first result reads as follows:

Theorem 1.2. Let Ω be a bounded domain in Rn with C1,1 boundary. Let α ∈ (0, 1], let
a : Ω → [0,∞) and let g : Ω × (0,∞) → R; and assume that a and g satisfy the conditions h1)-h4).
Then there exists a nonnegative weak solution u ∈ H1

0 (Ω) ∩ L∞ (Ω) , in the sense of Definition 1.1, to
problem (1.2), and such that u > 0 a.e. in {a > 0} . In particular, χ{u>0} (au−α − g (., u)) . 0 in Ω and
χ{u>0} (au−α − g (., u))ϕ ∈ L1 (Ω) for any ϕ ∈ H1

0 (Ω) ∩ L∞ (Ω)).

Let us mention that in [21] it was proved the existence of weak solutions (in the sense of Definition
1.1) of problem (1.2), in the case when 0 ≤ a ∈ L∞ (Ω) , a . 0, 0 < α < 1, and g (., u) = −bup,
with 0 < p < n+2

n−2 , and 0 ≤ b ∈ Lr (Ω) for suitable values of r. In addition, existence results for weak
solutions of problems of the form

−∆u = χ{u>0}au−α − h (., u) in Ω,

u = 0 on ∂Ω,

u ≥ 0 in Ω, and u . 0 in Ω,

(1.4)

were obtained, in [22] (see Remark 2.1 below), and in ( [25], Theorem 1.2), for more general
nonlinearities h : Ω × [0,∞) → [0,∞) (x, s) , in the case when h is a Carathéodory function on
Ω × [0,∞) , which satisfies h (., 0) ≤ 0 as well as some additional hypothesis. Then the result of
Theorem 1.2 is not covered by those in [22] and [25] because, under the assumptions of Theorem 1.2,
the condition g (., 0) ≤ 0 is not required and χ{s>0}g (., s) is not, in general, a Carathéodory function on
Ω × [0,∞) (except when g (., 0) ≡ 0 in Ω).

Our next result says that if the condition h4) is replaced by the stronger condition
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h4’) a > 0 a.e. in Ω and sup0<s≤M s−1g (., s) ∈ L∞ (Ω) for any M > 0,

then the solution u, given by Theorem 1.2, is positive a.e. in Ω and is a weak solution in the usual sense
of H1

0 (Ω) .

Theorem 1.3. Let Ω, α, and a be as in Theorem 1.2, and let g : Ω× (0,∞)→ R. Assume the conditions
h1)-h3) and h4’). Then the solution u of (1.2), given by Theorem 1.2, belongs to C

(
Ω
)
∩W2,p

loc (Ω) for
any p ∈ [1,∞) , there exist positive constants c, c′ and τ such that cdΩ ≤ u ≤ c′dτ

Ω
in Ω, and u is a

weak solution, in the usual H1
0 (Ω) sense, of the problem

−∆u = au−α − g (., u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

(1.5)

i.e., for any ϕ ∈ H1
0 (Ω) , (au−α − g (., u))ϕ ∈ L1 (Ω) and

∫
Ω
〈∇u,∇ϕ〉 =

∫
Ω

(au−α − g (., u))ϕ.

Finally, our last result says that, if in addition to h1)-h4), α is sufficiently small, the set where a > 0 is
nice enough and, for any s ≥ 0, g (., s) = 0 a.e. in the set where a > 0, then the solution obtained in
Theorem 1.2, is a weak solution in the usual sense of H1

0 (Ω) , and that it is positive on some subset of
Ω:

Theorem 1.4. Let Ω be a bounded domain in Rn with C1,1 boundary. Assume the hypothesis h1)-
h4) of Theorem 1.2 and that 0 < α < 1

2 + 1
n when n > 2, and α ∈ (0, 1] when n ≤ 2. Let A+ :=

{x ∈ Ω : a (x) > 0} and assume, in addition, the following two conditions:

h5) g (., s) = 0 a.e. in A+ for any s ≥ 0.
h6) A+ = Ω+∪N+ for some open set Ω+ and a measurable set N+ such that |N+| = 0, and with Ω+ such
that Ω+ has a finite number of connected components

{
Ω+

l

}
1≤l≤N

and each Ω+
l is a C1,1 domain.

Then the solution u of problem (1.2), given by Theorem 1.2, is a weak solution, in the usual H1
0 (Ω)

sense, to the same problem, and there exist positive constants c, c′ and τ such that u ≥ cdΩ+ a.e. in Ω+,

and u ≤ c′dτ
Ω

a.e. in Ω.

The article is organized as follows: In Section 2 we study, for ε ∈ (0, 1] , the existence of weak
solutions to the auxiliary problem 

−∆u = au−α − gε (., u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(1.6)

where Ω is a bounded domain in Rn with C1,1 boundary, α ∈ (0, 1] , a : Ω → [0,∞) is a nonnegative
function in L∞ (Ω) such that |{x ∈ Ω : a (x) > 0}| > 0, and {gε}ε∈(0,1] is a family of real valued functions
defined on Ω × [0,∞) satisfying the following conditions h7)-h9):

h7) gε is a nonnegative Carathéodory function on Ω × [0,∞) for any ε ∈ (0, 1] .
h8) sup0<s≤M s−1gε (., s) ∈ L∞ (Ω) for any ε ∈ (0, 1] and M > 0.
h9) The map ε→ gε (x, s) is nonincreasing on (0, 1] for any (x, s) ∈ Ω × [0,∞) .
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Lemma 2.2 observes that, as a consequence of a result of [22], the problem
−∆u = χ{u>0}au−α − gε (., u) in Ω,

u = 0 on ∂Ω,

u ≥ 0 in Ω, u . 0 in Ω

(1.7)

has (at least) a weak solution u (in the sense of Definition 1.1) which satisfies u > 0 a.e. in {a > 0} ;
and this assertion is improved in Lemmas 2.6 and 2.7, which state that any weak solution u (in the
sense of Definition 1.1) of problem (1.7) is positive in Ω, belongs to C

(
Ω
)
, and is also a weak solution

in the usual sense of H1
0 (Ω). By using a sub-supersolution theorem of [28] as well as an adaptation

of arguments of [27], Lemma 2.15 shows that, for any ε ∈ (0, 1] , problem (1.6) has a solution uε ∈
H1

0 (Ω) , which is a weak solution in the usual sense of H1
0 (Ω) , and is maximal in the sense that, if v is

a solution, in the sense of Definition 1.1, of problem (1.6) then v ≤ uε. Lemma 2.16 states that ε→ uε
is nondecreasing, Lemma 2.17 says that {uε}ε∈(0,1] is bounded in H1

0 (Ω) , and Lemma 2.18 says that the
function u := limε→0+ uε belong to H1

0 (Ω) ∩ L∞ (Ω) and is positive in {a > 0} .
To prove Theorems 1.2–1.4 we consider, in Section 3, the family {gε}ε∈(0,1] defined by gε (., s) :=

s (s + ε)−1 g (., s) and we show that, in each case, the corresponding function u defined above is a
solution of problem (1.2) with the desired properties.

2. Preliminaries

We assume, from now on, that Ω is a bounded domain in Rn with C1,1 boundary, α ∈ (0, 1] and
a : Ω → [0,∞) is a nonnegative function in L∞ (Ω) such that |{x ∈ Ω : a (x) > 0}| > 0, and additional
conditions will be explicitely impossed on a and α when necessary, at some steps of the paper. Our
aim in this section is to study, for ε ∈ (0, 1] , the existence of weak solutions to problem (1.6), in the
case when {gε}ε∈(0,1] is a family of functions satisfying the conditions h7)-h9).

In order to present, in the next remark, a need result of [22], we need to recall the notion of principal
egenvalue with weight function: For b ∈ L∞ (Ω) such that b . 0, we say that λ ∈ R is a principal
eigenvalue for −∆ on Ω, with weight function b and homogeneous Dirichlet boundary condition, if the
problem −∆u = λbu in Ω, u = 0 on ∂Ω has a solution u wich is positive in Ω. If b ∈ L∞ (Ω) and b+ . 0,
it is well known that there exists a unique positive principal eigenvalue for the above problem, which
we wiill denote by λ1 (b). For a proof of this fact and for additional properties of principal eigenvalues
and their associated principal eigenfunctions see, for instance [15].

