

AIMS Mathematics, 5(3): 1779–1798. DOI:10.3934/math.2020120 Received: 02 November 2019 Accepted: 06 February 2020 Published: 14 February 2020

http://www.aimspress.com/journal/Math

Research article

Elliptic problems with singular nonlinearities of indefinite sign

Tomas Godoy*

Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, Argentina

* Correspondence: Email: godoy@famaf.unc.edu.ar.

Abstract: Let Ω be a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u = \chi_{\{u>0\}}(au^{-\alpha} - g(., u))$ in Ω , u = 0 on $\partial\Omega$, $u \ge 0$ in Ω , where Ω is a bounded domain in \mathbb{R}^n , $0 \ne a \in L^{\infty}(\Omega)$, $\alpha \in (0, 1)$, and $g : \Omega \times [0, \infty) \to \mathbb{R}$ is a nonnegative Carathéodory function. We prove, under suitable assumptions on *a* and *g*, the existence of nontrivial and nonnegative weak solutions $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ of the stated problem. Under additional assumptions, the positivity, *a.e.* in Ω , of the found solution *u*, is also proved.

Keywords: singular elliptic problems; nonnegative solutions; sub and supersolutions **Mathematics Subject Classification:** Primary: 35J75; Secondary: 35D30, 35J20

1. Introduction and statement of the main results

Let Ω be a bounded and regular enough domain in \mathbb{R}^n , let $\alpha > 0$, and let $a : \Omega \to \mathbb{R}$ be a nonnegative and nonidentically zero function. Singular elliptic problems like to

$$\begin{aligned} -\Delta u &= a u^{-\alpha} \text{ in } \Omega, \\ u &= 0 \text{ on } \partial \Omega, \\ u &> 0 \text{ in } \Omega, \end{aligned} \tag{1.1}$$

arise in many applications to physical phenomena, for instance, in chemical catalysts process, non-Newtonian fluids, and in models for the temperature of electrical conductors (see e.g., [3,5,13,16] and the references therein). Starting with the pioneering works [6, 13, 16, 26], and [11], the existence of positive solutions of singular elliptic problems has been intensively studied in the literature.

Bifurcation problems whose model is $-\Delta u = au^{-\alpha} + f(., \lambda u)$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , were studied by Coclite and Palmieri [4], under the assumptions $a \in C^1(\overline{\Omega})$, a > 0 in $\overline{\Omega}$, $f \in C^1(\overline{\Omega} \times [0, \infty))$ and $\lambda > 0$. Problems of the form $-\Delta u = Ku^{-\alpha} + \lambda s^p$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , were studied by Shi and Yao [35], when $p \in (0, 1)$, K is a regular enough function that may change sign, and

 $\lambda \in \mathbb{R}$. Ghergu and Rădulescu [19] addressed multi-parameter singular bifurcation problems of the form $-\Delta u = g(u) + \lambda |\nabla u|^p + \mu f(., u)$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , where g is Hölder continuous, nonincreasingt and positive on $(0, \infty)$, and singular at the origin; $f : \overline{\Omega} \times [0, \infty) \to [0, \infty)$ is Hölder continuous, positive on $\overline{\Omega} \times (0, \infty)$, and such that f(x, s) is nondecreasing with respect to s, $0 , and <math>\lambda > 0$. Dupaigne, Ghergu and Rădulescu [14] studied Lane–Emden–Fowler equations with convection and singular potential; and Rădulescu [32] addressed the existence, nonexistence, and uniqueness of blow-up boundary solutions of logistic equations and of singular Lane-Emden-Fowler equations with convection term. Cîrstea, Ghergu and Rădulescu [7] considered the problem of the existence of classical positive solutions for problems of the form $-\Delta u = a(x)h(u) + \lambda f(u)$ in Ω , u = 0 on $\partial\Omega$, u > 0 in Ω , in the case when Ω is a regular enough domain, f and h are positive Hölder continuous functions on $[0, \infty)$ and $(0, \infty)$ respectively satisfying some monotonicity assumptions, h singular at the origin, and $h(s) \le cs^{-\alpha}$ for some positive constant c and some $\alpha \in (0, 1)$.

Multiplicity results for positive solutions of singular elliptic problems were obtained by Gasiński and Papageorgiou [17] and by Papageorgiou and G. Smyrlis [30]; in both articles the singular term of the considered nonlinearity has the form $a(x) s^{-\alpha}$, with $0 \le a \in L^{\infty}(\Omega)$, $a \ne 0$ in Ω , and α positive.

Recently, problem (1.1) has been addressed by Chu, Gao and Gao [8], under the assumption that $\alpha = \alpha(x)$ (i.e., with a singular nonlinearity with a variable exponent).

Concerning the existence of nonnegative solutions of singular elliptic problems, Dávila and Montenegro [9] studied the free boundary singular bifurcation problem

$$\begin{cases} -\Delta u = \chi_{\{u>0\}} \left(-u^{-\alpha} + \lambda f(., u) \right) \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega, \\ u \ge 0 \text{ in } \Omega, \ u \neq 0 \text{ in } \Omega, \end{cases}$$

where $0 < \alpha < 1$, $\lambda > 0$, and $f : \Omega \times [0, \infty) \to [0, \infty)$ is a Carathéodory function f such that, for *a.e.* $x \in \Omega$, f(x, s) is nondecreasing and concave in s, and satisfies $\lim_{s\to\infty} f(x, s)/s = 0$ uniformly on $x \in \Omega$. and where, for $h : \Omega \times (0, \infty) \to \mathbb{R}$, $\chi_{\{s>0\}}h(x, s)$ stands for the function defined on $\Omega \times [0, \infty)$ by $\chi_{\{s>0\}}h(x, s) := h(x, s)$ if s > 0, and $\chi_{\{s>0\}}h(x, s) := 0$ if s = 0. Let us mention also the work [10], where a related singular parabolic problem was treated.

For a systematic study of singular problems and additional references, we refer the reader to [18,32], see also [12].

Our aim in this work is to prove an existence result for nonnegative weak solutions of singular elliptic problems of the form

$$\begin{cases} -\Delta u = \chi_{\{u>0\}} \left(au^{-\alpha} - g\left(., u\right) \right) \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega, \\ u \ge 0 \text{ in } \Omega, \ u \neq 0 \text{ in } \Omega, \end{cases}$$
(1.2)

where Ω is a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary, $\alpha \in (0,1]$, $a : \Omega \to \mathbb{R}$, and $g: \Omega \times [0,\infty) \to \mathbb{R}$, with *a* and *g* satisfying the following conditions *h1*)-*h4*):

$$h1$$
) $0 \le a \in L^{\infty}(\Omega)$ and $a \not\equiv 0$,

*h*2) { $x \in \Omega : a(x) = 0$ } = $\Omega_0 \cup N$ for some (possibly empty) open set $\Omega_0 \subset \Omega$ and some measurable set $N \subset \Omega$ such that |N| = 0,

h3) g is a nonnegative Carathéodory function on $\Omega \times [0,\infty)$, i.e., g(.,s) is measurable for any

 $s \in [0, \infty)$, and g(x, .) is continuous on $[0, \infty)$ for *a.e.* $x \in \Omega$, *h*4) $\sup_{0 \le s \le M} g(., s) \in L^{\infty}(\Omega)$ for any M > 0.

Here and below, $\chi_{\{u>0\}}(au^{-\alpha} - g(., u))$ stands for the function $h : \Omega \to \mathbb{R}$ defined by $h(x) := a(x)u^{-\alpha}(x) - g(x, u(x))$ if $u(x) \neq 0$, and h(x) := 0 otherwise; $u \neq 0$ in Ω means $|\{x \in \Omega : u(x) \neq 0\}| > 0$ and, by a weak solution of (1.2), we mean a solution in the sense of the following:

Definition 1.1. Let $h : \Omega \to \mathbb{R}$ be a measurable function such that $h\varphi \in L^1(\Omega)$ for all φ in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$. We say that $u : \Omega \to \mathbb{R}$ is a weak solution to the problem

$$\begin{cases} -\Delta u = h \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega \end{cases}$$
(1.3)

if $u \in H_0^1(\Omega)$, and $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle = \int_{\Omega} h\varphi$ for all φ in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$. We will say that, in weak sense,

$$-\Delta u \le h \text{ in } \Omega \text{ (respectively } -\Delta u \ge h \text{ in } \Omega),$$
$$u = 0 \text{ on } \partial \Omega$$

if $u \in H_0^1(\Omega)$, and $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle \leq \int_{\Omega} h\varphi$ (respectively $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle \geq \int_{\Omega} h\varphi$) for all nonnegative φ in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$.