Remark 2.1. (See [22], Theorem 1.2, or, in a more general setting, [25], Theorem 1.2) Let β ∈ (0, 3) ,
ã : Ω→ R and f : Ω × [0,∞)→ R; and assume the following conditions H1)-H6):
H1) 0 ≤ ã ∈ L∞ (Ω) , and ã . 0,
H2) f is a Carathéodory function on Ω × [0,∞) ,
H3) sup0≤s≤M | f (., s)| ∈ L1 (Ω) for any M > 0,
H4) One of the two following conditions holds:
H4’) sups>0

f (.,s)
s ≤ b for some b ∈ L∞ (Ω) such that b+ . 0, and λ1 (b) > m for some integer m ≥

max {2, 1 + β} ,

H4”) f ∈ L∞ (Ω × (0, σ)) for all σ > 0, and lims→∞
f (.,s)

s ≤ 0 uniformly on Ω, i.e., for any ε > 0 there
exists s0 > 0 such that sups≥s0

f (.,s)
s ≤ ε, a.e. in Ω,
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H5) f (., 0) ≥ 0.
Then the problem 

−∆u = χ{u>0}̃au−β + f (x, u) in Ω,

u = 0 on ∂Ω,

u ≥ 0 in Ω, u . 0 in Ω.

(2.1)

has a weak solution (in the sense of Definition 1.1) u ∈ H1
0 (Ω)∩L∞ (Ω) such that u > 0 a.e. in {̃a > 0} .

Lemma 2.2. Let a ∈ L∞ (Ω) be such that a ≥ 0 in Ω and a . 0, let α ∈ (0, 1] , and let {gε}ε∈(0,1] be a
family of functions defined on Ω × [0,∞) satisfying the conditions h7)-h9) stated at the introduction.
Then, for any ε ∈ (0, 1] , problem (1.7) has at least a weak solution u ∈ H1

0 (Ω) ∩ L∞ (Ω), in the sense
of Definition 1.1, such that u > 0 a.e. in {a > 0} .

Proof. Notice that, since gε is a Carathéodory function, we have
gε (., 0) = lims→0+ gε (., s) = lims→0+

(
ss−1gε (., s)

)
= 0, the last inequality by h8). Thus gε (., 0) = 0.

Taking into account this fact and h7)-h9), the lemma follows immediately from Remark 2.1. �

Let us recall, in the next remark, the uniform Hopf maximum principle:

Remark 2.3. i) (see [2], Lemma 3.2) Suppose that 0 ≤ h ∈ L∞ (Ω) ; and let
v ∈ ∩1≤p<∞

(
W2,p (Ω) ∩W1,p

0 (Ω)
)

be the strong solution of −∆v = h in Ω, v = 0 on ∂Ω. Then
v ≥ cdΩ

∫
Ω

hdΩ a.e. in Ω, where dΩ := dist (., ∂Ω) , and c is a positive constant depending only on Ω.

ii) (see e.g., [25], Remark 8) Let Ψ be a nonnegative function in L1
loc (Ω) , and let v be a function in

H1
0 (Ω) such that −∆v ≥ Ψ on Ω in the sense of distributions. Then

v (x) ≥ cdΩ

∫
Ω

ΨdΩ a.e. in Ω, (2.2)

where c is a positive constant depending only on Ω.

Remark 2.4. (See, e.g., [23], Lemmas 2.9, 2.10 and 2.12) Let a ∈ L∞ (Ω) be such that a ≥ 0 in Ω and
a . 0, and let let α ∈ (0, 1] . Then the problem

−∆z = az−α in Ω,

z = 0 on ∂Ω,

z ≥ 0 in Ω.

(2.3)

has a unique weak solution, in the sense of Definition 1.1, z ∈ H1
0 (Ω) ∩ L∞ (Ω) . Moreover:

i) z ∈ C
(
Ω
)
.

ii) There exists positive constants c1, c2 and τ > 0 such that c1dΩ ≤ z ≤ c2dτ
Ω

in Ω.

iii) z is a solution of problem (2.3) in the usual weak sense, i.e., for any ϕ ∈ H1
0 (Ω) , az−αϕ ∈ L1 (Ω)

and
∫

Ω
〈∇z,∇ϕ〉 =

∫
Ω

az−αϕ.

Lemma 2.5. Let a, α, and {gε}ε∈(0,1] be as in Lemma 2.2, let z be as given in Remark 2.4; and let
ε ∈ (0, 1] . If u ∈ H1

0 (Ω) ∩ L∞ (Ω) is a weak solution, in the sense of Definition 1.1, of problem (1.7),
then u ≤ z a.e. in Ω.
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Proof. By h5), gε (., u) ≥ 0 and so, from Lemma 2.2 and Remark 2.4, we have, in the sense of
Definition 1.1,

−∆ (u − z) = au−α − gε (., u) − az−α ≤ a
(
u−α − z−α

)
in Ω,

Thus, taking (u − z)+ as a test function, we get∫
Ω

∣∣∣∇ (u − z)+
∣∣∣2 ≤ ∫

Ω

a
(
u−α − z−α

)
(u − z)+

≤ 0

which implies u ≤ z a.e. in Ω. �

Lemma 2.6. Let a, α, and {gε}ε∈(0,1] be as in Lemma 2.2. If ε ∈ (0, 1] and u ∈ H1
0 (Ω) ∩ L∞ (Ω) is a

weak solution, in the sense of Definition 1.1, of problem (1.7), then:
i) There exists a positive constant c1 (which may depend on ε ) and constants c2 and τ such that
c1dΩ ≤ u ≤ c2dτ

Ω
a.e. in Ω (and so, in particular, u > 0 in Ω).

ii) For any ϕ ∈ H1
0 (Ω) we have (au−α − gε (., u))ϕ ∈ L1 (Ω) and∫

Ω

〈∇u,∇ϕ〉 =

∫
Ω

(
au−α − gε (., u)

)
ϕ,

i.e., u is a weak solution, in the usual sense of H1
0 (Ω), to the problem −∆u = au−α−gε (., u) in Ω, u = 0

on ∂Ω.

Proof. We have, in the weak sense of Definition 1.1, −∆u = χ{u>0}au−α − gε (., u) in Ω, u = 0 on
∂Ω. Also, u ≥ 0 in Ω and u . 0 in Ω. Let a0 : Ω → R be defined by a0 (x) = u−1 (x) gε (x, u (x)) if
u (x) , 0 and by a0 (x) = 0 otherwise. Since u ∈ L∞ (Ω) and taking into account h7) and h8), we have
0 ≤ a0 ∈ L∞ (Ω) , and from the definition of a0 we have gε (., u) = a0u a.e. in Ω. Therefore u satisfies, in
the sense of Definition 1.1, −∆u + a0u = χ{u>0}au−α in Ω, u = 0 on ∂Ω. Thus, since u is nonidentically
zero, it follows that χ{u>0}au−α is nonidentically zero on Ω. Then there exist η > 0, and a measurable
set E ⊂ Ω, such that |E| > 0 and χ{u>0}au−α ≥ ηχE in Ω. Let ψ ∈ ∩1≤q<∞W2,,q (Ω) ∩ W1,,q

0 (Ω) be the
solution of the problem −∆ψ + a0ψ = ηχE in Ω, ψ = 0 on ∂Ω. By the Hopf maximum principle (as
stated, e.g., in [34], Theorem 1.1) there exists a positive constant c1 such that ψ ≥ c1dΩ in Ω; and,
from (1.7) we have −∆u + a0u ≥ ηχE in D′ (Ω) . Then, by the weak maximum principle (as stated, e.g.,
in [20], Theorem 8.1), u ≥ ψ in Ω. Hence u ≥ c1dΩ in Ω. Also, by Lemma 2.5, u ≤ z a.e. in Ω, and so
Remark 2.4 gives positive constants c2 and τ (both independent of ε) such that u ≤ c2dτ

Ω
in Ω. Thus i)

holds.
To see ii), consider an arbitrary function ϕ ∈ H1

0 (Ω) , and for k ∈ N, let ϕ+
k := max {k, ϕ+} . Thus ϕ+

k ∈

H1
0 (Ω) ∩ L∞ (Ω) ,

{
ϕ+

k

}
k∈N

converges to ϕ+ in H1
0 (Ω) and, after pass to some subsequence if necessary,

we can assume also that
{
ϕ+

k

}
k∈N

converges to ϕ+ a.e. in Ω. Since u is a weak solution, in the sense of
Definition 1.1, of (1.7) and u > 0 a.e. in Ω, we have, for all k ∈ N, (au−α − gε (., u))ϕ+

k ∈ L1 (Ω) , and,
by h6), gε (., u) ∈ L∞ (Ω) . Thus gε (., u)ϕ+

k ∈ L1 (Ω) . Then au−αϕ+
k ∈ L1 (Ω) .