Our first result reads as follows:

Theorem 1.2. Let Ω be a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary. Let $\alpha \in (0,1]$, let $a : \Omega \to [0,\infty)$ and let $g : \Omega \times (0,\infty) \to \mathbb{R}$; and assume that a and g satisfy the conditions h1)-h4). Then there exists a nonnegative weak solution $u \in H_0^1(\Omega) \cap L^\infty(\Omega)$, in the sense of Definition 1.1, to problem (1.2), and such that u > 0 a.e. in $\{a > 0\}$. In particular, $\chi_{\{u>0\}}(au^{-\alpha} - g(.,u)) \not\equiv 0$ in Ω and $\chi_{\{u>0\}}(au^{-\alpha} - g(.,u)) \varphi \in L^1(\Omega)$ for any $\varphi \in H_0^1(\Omega) \cap L^\infty(\Omega)$).

Let us mention that in [21] it was proved the existence of weak solutions (in the sense of Definition 1.1) of problem (1.2), in the case when $0 \le a \in L^{\infty}(\Omega)$, $a \ne 0$, $0 < \alpha < 1$, and $g(., u) = -bu^p$, with $0 , and <math>0 \le b \in L^r(\Omega)$ for suitable values of *r*. In addition, existence results for weak solutions of problems of the form

$$\begin{cases} -\Delta u = \chi_{\{u>0\}} a u^{-\alpha} - h(., u) \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega, \\ u \ge 0 \text{ in } \Omega, \text{ and } u \ne 0 \text{ in } \Omega, \end{cases}$$
(1.4)

were obtained, in [22] (see Remark 2.1 below), and in ([25], Theorem 1.2), for more general nonlinearities $h : \Omega \times [0, \infty) \to [0, \infty)(x, s)$, in the case when h is a Carathéodory function on $\Omega \times [0, \infty)$, which satisfies $h(., 0) \leq 0$ as well as some additional hypothesis. Then the result of Theorem 1.2 is not covered by those in [22] and [25] because, under the assumptions of Theorem 1.2, the condition $g(., 0) \leq 0$ is not required and $\chi_{\{s>0\}}g(., s)$ is not, in general, a Carathéodory function on $\Omega \times [0, \infty)$ (except when $g(., 0) \equiv 0$ in Ω).

Our next result says that if the condition h4) is replaced by the stronger condition

h4') a > 0 a.e. in Ω and $\sup_{0 < s \le M} s^{-1}g(., s) \in L^{\infty}(\Omega)$ for any M > 0,

then the solution *u*, given by Theorem 1.2, is positive *a.e.* in Ω and is a weak solution in the usual sense of $H_0^1(\Omega)$.

Theorem 1.3. Let Ω , α , and a be as in Theorem 1.2, and let $g : \Omega \times (0, \infty) \to \mathbb{R}$. Assume the conditions h(1)-h(3) and h(4'). Then the solution u of (1.2), given by Theorem 1.2, belongs to $C(\overline{\Omega}) \cap W_{loc}^{2,p}(\Omega)$ for any $p \in [1, \infty)$, there exist positive constants c, c' and τ such that $cd_{\Omega} \leq u \leq c'd_{\Omega}^{\tau}$ in Ω , and u is a weak solution, in the usual $H_0^1(\Omega)$ sense, of the problem

$$\begin{cases}
-\Delta u = au^{-\alpha} - g(., u) \text{ in } \Omega, \\
u = 0 \text{ on } \partial\Omega, \\
u > 0 \text{ in } \Omega
\end{cases}$$
(1.5)

i.e., for any $\varphi \in H_0^1(\Omega)$, $(au^{-\alpha} - g(., u)) \varphi \in L^1(\Omega)$ and $\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle = \int_{\Omega} (au^{-\alpha} - g(., u)) \varphi$.

Finally, our last result says that, if in addition to h1)-h4), α is sufficiently small, the set where a > 0 is nice enough and, for any $s \ge 0$, g(., s) = 0 *a.e.* in the set where a > 0, then the solution obtained in Theorem 1.2, is a weak solution in the usual sense of $H_0^1(\Omega)$, and that it is positive on some subset of Ω :

Theorem 1.4. Let Ω be a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary. Assume the hypothesis h1)h4) of Theorem 1.2 and that $0 < \alpha < \frac{1}{2} + \frac{1}{n}$ when n > 2, and $\alpha \in (0, 1]$ when $n \le 2$. Let $A^+ := \{x \in \Omega : a(x) > 0\}$ and assume, in addition, the following two conditions:

h5) g(., s) = 0 a.e. in A^+ for any $s \ge 0$. *h6)* $A^+ = \Omega^+ \cup N^+$ for some open set Ω^+ and a measurable set N^+ such that $|N^+| = 0$, and with Ω^+ such that Ω^+ has a finite number of connected components $\{\Omega_l^+\}_{1 \le l \le N}$ and each Ω_l^+ is a $C^{1,1}$ domain.

Then the solution u of problem (1.2), given by Theorem 1.2, is a weak solution, in the usual $H_0^1(\Omega)$ sense, to the same problem, and there exist positive constants c, c' and τ such that $u \ge cd_{\Omega^+}$ a.e. in Ω^+ , and $u \le c'd_{\Omega}^{\tau}$ a.e. in Ω .

The article is organized as follows: In Section 2 we study, for $\varepsilon \in (0, 1]$, the existence of weak solutions to the auxiliary problem

$$\begin{cases} -\Delta u = au^{-\alpha} - g_{\varepsilon}(., u) \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega, \\ u > 0 \text{ in } \Omega. \end{cases}$$
(1.6)

where Ω is a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary, $\alpha \in (0, 1]$, $a : \Omega \to [0, \infty)$ is a nonnegative function in $L^{\infty}(\Omega)$ such that $|\{x \in \Omega : a(x) > 0\}| > 0$, and $\{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ is a family of real valued functions defined on $\Omega \times [0, \infty)$ satisfying the following conditions h7)-h9):

h7) g_{ε} is a nonnegative Carathéodory function on $\Omega \times [0, \infty)$ for any $\varepsilon \in (0, 1]$. *h8*) $\sup_{0 < s \le M} s^{-1}g_{\varepsilon}(., s) \in L^{\infty}(\Omega)$ for any $\varepsilon \in (0, 1]$ and M > 0. *h9*) The map $\varepsilon \to g_{\varepsilon}(x, s)$ is nonincreasing on (0, 1] for any $(x, s) \in \Omega \times [0, \infty)$.

AIMS Mathematics

Lemma 2.2 observes that, as a consequence of a result of [22], the problem

$$\begin{aligned} -\Delta u &= \chi_{\{u>0\}} a u^{-\alpha} - g_{\varepsilon}(., u) \text{ in } \Omega, \\ u &= 0 \text{ on } \partial \Omega, \\ u &\ge 0 \text{ in } \Omega, \ u \not\equiv 0 \text{ in } \Omega \end{aligned}$$
(1.7)

has (at least) a weak solution u (in the sense of Definition 1.1) which satisfies u > 0 a.e. in $\{a > 0\}$; and this assertion is improved in Lemmas 2.6 and 2.7, which state that any weak solution u (in the sense of Definition 1.1) of problem (1.7) is positive in Ω , belongs to $C(\overline{\Omega})$, and is also a weak solution in the usual sense of $H_0^1(\Omega)$. By using a sub-supersolution theorem of [28] as well as an adaptation of arguments of [27], Lemma 2.15 shows that, for any $\varepsilon \in (0, 1]$, problem (1.6) has a solution $u_{\varepsilon} \in$ $H_0^1(\Omega)$, which is a weak solution in the usual sense of $H_0^1(\Omega)$, and is maximal in the sense that, if v is a solution, in the sense of Definition 1.1, of problem (1.6) then $v \le u_{\varepsilon}$. Lemma 2.16 states that $\varepsilon \to u_{\varepsilon}$ is nondecreasing, Lemma 2.17 says that $\{u_{\varepsilon}\}_{\varepsilon \in (0,1]}$ is bounded in $H_0^1(\Omega)$, and Lemma 2.18 says that the function $u := \lim_{\varepsilon \to 0^+} u_{\varepsilon}$ belong to $H_0^1(\Omega) \cap L^{\infty}(\Omega)$ and is positive in $\{a > 0\}$.

To prove Theorems 1.2–1.4 we consider, in Section 3, the family $\{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ defined by $g_{\varepsilon}(., s) := s(s + \varepsilon)^{-1} g(., s)$ and we show that, in each case, the corresponding function u defined above is a solution of problem (1.2) with the desired properties.