From (1.7), ∫
Ω

〈
∇u,∇ϕ+

k
〉

+

∫
Ω

gε (., u)ϕ+
k =

∫
Ω

au−αϕ+
k . (2.4)

Now, limk→∞

∫
Ω

〈
∇u,∇ϕ+

k

〉
=

∫
Ω
〈∇u,∇ϕ+〉 . Also, for any k,

0 ≤ gε (., u)ϕ+
k ≤ sup

s∈[0,‖u‖∞]
gε (., s)ϕ+ ∈ L1 (Ω) ,
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then, by the Lebesgue dominated convergence theorem, limk→∞

∫
Ω

gε (., u)ϕ+
k =

∫
Ω

gε (., u)ϕ+ < ∞.

Hence, by (2.4), limk→∞

∫
Ω

au−αϕ+
k exists and is finite. Since

{
au−αϕ+

k

}
k∈N

is nondecreasing and
converges to au−αϕ+ a.e. in Ω, the monotone convergence theorem gives
limk→∞

∫
Ω

au−αϕ+
k =

∫
Ω

au−αϕ+ < ∞. Thus(
au−α − gε (., u)

)
ϕ+ ∈ L1 (Ω)

and ∫
Ω

〈
∇u,∇ϕ+〉 +

∫
Ω

gε (., u)ϕ+ =

∫
Ω

au−αϕ+. (2.5)

Similarly, we have that (au−α − gε (., u))ϕ− ∈ L1 (Ω) , and that (2.5) holds with ϕ+ replaced by ϕ− By
writing ϕ = ϕ+ − ϕ− the lemma follows. �

Lemma 2.7. Let a, α, and {gε}ε∈(0,1] be as in Lemma 2.2. For any ε ∈ (0, 1] , if u ∈ H1
0 (Ω) ∩ L∞ (Ω)

is a weak solution, in the sense of Definition 1.1 (and so, by Lemma 2.6, also in the usual sense of
H1

0 ((Ω))), of problem (1.7), then u ∈ C
(
Ω
)
.

Proof. By Lemma 2.6 we have u ≥ cdΩ a.e. in Ω, with c a positive constant and, by h6),
0 ≤ u−1gε (., u) ∈ L∞ (Ω) . Thus au−α − gε (., u) ∈ L∞loc (Ω) . Also, u ∈ L∞ (Ω) . Then, by the inner elliptic
estimates (as stated, e.g., in [20], Theorem 8.24), u ∈ W2,p

loc (Ω) for any p ∈ [1,∞) . Thus u ∈ C (Ω) ,
and, since 0 ≤ u ≤ z, z ∈ C

(
Ω
)

and z = 0 on ∂Ω, it follows that u is also continuous at ∂Ω. �

Definition 2.8. Let C∞0
(
Ω
)

:=
{
ϕ ∈ C∞

(
Ω
)

: ϕ = 0 on ∂Ω
}
. If u ∈ L1 (Ω) and h ∈ L1 (Ω) , we will

say that u is a solution, in the sense of
(
C∞0

(
Ω
))′
, of the problem −∆u = h in Ω, u = 0 on ∂Ω, if

−
∫

Ω
u∆ϕ =

∫
Ω

hϕ for any ϕ ∈ C∞0
(
Ω
)
.

We will say also that −∆u ≥ h in
(
C∞0

(
Ω
))′

(respectively −∆u ≤ h in
(
C∞0

(
Ω
))′

) if −
∫

Ω
u∆ϕ ≥

∫
Ω

hϕ

(resp. −
∫

Ω
u∆ϕ ≤

∫
Ω

hϕ) for any nonnegative ϕ ∈ C∞0
(
Ω
)
.

Remark 2.9. The following statements hold:
i) (Maximum principle, [31], Proposition 5.1) If u ∈ L1 (Ω) , 0 ≤ h ∈ L1 (Ω) , and −∆u ≥ h in the sense
of

(
C∞0

(
Ω
))′
, then u ≥ 0 a.e. in Ω.

ii) (Kato’s inequality, [31], Proposition 5.7) If h ∈ L1 (Ω) , u ∈ L1 (Ω) and if −∆u ≤ h in D′ (Ω), then
−∆ (u+) ≤ χ{u>0}h in D′ (Ω) .
iii) ( [31], Proposition 3.5) For ε > 0, let Aε := {x ∈ Ω : dist (x, ∂Ω) < ε} . If h ∈ L1 (Ω) and if u ∈
L1 (Ω) is a solution of −∆u = h, in the sense of Definition 2.8, then there exists a constant c such that,
for all ε > 0,

∫
Aε
|u| ≤ cε2 ‖h‖1 . In particular, limε→0+

1
ε

∫
Aε
|u| = 0.

iv) ( [31], Proposition 5.2) Let u ∈ L1 (Ω) and h ∈ L1 (Ω) . If −∆u ≤ h (respectively −∆u = h) in D′ (Ω)
and limε→0+

1
ε

∫
Aε
|u| = 0 then −∆u ≤ h (resp. −∆u = h) in the sense of

(
C∞0

(
Ω
))′
.

v) ( [31], Proposition 5.9) Let f1, f2 ∈ L1 (Ω) . If u1, u2 ∈ L1 (Ω) are such that ∆u1 ≥ f1 and ∆u2 ≥ f2

in the sense of distributions in Ω, then ∆ max {u1, u2} ≥ χ{u1>u2} f1 + χ{u2>u1} f2 + χ{u1=u2}
1
2 ( f1 + f2) in the

sense of distributions in Ω.

If h : Ω→ R is a measurable function such that hϕ ∈ L1 (Ω) for any ϕ ∈ C∞c (Ω) ,we say that u : Ω→ R

is a subsolution (respectively a supersolution), in the sense of distributions, of the problem −∆u = h in
Ω, if u ∈ L1

loc (Ω) and −
∫

Ω
u∆ϕ ≤

∫
Ω

hϕ (resp. −
∫

Ω
u∆ϕ ≥

∫
Ω

hϕ) for any nonnegative ϕ ∈ C∞c (Ω) .
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Remark 2.10. ( [28], Theorem 2.4) Let f : Ω× (0,∞)→ R be a Caratheodory function, and let w and
w be two functions, both in L∞loc (Ω) ∩ W1,2

loc (Ω) , and such that f
(
.,w

)
and f (.,w) belong to L1

loc (Ω) .
Suppose that w is a subsolution and w is a supersolution, both in the sense of distributions, of the
problem

− ∆w = f (.,w) in Ω. (2.6)

Suppose in addition that 0 < w (x) ≤ w (x) a.e. x ∈ Ω, and that there exists h ∈ L∞loc (Ω) such that
sups∈[w(x),w(x)] | f (x, s)| ≤ h (x) a.e. x ∈ Ω. Then (2.6) has a solution w, in the sense of distributions,
which satisfies w ≤ w ≤ w a.e. in Ω. Moreover, as obverved in [28], if in addition f (.,w) ∈ L∞loc (Ω) ,
then, by a density argument, the equality

∫
Ω
〈∇w,∇ϕ〉 =

∫
Ω

f (.,w)ϕ holds also for any ϕ ∈ W1,2
loc (Ω)

with compact support.

Remark 2.11. Let us recall the Hardy inequality (as stated, e.g., in [29], Theorem 1.10.15, see also [1],
p. 313): There exists a positive constant c such that

∥∥∥∥ ϕ

dΩ

∥∥∥∥
L2(Ω)
≤ c ‖∇ϕ‖L2(Ω) for all ϕ ∈ H1

0 (Ω) .

Remark 2.12. Let a and {gε}ε∈(0,1] be as in Lemma 2.2 and assume that α ∈ (0, 1] . Let ε ∈ (0, 1] . If
u ∈ L∞ (Ω) and if, for some positive constant c, u ≥ cdΩ a.e. in Ω, then au−α − gε (., u) ∈

(
H1

0 (Ω)
)′
.