2. Preliminaries

We assume, from now on, that Ω is a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary, $\alpha \in (0, 1]$ and $a : \Omega \to [0, \infty)$ is a nonnegative function in $L^{\infty}(\Omega)$ such that $|\{x \in \Omega : a(x) > 0\}| > 0$, and additional conditions will be explicitly imposed on a and α when necessary, at some steps of the paper. Our aim in this section is to study, for $\varepsilon \in (0, 1]$, the existence of weak solutions to problem (1.6), in the case when $\{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ is a family of functions satisfying the conditions h7)-h9).

In order to present, in the next remark, a need result of [22], we need to recall the notion of principal egenvalue with weight function: For $b \in L^{\infty}(\Omega)$ such that $b \not\equiv 0$, we say that $\lambda \in \mathbb{R}$ is a principal eigenvalue for $-\Delta$ on Ω , with weight function b and homogeneous Dirichlet boundary condition, if the problem $-\Delta u = \lambda b u$ in Ω , u = 0 on $\partial \Omega$ has a solution u wich is positive in Ω . If $b \in L^{\infty}(\Omega)$ and $b^+ \not\equiv 0$, it is well known that there exists a unique positive principal eigenvalue for the above problem, which we wiill denote by $\lambda_1(b)$. For a proof of this fact and for additional properties of principal eigenvalues and their associated principal eigenfunctions see, for instance [15].

Remark 2.1. (See [22], Theorem 1.2, or, in a more general setting, [25], Theorem 1.2) Let $\beta \in (0, 3)$, $\tilde{a} : \Omega \to \mathbb{R}$ and $f : \Omega \times [0, \infty) \to \mathbb{R}$; and assume the following conditions H1)-H6):

H1) $0 \le \widetilde{a} \in L^{\infty}(\Omega)$, and $\widetilde{a} \ne 0$,

H2) *f* is a Carathéodory function on $\Omega \times [0, \infty)$,

H3) sup_{0≤s≤M} $|f(., s)| \in L^{1}(\Omega)$ for any M > 0,

H4) One of the two following conditions holds:

H4') $\sup_{s>0} \frac{f(.,s)}{s} \le b$ for some $b \in L^{\infty}(\Omega)$ such that $b^+ \ne 0$, and $\lambda_1(b) > m$ for some integer $m \ge \max\{2, 1+\beta\}$,

H4") $f \in L^{\infty}(\Omega \times (0, \sigma))$ for all $\sigma > 0$, and $\overline{\lim}_{s \to \infty} \frac{f(.,s)}{s} \le 0$ uniformly on Ω , i.e., for any $\varepsilon > 0$ there exists $s_0 > 0$ such that $\sup_{s \ge s_0} \frac{f(.,s)}{s} \le \varepsilon$, *a.e.* in Ω ,

H5) $f(., 0) \ge 0$. Then the problem

$$\begin{cases} -\Delta u = \chi_{\{u>0\}} \widetilde{a} u^{-\beta} + f(x, u) \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega, \\ u \ge 0 \text{ in } \Omega, \quad u \neq 0 \text{ in } \Omega. \end{cases}$$
(2.1)

has a weak solution (in the sense of Definition 1.1) $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ such that u > 0 a.e. in $\{\tilde{a} > 0\}$.

Lemma 2.2. Let $a \in L^{\infty}(\Omega)$ be such that $a \ge 0$ in Ω and $a \ne 0$, let $\alpha \in (0, 1]$, and let $\{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be a family of functions defined on $\Omega \times [0, \infty)$ satisfying the conditions h7)-h9) stated at the introduction. Then, for any $\varepsilon \in (0, 1]$, problem (1.7) has at least a weak solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, in the sense of Definition 1.1, such that u > 0 a.e. in $\{a > 0\}$.

Proof. Notice that, since g_{ε} is a Carathéodory function, we have $g_{\varepsilon}(.,0) = \lim_{s \to 0^+} g_{\varepsilon}(.,s) = \lim_{s \to 0^+} (ss^{-1}g_{\varepsilon}(.,s)) = 0$, the last inequality by h8). Thus $g_{\varepsilon}(.,0) = 0$. Taking into account this fact and h7)-h9), the lemma follows immediately from Remark 2.1.