Indeed, for ϕ ∈ H1
0 (Ω) we have |au−αϕ| ≤ c−αd1−α

Ω

∣∣∣∣ ϕdΩ

∣∣∣∣ . Since d1−α
Ω
∈ L∞ (Ω) (because α ≤ 1), the

Hardy inequality gives a positive constant c′ independent of ϕ such that ‖au−αϕ‖1 ≤ c′ ‖∇ϕ‖2 . Also,
since u ∈ L∞ (Ω) , from h6) and the Hardy inequality, ‖gε (., u)ϕ‖1 ≤ c′′ ‖∇ϕ‖2 , with c′′ a positive
constant independent of ϕ.

Lemma 2.13. Let a and {gε}ε∈(0,1] be as in Lemma 2.2 and assume that α ∈ (0, 1] . Let ε ∈ (0, 1] .
Suppose that u ∈ W1,2

loc (Ω) ∩ L∞ (Ω) is a solution, in the sense of distributions, of the problem

− ∆u = au−α − gε (., u) in Ω, (2.7)

and that there exist positive constants c, c′ and γ such that c′dΩ ≤ u ≤ cdγ
Ω

a.e. in Ω. Then u ∈
H1

0 (Ω) ∩C
(
Ω
)
, and u is a weak solution, in the usual sense of H1

0 (Ω) , of problem (1.6).

Proof. Since u ∈ L∞ (Ω) and u ≥ c′dΩ, we have au−α − gε (., u) ∈ L∞loc (Ω) . Thus, from the inner elliptic
estimates in ( [20], Theorem 8.24), u ∈ C (Ω) and, from the inequalities c′dΩ ≤ u ≤ cdγ

Ω
a.e. in Ω, u is

also continuous on ∂Ω. Then u ∈ C
(
Ω
)

The proof of that u ∈ H1
0 (Ω) and that u is a weak solution, in the usual sense of H1

0 (Ω) , of problem
(1.6), is a slight variation of the proof of ( [24], Lemma 2.4). For the convenience of the reader,
we give the details: For j ∈ N, let h j : R→ R be the function defined by h j (s) := 0 if s ≤ 1

j ,

h j (s) := −3 j2s3 + 14 js2 − 19s + 8
j if 1

j < s < 2
j and h (s) = s for 2

j ≤ s. Then h j ∈ C1 (R) ,

h′j (s) = 0 for s < 1
j , h′j (s) ≥ 0 for 1

j < s < 2
j and h′j (s) = 1 for 2

j ≤ s. Moreover, for s ∈
(

1
j ,

2
j

)
we have s−1h j (s) = −3 j2s2 + 14 js − 19 + 8

js < −3 j2s2 + 14 js − 11 < 5 (the last inequality because

−3t2 + 14t − 16 < 0 whenever t <
[

8
3 , 2

]
). Thus 0 ≤ h j (s) ≤ 5s for any j ∈ N and s ≥ 0.

Let h j (u) := h j ◦ u. Then, for all j, ∇
(
h j (u)

)
= h′j (u)∇u. Since u ∈ W1,2

loc (Ω) , we have h j (u) ∈

W1,2
loc (Ω) , and since h j (u) has compact support, Remark 2.10 gives, for all j ∈ N,

∫
Ω

〈
∇u,∇

(
h j (u)

)〉
=∫

Ω
(au−α − gε (., u)) h j (u) , i.e.,∫

{u>0}
h′j (u) |∇u|2 =

∫
Ω

(
au−α − gε (., u)

)
h j (u) . (2.8)
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Now, h′j (u) |∇u|2 is a nonnegative function and lim j→∞ h′j (u) |∇u|2 = |∇u|2 a.e. in Ω, and so, by (2.8)
and the Fatou’s lemma, ∫

Ω

|∇u|2 ≤ lim j→∞

∫
Ω

(
au−α − gε (., u)

)
h j (u) .

Also,
lim
j→∞

(
au−α − gε (., u)

)
h j (u) = au1−α − ugε (., u) a.e. in Ω.

Now, 0 ≤ au−αh j (u) ≤ 5au1−α. Since a and u belong to L∞ (Ω) and α ≤ 1, we have au1−α ∈ L1 (Ω) .
Also,

0 ≤ gε (., u) h j (u) ≤ 5ugε (., u) ≤ 5 ‖u‖2∞ sup
0<s≤‖u‖∞

s−1gε (., s) a.e. in Ω,

and, by h6), sup0<s≤‖u‖∞ s−1gε (., s) ∈ L∞ (Ω) . Then, by the Lebesgue dominated convergence theorem,

lim
j→∞

∫
Ω

(
au−α − gε (., u)

)
h j (u) =

∫
Ω

(
au1−α − ugε (., u)

)
< ∞.

Thus
∫

Ω
|∇u|2 < ∞, and so u ∈ H1 (Ω) . Since u ∈ C

(
Ω
)

and u = 0 on ∂Ω, we conclude that u ∈ H1
0 (Ω) .

Also, by Remark 2.12, au−α − gε (., u) ∈
(
H1

0 (Ω)
)′
. Then, by a density argument, the equality∫

Ω

〈∇u,∇ϕ〉 =

∫
Ω

(
au−α − gε (., u)

)
ϕ

which holds for ϕ ∈ C∞c (Ω) , holds also for any ϕ ∈ H1
0 (Ω) . �

Lemma 2.14. Let a, α, and {gε}ε∈(0,1] be as in Lemma 2.2. Let ε ∈ (0, 1] and let fε : Ω × [0,∞) → R
be defined by fε (., s) := χ(0,∞) (s) as−α − gε (., s) . Let v1 and v2 be two nonnegative functions in
L∞ (Ω) ∩ H1

0 (Ω) such that fε (., vi) ∈ L1
loc (Ω) for i = 1, 2; and let v := max {v1, v2} . Then:

i) fε (., v) ∈ L1
loc (Ω) .

ii) If v1 and v2 are subsolutions, in the sense of distributions, to problem (1.7), then v is also a
subsolution, in the sense of distributions, to the problem

−∆u = χ{u>0}au−α − gε (., u) in Ω.

Proof. Since 0 ≤ v ∈ L∞ (Ω) , from h7) and h8) it follows that gε (., v) ∈ L1 (Ω) . Similarly, gε (., v1)
and gε (., v2) belong to L1 (Ω) and so, since fε (., vi) ∈ L1

loc (Ω) for i = 1, 2; we get that χ{v1>0}av−α1 and
χ{v2>0}av−α2 belong to L1

loc (Ω) . Therefore, to prove i) it suffices to see that χ{v>0}av−α ∈ L1
loc (Ω) .Note that

if x ∈ Ω and v (x) > 0 then either v1 (x) > 0 or v2 (x) > 0. Now, χ{v>0}av−α = av−α ≤ av−α1 = χ{v1>0}av−α1
in {v1 > 0} , and similarly, χ{v>0}av−α ≤ χ{v2>0}av−α2 in {v2 > 0} . Also, χ{v>0}av−α = 0 in {v = 0} . Then
χ{v>0}av−α ≤ χ{v1>0}av−α1 + χ{v2>0}av−α2 in Ω and so χ{v>0}av−α ∈ L1

loc (Ω) . Thus i) holds.
To see ii), suppose that −∆vi ≤ fε (., vi) in D′ (Ω) for i = 1, 2; and let ϕ be a nonnegative function
in C∞c (Ω) . Let Ω′ be a C1,1 subdomain of Ω, such that supp (ϕ) ⊂ Ω′ and Ω′ ⊂ Ω. Consider the
restrictions (still denoted by v1 and v2) of v1 and v2 to Ω′. For each i = 1, 2, we have vi ∈ L1 (Ω′) ,
fε (., vi) ∈ L1 (Ω′) and −∆vi ≤ fε (., vi) in D′ (Ω′) . Thus, from Remark 2.9 v),

−∆v ≤ χ{v1>v2} fε (., v1) + χ{v2>v1} fε (., v2) + χ{v1=v2}

1
2

( fε (., v1) + fε (., v2))

= fε (., v) in D′
(
Ω′

)
and then −

∫
Ω

v∆ϕ ≤
∫

Ω
fε (., v)ϕ. �
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Lemma 2.15. Let a, α, and {gε}ε∈(0,1] be as in Lemma 2.2. Then for any ε ∈ (0, 1] there exists a weak
solution uε, in the sense of Definition 1.1, of problem (1.7), which is maximal in the following sense: If
v is a weak solution, in the sense of Definition 1.1, of problem (1.7), then v ≤ uε a.e. in Ω. Moreover,
uε is a solution, in the usual sense of H1

0 (Ω) , of problem (1.7).

Proof. Let z be as given in Remark 2.4, and let S be the set of the nonidentically zero weak solutions,
in the sense of Definition 1.1, of problem (1.7). By Lemma 2.2, S , ∅ and, for any u ∈ S, by Lemma
2.5 we have u ≤ z in Ω and, by Lemma 2.6, there exists a positive constant c such that u ≥ cdΩ in Ω.

Then 0 <
∫

Ω
u ≤

∫
Ω

z < ∞ for any u ∈ S. Let β := sup
{∫

Ω
u : u ∈ S

}
. Thus 0 < β < ∞. Let {uk}k∈N ⊂ S

be a sequence such that limk→∞

∫
Ω

uk = β. For k ∈ N, let wk := max
{
u j : 1 ≤ j ≤ k

}
. Thus {wk}k∈N is a

nondecreasing sequence in H1
0 (Ω)∩ L∞ (Ω) , and a repeated use of Lemma 2.14 gives that each wk is a

subsolution, in the sense of D′ (Ω), of the problem

− ∆u = au−α − gε (., u) in Ω. (2.9)

Since wk ∈ L∞ (Ω) and wk ≥ u1 ≥ c1dΩ a.e. in Ω, Remark 2.12 gives that aw−αk − gε (.,wk) ∈
(
H1

0 (Ω)
)′
.

Then, by a density argument, the inequality∫
Ω

〈∇wk,∇ϕ〉 ≤

∫
Ω

(
aw−αk − gε (.,wk)

)
ϕ, (2.10)

which holds for ϕ ∈ C∞c (Ω) , holds also for any ϕ ∈ H1
0 (Ω) , i.e., wk is a subsolution, in the usual sense

of H1
0 (Ω) , of problem (2.9)

Note that
{∫
{a>0}

aw1−α
k

}
k∈N

is bounded. Indeed, since uk ≤ z a.e. in Ω for any k ∈ N, we have wk ≤ z

a.e. in Ω for all k, and so
∫
{a>0}

aw1−α
k ≤

∫
Ω

az1−α < ∞. Moreover, {wk}k∈N is bounded in H1
0 (Ω) . In fact,

taking wk as a test function in (2.10) we get, for any k ∈ N,∫
Ω

|∇wk|
2 +

∫
Ω

gε (.,wk) wk ≤

∫
{a>0}

aw1−α
k (2.11)

Then, after pass to a subsequence if necessary, we can assume that there exists w ∈ H1
0 (Ω) such that

{wk}k∈N converges in L2 (Ω) and a.e. in Ω to w; and {∇wk}k∈N converges weakly in L2 (Ω,Rn) to ∇w. Let
us show that w is a subsolution, in the sense of distributions of problem (2.9). Let ϕ be a nonnegative
function in C∞c (Ω) and let k ∈ N. Since wk is a subsolution, in the sense of distributions, of (2.9), we
have ∫

Ω

〈∇wk,∇ϕ〉 +

∫
Ω

gε (.,wk)ϕ ≤
∫

Ω

aw−αk ϕ. (2.12)

Since {∇wk}k∈N converges weakly in L2 (Ω,Rn) to ∇w, we have

lim
k→∞

∫
Ω

〈∇wk,∇ϕ〉 =

∫
Ω

〈∇w,∇ϕ〉 .

Also, since {gε (.,wk)ϕ}k∈N converges to gε (.,w)ϕ a.e. in Ω, and

|gε (.,wk)ϕ| ≤ sup
s∈[0,‖z‖∞]

(
s−1gε (., s)

)
wk |ϕ| ∈ L1 (Ω) ,
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the Lebesgue dominated convergence theorem gives

lim
k→∞

∫
Ω

gε (.,wk)ϕ =

∫
Ω

gε (.,w)ϕ.

On the other hand,
{
aw−αk ϕ

}
k∈N

converges to aw−αϕ a.e. in Ω; and wk ≥ u1 ≥ cdΩ a.e. in Ω, and
so

∣∣∣aw−αk ϕ
∣∣∣ ≤ c−αad1−α

Ω

∣∣∣d−1
Ω
ϕ
∣∣∣ a.e. in Ω; and, since d1−α

Ω
∈ L∞ (Ω) , the Hardy inequality gives that

ad1−α
Ω

∣∣∣d−1
Ω
ϕ
∣∣∣ ∈ L1 (Ω) . Then, by the Lebesgue dominated convergence theorem, limk→∞

∫
Ω

aw−αk ϕ =∫
Ω

aw−αϕ < ∞. Hence, from (2.12),∫
Ω

〈∇w,∇ϕ〉 +
∫

Ω

gε (.,w)ϕ ≤
∫

Ω

aw−αϕ,

and so w is a subsolution, in the sense of distributions to problem (2.9). Note that z is a supersolution,
in the sense of distributions, of problem (2.9) and that w ≤ z a.e. in Ω (because uk ≤ z for all k ∈ N).
Also, for some positive constant c and for any k, w ≥ wk ≥ u1 ≥ cdΩ a.e. in Ω. Then there exists a
positive constant c′ such that

sup
s∈[w(x),z(x)]

(
χ{s>0}a (x) s−α − gε (x, s)

)
≤ c′d−αΩ for a.e x ∈ Ω

and so, by Remark 2.10, there exists a solution uε ∈ W1,2
loc (Ω), in the sense of distributions, of (2.9)

such that w ≤ uε ≤ z a.e. a.e. in Ω. Therefore, by Remark 2.4, cdΩ ≤ uε ≤ c′dτ
Ω

a.e. in Ω, with c, c′ and
τ positive constants. Then, by Lemma 2.13, uε ∈ H1

0 (Ω)∩C
(
Ω
)

and uε is a weak solution, in the sense
of Definition 1.1, of problem (1.7). Also, uε ≥ w ≥ wk ≥ uk a.e. in Ω for any k ∈ N, and so

∫
Ω

uε ≥ β
which, by the definition of β, implies

∫
Ω

uε = β.

Let us show that uε is the maximal solution of problem (1.7), in the sense required by the lemma.
Suppose that w∗ is a nonidentically zero weak solution, in the sense of Definition 1.1, of (1.7). By
Lemmas 2.5, 2.7 and 2.6, w∗ ≤ z in Ω, w∗ ∈ C

(
Ω
)

and w∗ ≥ cdΩ a.e. in Ω with c a positive constant
c. Let w∗∗ := max {uε,w∗} . Thus w∗∗ is a subsolution, in the sense of distributions, of problem (2.9),
Remark 2.10 applies to obtain a solution w̃, in the sense of distributions, of problem (1.7), such that
w∗∗ ≤ w̃ ≤ z, and Lemma 2.13 applies to obtain that w̃ ∈ H1

0 (Ω) ∩ L∞ (Ω) and that w̃ is a weak
solution, in the sense of Definition 1.1, to problem (1.7). Then

∫
Ω

w̃ ≤ β. Since uε ≤ w∗∗ ≤ w̃ we get
β =

∫
Ω

uε ≤
∫

Ω
w∗∗ ≤

∫
Ω

w̃ ≤ β, and so uε = w∗∗. Thus uε ≥ w∗. �

For ε ∈ (0, 1] , let uε be the maximal weak solution to problem (1.7) given by Lemma 2.15.

Lemma 2.16. Let a, α, and {gε}ε∈(0,1] be as in Lemma 2.2. Then the map ε → uε is nondecreasing on
(0, 1] .

Proof. For 0 < ε < η we have, in the sense of definition 1.1,

−∆uε = au−αε − gε (., uε) ≤ au−αε − gη (., uε) in Ω,

and so uε ∈ H1
0 (Ω) ∩C

(
Ω
)

is a subsolution, in the sense of distributions, to the problem

− ∆u = au−α − gη (., u) in Ω. (2.13)
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Let z be as in Remark 2.4. Thus z is a supersolution, in the sense of distributions, of problem (2.9),
and z ≤ cdτ

Ω
a.e. in Ω, with c and τ positive constants c. Taking into account that, for some positive

constant c, uε ≥ cdΩ a.e. in Ω, Remark 2.10 applies, as before, to obtain a weak solution, in the
sense of distributions, ũη ∈ W1,2

loc (Ω) of (2.13) such that uε ≤ ũη ≤ z. Now, Lemma 2.13 gives that
ũη ∈ H1

0 (Ω) ∩ C
(
Ω
)

and that ũη is a weak solution, in the sense of Definition 1.1, of problem (2.13),
which implies ũη ≤ uη. Thus uε ≤ uη. �

Lemma 2.17. Let a, α, and {gε}ε∈(0,1] be as in Lemma 2.2. Then {uε}ε∈(0,1] is bounded in H1
0 (Ω) .