Let us recall, in the next remark, the uniform Hopf maximum principle:

Remark 2.3. i) (see [2], Lemma 3.2) Suppose that $0 \le h \in L^{\infty}(\Omega)$; and let $v \in \bigcap_{1 \le p < \infty} (W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega))$ be the strong solution of $-\Delta v = h$ in Ω , v = 0 on $\partial\Omega$. Then $v \ge cd_{\Omega} \int_{\Omega} hd_{\Omega} a.e.$ in Ω , where $d_{\Omega} := dist(., \partial\Omega)$, and *c* is a positive constant depending only on Ω . ii) (see e.g., [25], Remark 8) Let Ψ be a nonnegative function in $L^1_{loc}(\Omega)$, and let *v* be a function in $H^1_0(\Omega)$ such that $-\Delta v \ge \Psi$ on Ω in the sense of distributions. Then

$$v(x) \ge cd_{\Omega} \int_{\Omega} \Psi d_{\Omega}$$
 a.e. in Ω , (2.2)

where *c* is a positive constant depending only on Ω .

Remark 2.4. (See, e.g., [23], Lemmas 2.9, 2.10 and 2.12) Let $a \in L^{\infty}(\Omega)$ be such that $a \ge 0$ in Ω and $a \ne 0$, and let let $\alpha \in (0, 1]$. Then the problem

$$\begin{cases}
-\Delta z = az^{-\alpha} \text{ in } \Omega, \\
z = 0 \text{ on } \partial\Omega, \\
z \ge 0 \text{ in } \Omega.
\end{cases}$$
(2.3)

has a unique weak solution, in the sense of Definition 1.1, $z \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$. Moreover: i) $z \in C(\overline{\Omega})$.

ii) There exists positive constants c_1 , c_2 and $\tau > 0$ such that $c_1 d_{\Omega} \le z \le c_2 d_{\Omega}^{\tau}$ in Ω . iii) z is a solution of problem (2.3) in the usual weak sense, i.e., for any $\varphi \in H_0^1(\Omega)$, $az^{-\alpha}\varphi \in L^1(\Omega)$ and $\int_{\Omega} \langle \nabla z, \nabla \varphi \rangle = \int_{\Omega} az^{-\alpha}\varphi$.

Lemma 2.5. Let $a, \alpha, and \{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2, let z be as given in Remark 2.4; and let $\varepsilon \in (0,1]$. If $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution, in the sense of Definition 1.1, of problem (1.7), then $u \leq z$ a.e. in Ω .

AIMS Mathematics

Proof. By h5), $g_{\varepsilon}(., u) \ge 0$ and so, from Lemma 2.2 and Remark 2.4, we have, in the sense of Definition 1.1,

$$\Delta(u-z) = au^{-\alpha} - g_{\varepsilon}(.,u) - az^{-\alpha} \le a(u^{-\alpha} - z^{-\alpha}) \text{ in } \Omega,$$

Thus, taking $(u - z)^+$ as a test function, we get

$$\int_{\Omega} \left| \nabla \left(u - z \right)^{+} \right|^{2} \le \int_{\Omega} a \left(u^{-\alpha} - z^{-\alpha} \right) \left(u - z \right)^{+} \le 0$$

which implies $u \leq z a.e.$ in Ω .

Lemma 2.6. Let $a, \alpha, and \{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2. If $\varepsilon \in (0,1]$ and $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution, in the sense of Definition 1.1, of problem (1.7), then:

i) There exists a positive constant c_1 (which may depend on ε) and constants c_2 and τ such that $c_1 d_{\Omega} \leq u \leq c_2 d_{\Omega}^{\tau}$ a.e. in Ω (and so, in particular, u > 0 in Ω).

ii) For any $\varphi \in H_0^1(\Omega)$ we have $(au^{-\alpha} - g_{\varepsilon}(., u)) \varphi \in L^1(\Omega)$ and

$$\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle = \int_{\Omega} \left(a u^{-\alpha} - g_{\varepsilon}(., u) \right) \varphi,$$

i.e., *u* is a weak solution, in the usual sense of $H_0^1(\Omega)$, to the problem $-\Delta u = au^{-\alpha} - g_{\varepsilon}(., u)$ in Ω , u = 0 on $\partial \Omega$.