Proof. Let z be as in Remark 2.4. by Lemma 2.5 uε ≤ z in Ω and so, since 0 < α ≤ 1, we have∫
{a>0}

au1−α
ε ≤

∫
Ω

az1−α < ∞. By taking uε as a test function in (1.7) we get, for any ε ∈ (0, 1] ,∫
Ω

|∇uε|2 +

∫
Ω

uεgε (., uε) =

∫
{a>0}

au1−α
ε .

Then
∫

Ω
|∇uε|2 ≤

∫
Ω

az1−α < ∞. �

Lemma 2.18. Let a, α, and {gε}ε∈(0,1] be as in Lemma 2.2. Let u := limε→0+ uε. Then:
i) u ∈ H1

0 (Ω) ∩ L∞ (Ω) .
ii) u > 0 a.e. in {a > 0} .
iii) χ{u>0}au−αϕ ∈ L1 (Ω) for any ϕ ∈ H1

0 (Ω) ∩ L∞ (Ω) .
iv) If

{
ε j

}
j∈N

is a decreasing sequence in (0, 1] such that lim j→∞ ε j = 0 then lim j→∞

∫
{a>0}

au−αε j
ϕ =∫

{a>0}
au−αϕ for any ϕ ∈ H1

0 (Ω) ∩ L∞ (Ω) .

Proof. To see i), consider a nonincreasing sequence
{
ε j

}
j∈N
⊂ (0, 1] such that lim j→∞ ε j = 0. By

Lemma 2.17,
{
uε j

}
j∈N

is bounded in H1
0 (Ω) and so, after pass to a subsequence if necessary,

{
uε j

}
j∈N

converges, strongly in L2 (Ω) , and a.e. in Ω, to some ũ ∈ H1
0 (Ω) , and

{
∇uε j

}
j∈N

converges weakly in

L2 (Ω,Rn) to ∇ũ. Since uε j converges to u a.e. in Ω we have u = ũ a.e. in Ω, and so u ∈ H1
0 (Ω) . Also,

0 ≤ u ≤ uε1 ∈ L∞ (Ω) and then u ∈ H1
0 (Ω) ∩ L∞ (Ω) . Thus i) holds.

To see ii) and iii), consider an arbitrary nonnegative function ϕ ∈ H1
0 (Ω) ∩ L∞ (Ω) . From (1.7) we

have, for each j, ∫
Ω

〈
∇uε j ,∇ϕ

〉
+

∫
Ω

gε j

(
., uε j

)
ϕ =

∫
Ω

au−αε j
ϕ. (2.14){

∇uε j

}
j∈N

converges weakly in L2 (Ω,Rn) to ∇u, and thus

lim
j→∞

∫
Ω

〈
∇uε j ,∇ϕ

〉
=

∫
Ω

〈∇u,∇ϕ〉 .

By Lemma 2.16,
{
au−αε j

ϕ
}

j∈N
is nondecreasing, then, by the monotone convergence theorem,

lim j→∞

∫
Ω

au−αε j
ϕ = lim j→∞

∫
{a>0}

au−αε j
ϕ =

∫
{a>0}

au−αϕ.
Let z be as in Lemma 2.5. Then uε j ≤ z in Ω and so, taking into account h4),∫

Ω
gε j

(
., uε j

)
ϕ ≤

∫
Ω

sup0≤s≤‖z‖∞ g (., s)ϕ < ∞. Thus∫
{a>0}

au−αϕ = lim
j→∞

∫
Ω

au−αε j
ϕ = lim

j→∞

(∫
Ω

〈
∇uε j ,∇ϕ

〉
+

∫
Ω

gε j

(
., uε j

)
ϕ

)
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≤ lim j→∞

∫
Ω

〈
∇uε j ,∇ϕ

〉
+ lim j→∞

∫
Ω

gε j

(
., uε j

)
ϕ

≤

∫
Ω

〈∇u,∇ϕ〉 +
∫

Ω

sup
0≤s≤‖z‖∞

g (., s)ϕ < ∞.

Therefore
∫
{a>0}

au−αϕ < ∞. Since this holds for any nonnegative ϕ ∈ H1
0 (Ω) ∩ L∞ (Ω) , we conclude

that u > 0 a.e. in {a > 0} . Thus ii) holds. Now,∫
Ω

χ{u>0}au−αϕ =

∫
{a>0}

χ{u>0}au−αϕ =

∫
{a>0}

au−αϕ < ∞,

and then iii) holds for any nonnegative ϕ ∈ H1
0 (Ω) ∩ L∞ (Ω) . Hence, by writing ϕ = ϕ+ − ϕ−, iii)

holds also for any ϕ ∈ H1
0 (Ω) ∩ L∞ (Ω) . Finally, observe that, in the case when ϕ ≥ 0, the monotone

convergence theorem gives iv). Then, by writing ϕ = ϕ+ − ϕ−, iv), holds also for an arbitrary ϕ ∈

H1
0 (Ω) ∩ L∞ (Ω) . �

Remark 2.19. Assume that a satisfies the conditions h1), h2) and also the condition h6) of Theorem
1.4; and let Ω+ be as in h6). Taking into account h6), Remark 2.4 (applied in each connected component
of Ω+) gives that the problem 

−∆ζ = aζ−α in Ω+,

ζ = 0 on ∂Ω+,

ζ > 0 in Ω+,

(2.15)

has a unique weak solution, in the sense of Definition 1.1, ζ ∈ H1
0 (Ω) ∩ L∞ (Ω) , and that it satisfies:

i) ζ ∈ C
(
Ω+

)
.

ii) There exists a positive constant c such that ζ ≥ cdΩ+ in Ω+.

iii) ζ is also a solution of problem (2.15) in the usual sense of H1
0 (Ω+) , i.e., aζ−αϕ ∈ L1 (Ω) and∫

Ω
〈∇ζ,∇ϕ〉 =

∫
Ω

aζ−αϕ for any ϕ ∈ H1
0 (Ω+) .

Lemma 2.20. Assume that a and g satisfy the conditions h1)-h4) and also the condition h6) of
Theorem 1.4. Let Ω+ and A+ be as in the statement of Theorem 1.4 and assume, in addition, that
g (., s) = 0 a.e. in A+ for any s ≥ 0. Let ζ be as in Remark 2.19, let ε ∈ (0, 1] , and let
u ∈ H1

0 (Ω) ∩ L∞ (Ω) be a weak solution, in the sense of Definition 1.1, of problem (1.5). Then u ≥ ζ in
Ω+.

Proof. By Remark 2.19 i), ζ ∈ C
(
Ω+

)
and, by Lemma 2.7, u ∈ C

(
Ω
)
.Also, since g (., s) = 0 a.e. in Ω+

for s ≥ 0, we have −∆ (u − ζ) = a (u−α − ζ−α) ≥ 0 in D′ (Ω+) . We claim that u ≥ ζ in Ω+. To prove this
fact we proceed by the way of contradiction: Let U := {x ∈ Ω+ : u (x) < ζ (x)} and suppose that U , ∅.
Then U is an open subset of Ω+ and −∆ (u − ζ) = a (u−α − ζ−α) ≥ 0 in D′ (U) . Notice that u− ζ ≥ 0 on
∂U. In fact, if u (x) < ζ (x) for some x ∈ ∂U we would have, either x ∈ Ω+ or x ∈ ∂Ω+; if x ∈ Ω+ then,
since u and ζ are continuous on Ω+, we would have u < ζ on some ball around x, contradicting the fact
that x ∈ ∂U, and if x ∈ ∂Ω+, then u (x) ≥ 0 = ζ (x) contradicting our assumption that u (x) < ζ (x) .
Then U = ∅ and so u ≥ ζ in Ω+; and then, by continuity, also u ≥ ζ on ∂Ω+. Therefore, from the weak
maximum principle, u ≥ ζ in Ω+. �
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3. Proof of the main results

Observe that if g : Ω × [0,∞) → R satisfies the conditions h3) and h4) stated at the introduction, and
if, for ε ∈ (0, 1] , gε : Ω × [0,∞)→ R is defined by

gε (., s) := s (s + ε)−1 g (., s) , (3.1)

then, for any s > 0, g (., s) = limε→0+ gε (., s) a.e. in Ω; and the family {gε}ε∈(0,1] satisfies the conditions
h7)-h9). Therefore all the results of the Section 2 hold for such a family {gε}ε∈(0,1] .

Lemma 3.1. Let a : Ω → R and g : Ω × [0,∞) → R satisfying the conditions h1)-h4) and, for
ε ∈ (0, 1] , let gε : Ω × [0,∞) → R be defined by (3.1), let uε be as given by Lemma 2.15, and let
u := limε→0+ uε. Let

{
ε j

}
j∈N
⊂ (0, 1] be a nonincreasing sequence such that lim j→∞ ε j = 0 and, for

j ∈ N, let uε j be as given by Lemma 2.15. Let θ j := uε j

(
uε j + ε j

)−1
. Then there exist a nonnegative

function θ∗ ∈ L∞ (Ω) and a sequence {wm}m∈N ⊂ L2 (Ω,Rn) × L2 (Ω) with the following properties:
i) for each m ∈ N, wm =

∑
l∈Fm

γl,m
(
∇uεl , θlg

(
., uεl

))
, where each Fm is a finite subset of N satisfying

limm→∞minFm = ∞; γl,m ∈ [0, 1] for any m ∈ N and l ∈ Fm; and
∑

l∈Fm
γl,m = 1 for any m ∈ N.

ii) {wm}m∈N converges strongly in L2 (Ω,Rn) × L2 (Ω) to (∇u, θ∗) .
iii) limm→∞

∑
l∈Fm

γl,mθlg
(
., uεl

)
= θ∗ a.e. in Ω.

iv) θ∗ = χ{u>0}g (.,u) a.e. in {u > 0} .

Proof. By Lemma 2.17
{
uε j

}
j∈N

is bounded in H1
0 (Ω) . Then, after pass to a subsequence if necessary,

we can assume that
{
uε j

}
j∈N

converges to u in L2 (Ω) and that
{
∇uε j

}
j∈N

converges weakly to ∇u in

L2 (Ω,Rn) . Moreover, by Lemma 2.5, uε j ≤ z a.e. in Ω for all j, and so u ≤ z a.e. in Ω. Since, for any
j, 0 < θ j < 1 a.e. in Ω, and, by h3) and h4), 0 ≤ g

(
., uε j

)
≤ sups∈[0,‖z‖∞] g (., s) ∈ L∞ (Ω) , we have

that
{
θ jg

(
., uε j

)}
j∈N

is bounded in L2 (Ω) . Thus, after pass to a further subsequence, we can assume

that
{
θ jg

(
., uε j

)}
j∈N

is weakly convergent in L2 (Ω) to a function θ∗ ∈ L2 (Ω) , and that
{
∇uε j

}
j∈N

is

weakly convergent in L2 (Ω,Rn) to ∇u. Then
{(
∇uε j , θ jg

(
., uε j

))}
j∈N

is weakly convergent to (∇u, θ∗) in

L2 (Ω,Rn)×L2 (Ω) . Thus (see e.g., [33] Theorem 3.13) there exists a sequence {wm}m∈N of the form wm =∑
l∈Fm

γl,m
(
∇uεl , θlg

(
., uεl

))
, where each Fm is a finite subset of N such that limm→∞minFm = ∞, γl,m ∈

[0, 1] for any m ∈ N and l ∈ Fm, for each m,
∑

l∈Fm
γl,m = 1 and such that {wm}m∈N converges strongly in

L2 (Ω,Rn)×L2 (Ω) to (∇u, θ∗) . Then i) and ii) hold, and
{∑

l∈Fm
γl,mθlg

(
., uεl

)}
m∈N

converges in L2 (Ω) to
θ∗. Therefore, after pass to a further subsequence, we can assume that limm→∞

∑
l∈Fm

γl,mθlg
(
.,uεl

)
= θ∗

a.e. in Ω and, since
{
θ jg

(
., uε j

)}
j∈N

is bounded in L∞ (Ω) , we have that θ∗ ∈ L∞ (Ω) . Thus iii) holds.

Also
{
θ j

}
j∈N

and
{
g
(
., uε j

)}
j∈N

converge, a.e. in{u > 0}, to χ{u>0} and to g (.,u) respectively, and then iv)
follows from iii). �

Proof of Theorem 1.2. Let
{
ε j

}
j∈N
⊂ (0, 1) be a nonincreasing sequence such that lim j→∞ ε j = 0, let θ∗

and {wm}m∈N ⊂ L2 (Ω,Rn) × L2 (Ω) be as given by Lemma 3.1, and let ϕ ∈ H1
0 (Ω) ∩ L∞ (Ω) . Assume

temporarily that ϕ ≥ 0 in Ω. Then
{∑

l∈Fm
γl,mθlg

(
., uεl

)
ϕ
}

m∈N
and

{∑
l∈Fm

γl,m
〈
∇uεl ,∇ϕ

〉}
m∈N

converge
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in L1 (Ω) to θ∗ϕ and 〈∇u,∇ϕ〉 respectively. Thus

lim
m→∞

∫
Ω

∑
l∈Fm

γl,mθlg
(
., uεl

)
ϕ =

∫
Ω

θ∗ϕ, (3.2)

lim
m→∞

∫
Ω

∑
l∈Fm

γl,m
〈
∇uεl ,∇ϕ

〉
=

∫
Ω

〈∇u,∇ϕ〉 (3.3)

and both limits are finite. Since
{
uε j

}
j∈N

is nonincreasing we have, for m ∈ N and l ∈ Fm,

au−αεLm
ϕ ≤ a

∑
l∈Fm

γl,mu−αεl
ϕ ≤ au−αεL∗m

ϕ, (3.4)

where Lm := maxFm and L∗m := minFm. Also, by the monotone convergence theorem,

lim
j→∞

∫
Ω

au−αε j
ϕ = lim

j→∞

∫
{a>0}

au−αε j
ϕ =

∫
{a>0}

au−αϕ =

∫
Ω

χ{u>0}au−αϕ, (3.5)

the last equality because, by Lemma 2.18, u > 0 a.e. in {a > 0} . Then, since limm→∞ L∗m = ∞, (3.4)
and (3.5) give

lim
m→∞

∫
{a>0}

a
∑
l∈Fm

γl,mu−αεl
ϕ =

∫
Ω

χ{u>0}au−αϕ. (3.6)

(notice that, by Lemma 2.18,
∫

Ω
χ{u>0}au−αϕ < ∞). Since θlg

(
., uεl

)
= gεl

(
., uεl

)
we have, for any

m ∈ N, and in the sense of definition 1.1,
−∆

(∑
l∈Fm

γl,muεl

)
= a

∑
l∈Fm

γl,mu−αεl
−

∑
l∈Fm

γl,mθlg
(
., uεl

)
in Ω,∑

l∈Fm
γl,muεl = 0 on ∂Ω

(3.7)

and so ∫
Ω

∑
l∈Fm

γl,m
〈
∇uεl ,∇ϕ

〉
(3.8)

=

∫
Ω

a
∑
l∈Fm

γl,mu−αεl
ϕ −

∫
Ω

∑
l∈Fm

γl,mθlg
(
., uεl

)
ϕ.

Taking the limit as m → ∞ in (3.8), and using (3.2), (3.3), (3.6) and recalling that, by Lemma 3.1 iv),
θ∗ = χ{u>0}g (.,u) a.e. in {u > 0}, we get that∫

Ω

〈∇u,∇ϕ〉 =

∫
Ω

χ{u>0}au−αϕ −
∫

Ω

θ∗ϕ (3.9)

=

∫
Ω

χ{u>0}au−αϕ −
∫

Ω

χ{u>0}g (.,u)ϕ −
∫
{u=0}

θ∗ϕ.

for any nonnegative ϕ ∈ H1
0 (Ω) ∩ L∞ (Ω) , and by writing ϕ = ϕ+ − ϕ− it follows that (3.9) holds also

for any ϕ ∈ H1
0 (Ω) ∩ L∞ (Ω) .
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Let Ω0 be as in h3). If Ω0 = ∅ then u > 0 a.e. in Ω (because u > 0 a.e. in {a > 0}) and thus,
by (3.9), u is a solution, in the sense of Definition 1.1, of problem (1.2). Consider now the case
when Ω0 , ∅. We claim that, in this case, u ∈ W2,p

loc (Ω0) for any p ∈ [1,∞) . Indeed, let Ω′0 be a
an arbitrary C1,1 subdomain of Ω0 such that Ω′0 ⊂ Ω0. We have χ{u>0}au−α = 0 on Ω0, and so, from
(3.9), −∆u = −χ{u>0}g (.,u) − θ∗ in D′ (Ω0) . Also, the restrictions to Ω0 of u and θ∗ belong to L∞ (Ω0)
and so, from the inner elliptic estimates (as stated e.g., in [20], Theorem 8.24), u ∈ W2,p

(
Ω′0

)
. Then

u ∈ W2,p
loc (Ω0) for any p ∈ [1,∞) . Thus, for any p ∈ [1,∞), u is a strong solution in W2,p

loc (Ω0) of
−∆u = −χ{u>0}g (.,u) − θ∗ in Ω0.