Proof. We have, in the weak sense of Definition 1.1, $-\Delta u = \chi_{\{u>0\}} a u^{-\alpha} - g_{\varepsilon}(., u)$ in Ω , u = 0 on $\partial\Omega$. Also, $u \ge 0$ in Ω and $u \ne 0$ in Ω . Let $a_0 : \Omega \to \mathbb{R}$ be defined by $a_0(x) = u^{-1}(x) g_{\varepsilon}(x, u(x))$ if $u(x) \ne 0$ and by $a_0(x) = 0$ otherwise. Since $u \in L^{\infty}(\Omega)$ and taking into account h7) and h8, we have $0 \le a_0 \in L^{\infty}(\Omega)$, and from the definition of a_0 we have $g_{\varepsilon}(., u) = a_0 u \ a.e.$ in Ω . Therefore u satisfies, in the sense of Definition 1.1, $-\Delta u + a_0 u = \chi_{\{u>0\}} a u^{-\alpha}$ in Ω , u = 0 on $\partial\Omega$. Thus, since u is nonidentically zero, it follows that $\chi_{\{u>0\}} a u^{-\alpha}$ is nonidentically zero on Ω . Then there exist $\eta > 0$, and a measurable set $E \subset \Omega$, such that |E| > 0 and $\chi_{\{u>0\}} a u^{-\alpha} \ge \eta \chi_E$ in Ω . Let $\psi \in \bigcap_{1 \le q < \infty} W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega)$ be the solution of the problem $-\Delta \psi + a_0 \psi = \eta \chi_E$ in Ω , $\psi = 0$ on $\partial\Omega$. By the Hopf maximum principle (as stated, e.g., in [34], Theorem 1.1) there exists a positive constant c_1 such that $\psi \ge c_1 d_{\Omega}$ in Ω ; and, from (1.7) we have $-\Delta u + a_0 u \ge \eta \chi_E$ in $D'(\Omega)$. Then, by the weak maximum principle (as stated, e.g., in [20], Theorem 8.1), $u \ge \psi$ in Ω . Hence $u \ge c_1 d_{\Omega}$ in Ω . Also, by Lemma 2.5, $u \le z \ a.e.$ in Ω , and so Remark 2.4 gives positive constants c_2 and τ (both independent of ε) such that $u \le c_2 d_{\Omega}^{\tau}$ in Ω . Thus i) holds.

To see *ii*), consider an arbitrary function $\varphi \in H_0^1(\Omega)$, and for $k \in \mathbb{N}$, let $\varphi_k^+ := \max\{k, \varphi^+\}$. Thus $\varphi_k^+ \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, $\{\varphi_k^+\}_{k \in \mathbb{N}}$ converges to φ^+ in $H_0^1(\Omega)$ and, after pass to some subsequence if necessary, we can assume also that $\{\varphi_k^+\}_{k \in \mathbb{N}}$ converges to φ^+ *a.e.* in Ω . Since *u* is a weak solution, in the sense of Definition 1.1, of (1.7) and u > 0 *a.e.* in Ω , we have, for all $k \in \mathbb{N}$, $(au^{-\alpha} - g_{\varepsilon}(., u))\varphi_k^+ \in L^1(\Omega)$, and, by h6), $g_{\varepsilon}(., u) \in L^{\infty}(\Omega)$. Thus $g_{\varepsilon}(., u)\varphi_k^+ \in L^1(\Omega)$. Then $au^{-\alpha}\varphi_k^+ \in L^1(\Omega)$. From (1.7),

$$\int_{\Omega} \langle \nabla u, \nabla \varphi_k^+ \rangle + \int_{\Omega} g_{\varepsilon}(., u) \varphi_k^+ = \int_{\Omega} a u^{-\alpha} \varphi_k^+.$$
(2.4)

Now, $\lim_{k\to\infty} \int_{\Omega} \langle \nabla u, \nabla \varphi_k^+ \rangle = \int_{\Omega} \langle \nabla u, \nabla \varphi^+ \rangle$. Also, for any k,

$$0 \le g_{\varepsilon}(., u) \varphi_{k}^{+} \le \sup_{s \in [0, \|u\|_{\infty}]} g_{\varepsilon}(., s) \varphi^{+} \in L^{1}(\Omega)$$

AIMS Mathematics

then, by the Lebesgue dominated convergence theorem, $\lim_{k\to\infty} \int_{\Omega} g_{\varepsilon}(.,u) \varphi_{k}^{+} = \int_{\Omega} g_{\varepsilon}(.,u) \varphi^{+} < \infty$. Hence, by (2.4), $\lim_{k\to\infty} \int_{\Omega} au^{-\alpha} \varphi_{k}^{+}$ exists and is finite. Since $\{au^{-\alpha}\varphi_{k}^{+}\}_{k\in\mathbb{N}}$ is nondecreasing and converges to $au^{-\alpha}\varphi^{+}$ *a.e.* in Ω , the monotone convergence theorem gives $\lim_{k\to\infty} \int_{\Omega} au^{-\alpha} \varphi_{k}^{+} = \int_{\Omega} au^{-\alpha} \varphi^{+} < \infty$. Thus

$$(au^{-\alpha} - g_{\varepsilon}(., u))\varphi^{+} \in L^{1}(\Omega)$$

and

$$\int_{\Omega} \langle \nabla u, \nabla \varphi^+ \rangle + \int_{\Omega} g_{\varepsilon}(., u) \varphi^+ = \int_{\Omega} a u^{-\alpha} \varphi^+.$$
(2.5)