Taking into account (3.9), in order to complete the proof of the theorem it is enough to see that the set
E := {u = 0} ∩ {θ∗ > 0} has zero measure. Suppose that |E| > 0. Since u > 0 a.e. in {a > 0} , from h5)
it follows that E ⊂ Ω0 ∪ V, for some measurable V ⊂ Ω such that |V | = 0. Since |E| > 0, there exists a
subdomain Ω′, with Ω′ ⊂ Ω0, and such that E′ := E ∩ Ω′ has positive measure. Since u = 0 a.e. in E′

and u ∈ W1,p (Ω′) we have ∇u = 0 a.e. in E′ (see [20], Lemma 7.7). Thus ∂u
∂xi

= 0 a.e. in E′ for each

i = 1, 2, ..., n; and since ∂u
∂xi
∈ W1,p

(
Ω′0

)
the same argument gives that also the second order derivatives

∂2u
∂xi∂x j

vanish a.e. in E′. Then ∆u = 0 a.e. in E′, which, taking into account that g (.,u) is nonnegative
and θ∗ > 0 in E′, contradicts the fact that −∆u = −χ{u>0}g (.,u) − θ∗ a.e. in Ω0. �

Proof of Theorem 1.3. Notice that the condition h4’) is stronger than h4) and so Theorem 1.2 gives a
weak solution u, in the sense of definition 1.1, of problem (1.2) which satisfies u > 0 a.e. in {a > 0} ,
and so, since a > 0 a.e. in Ω, by Lemma 2.18, we have u > 0 a.e. in Ω. Thus u is a weak solution, in
the sense of Definition 1.1, of the problem{

−∆u = au−α − g (.,u) in Ω,

u = 0 on ∂Ω.

Let a0 := u−1g (.,u) . Since g ≥ 0 and u ∈ L∞ (Ω) , h4’) gives 0 ≤ a0 ∈ L∞ (Ω) . Now, in the sense
of Definition 1.1, −∆u + a0u = au−α in Ω, u = 0 on ∂Ω, and u > 0 a.e. in Ω; Then, for some
η > 0 and some measurable set E ⊂ Ω with |E| > 0, we have χ{u>0}au−α ≥ ηχE a.e. in Ω. Let
ψ ∈ ∩1≤q<∞W2,,q (Ω) ∩W1,,q

0 (Ω) be the solution of the problem −∆ψ + a0ψ = ηχE in Ω, ψ = 0 on ∂Ω.

By the Hopf maximum principle (as stated, e.g., in [34], Theorem 1.1) there exists a positive constant
c1 such that ψ ≥ c1dΩ in Ω; and, from (1.7) we have −∆u + a0u ≥ ηχE in D′ (Ω) . Then, by the weak
maximum principle (as stated, e.g., in [20], Theorem 8.1), u ≥ ψ a.e. in Ω. Therefore, u ≥ c1dΩ a.e.
in Ω. Thus, for some positive constant c′, au−α ≤ c′d−α

Ω
a.e. in Ω . Also, g (.,u) ∈ L∞ (Ω) and so, for a

larger c′ if necessary, we have |au−α − g (.,u)| ≤ c′d−α
Ω

a.e. in Ω. Then, taking into account that α ≤ 1,
the Hardy inequality gives, for any ϕ ∈ H1

0 (Ω) ,∫
Ω

∣∣∣(au−α − g (.,u)
)
ϕ
∣∣∣ ≤ ∫

Ω

c′d1−α
Ω

∣∣∣d−1
Ω ϕ

∣∣∣ ≤ c′′ ‖ϕ‖H1
0 (Ω) .

with c′′ a positive constant independent of ϕ. Thus au−α−g (.,u) ∈
(
H1

0 (Ω)
)′
. Let z be as in Lemma 2.5.

Since u ≤ uε j ≤ z, Lemma 2.5 gives that u ≤ c′′′dτ
Ω

for some positive constants c′′′ and τ. Therefore,
by Lemma 2.13, u is a weak solution, in the usual sense of H1

0 (Ω) , of problem (1.2). Moreover, since

cdΩ ≤ u ≤ c′′′dτΩ a.e. in Ω, (3.10)

AIMS Mathematics Volume 5, Issue 3, 1779–1798.



1796

then au−α − g (.,u) ∈ L∞loc (Ω) , also u ∈ L∞ (Ω) and then, by the inner elliptic estimates, u ∈ W2,p
loc (Ω)

for any p ∈ [1,∞) . Thus u ∈ C (Ω) and from (3.10), u is also continuous at ∂Ω. Thus u ∈ C
(
Ω
)
. �

Proof of Theorem 1.4. Suppose that 0 < α < 1
2 + 1

n when n > 2, that and 0 < α ≤ 1 when n ≤ 2.
Assume also that g (., s) = 0 on Ω+ and that h1)-h4) and h5) hold. Let z be as in Remark 2.4, let{
ε j

}
j∈N
⊂ (0, 1) be a nonincreasing sequence such that lim j→∞ ε j = 0, and let

{
uε j

}
j∈N

be as in Theorem
1.2. Let u := lim j→∞ uε j . By Lemma 2.5 we have, uε j ≤ z in Ω for all j ∈ N, and so u ≤ z a.e. in
Ω. Thus, by Remark 2.4, there exist positive constants c and τ such that u ≤ cdτ

Ω
a.e. in Ω. Let Ω+ as

given by h6), and let ζ : Ω+ → R be as given by Remark 2.19. Thus, by Remark 2.19 ii), there exists a
positive constant c′ such that ζ ≥ c′dΩ+ in Ω+, and by Remark 2.20, uε j ≥ ζ in Ω+ for all j ∈ N. Then
uε j ≥ c′dΩ+ in Ω+ for all j, and so u ≥ cdΩ+ a.e. in Ω+.

Let ϕ ∈ H1
0 (Ω) and, for k ∈ N, let ϕk : Ω → R be defined by ϕk (x) = ϕ (x) if |ϕ (x)| ≤ k, ϕk (x) = k

if ϕ (x) > k and ϕk (x) = −k if ϕ (x) < −k. Thus ϕk ∈ H1
0 (Ω) ∩ L∞ (Ω) and {ϕk}k∈N converges to ϕ in

H1
0 (Ω) . By Theorem 1.2, u is a weak solution, in the sense of definition 1.1, of problem (1.2). Then,

for all k ∈ N, ∫
Ω

〈∇u,∇ϕk〉 =

∫
Ω

χ{u>0}
(
au−α − g (.,u)

)
ϕk (3.11)

=

∫
Ω

(
au−α − χ{u>0}g (.,u)

)
ϕk

=

∫
Ω

(
χ{a>0}au−α − χ{u>0}g (.,u)

)
ϕk.

Note that χ{a>0}au−α − χ{u>0}g (.,u) ∈
(
H1

0 (Ω)
)′
. Indeed, by h4), χ{u>0}g (.,u) ∈ L∞ (Ω) ⊂

(
H1

0 (Ω)
)′
,

and, since u ≥ cdΩ+ a.e. in Ω+ and a = 0 a.e. in Ω \ Ω+, we have χ{a>0}au−α ∈ L(2∗)′ (Ω) ⊂
(
H1

0 (Ω)
)′

when n > 2 (because 0 < α < 1
2 + 1

n if n > 2), and, in the case n ≤ 2, χ{a>0}au−α ∈ L
1
α−η (Ω) ⊂

(
H1

0 (Ω)
)′

for η positive and small enough, (because 0 < α ≤ 1 if n ≤ 2). Now, we take limk→∞ in (3.11), to
obtain ∫

Ω

〈∇u,∇ϕ〉 =

∫
Ω

(
χ{a>0}au−α − χ{u>0}g (.,u)

)
ϕ

=

∫
Ω

χ{u>0}
(
au−α − g (.,u)

)
ϕ,

the last equality because u > 0 a.e. in {a > 0} . �
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