Similarly, we have that $(au^{-\alpha} - g_{\varepsilon}(., u))\varphi^{-} \in L^{1}(\Omega)$, and that (2.5) holds with φ^{+} replaced by φ^{-} By writing $\varphi = \varphi^{+} - \varphi^{-}$ the lemma follows.

Lemma 2.7. Let $a, \alpha, and \{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2. For any $\varepsilon \in (0,1]$, if $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution, in the sense of Definition 1.1 (and so, by Lemma 2.6, also in the usual sense of $H_0^1((\Omega))$), of problem (1.7), then $u \in C(\overline{\Omega})$.

Proof. By Lemma 2.6 we have $u \ge cd_{\Omega}$ *a.e.* in Ω , with *c* a positive constant and, by h6), $0 \le u^{-1}g_{\varepsilon}(., u) \in L^{\infty}(\Omega)$. Thus $au^{-\alpha} - g_{\varepsilon}(., u) \in L^{\infty}_{loc}(\Omega)$. Also, $u \in L^{\infty}(\Omega)$. Then, by the inner elliptic estimates (as stated, e.g., in [20], Theorem 8.24), $u \in W^{2,p}_{loc}(\Omega)$ for any $p \in [1, \infty)$. Thus $u \in C(\Omega)$, and, since $0 \le u \le z, z \in C(\overline{\Omega})$ and z = 0 on $\partial\Omega$, it follows that *u* is also continuous at $\partial\Omega$.

Definition 2.8. Let $C_0^{\infty}(\overline{\Omega}) := \{\varphi \in C^{\infty}(\overline{\Omega}) : \varphi = 0 \text{ on } \partial\Omega\}$. If $u \in L^1(\Omega)$ and $h \in L^1(\Omega)$, we will say that u is a solution, in the sense of $(C_0^{\infty}(\overline{\Omega}))'$, of the problem $-\Delta u = h$ in Ω , u = 0 on $\partial\Omega$, if $-\int_{\Omega} u\Delta\varphi = \int_{\Omega} h\varphi$ for any $\varphi \in C_0^{\infty}(\overline{\Omega})$.

We will say also that $-\Delta u \ge h$ in $\left(C_0^{\infty}(\overline{\Omega})\right)'$ (respectively $-\Delta u \le h$ in $\left(C_0^{\infty}(\overline{\Omega})\right)'$) if $-\int_{\Omega} u\Delta\varphi \ge \int_{\Omega} h\varphi$ (resp. $-\int_{\Omega} u\Delta\varphi \le \int_{\Omega} h\varphi$) for any nonnegative $\varphi \in C_0^{\infty}(\overline{\Omega})$.

Remark 2.9. The following statements hold:

i) (Maximum principle, [31], Proposition 5.1) If $u \in L^1(\Omega)$, $0 \le h \in L^1(\Omega)$, and $-\Delta u \ge h$ in the sense of $(C_0^{\infty}(\overline{\Omega}))'$, then $u \ge 0$ *a.e.* in Ω .

ii) (Kato's inequality, [31], Proposition 5.7) If $h \in L^1(\Omega)$, $u \in L^1(\Omega)$ and if $-\Delta u \leq h$ in $D'(\Omega)$, then $-\Delta(u^+) \leq \chi_{\{u>0\}}h$ in $D'(\Omega)$.

iii) ([31], Proposition 3.5) For $\varepsilon > 0$, let $A_{\varepsilon} := \{x \in \Omega : dist(x, \partial \Omega) < \varepsilon\}$. If $h \in L^{1}(\Omega)$ and if $u \in L^{1}(\Omega)$ is a solution of $-\Delta u = h$, in the sense of Definition 2.8, then there exists a constant *c* such that, for all $\varepsilon > 0$, $\int_{A_{\varepsilon}} |u| \le c\varepsilon^{2} ||h||_{1}$. In particular, $\lim_{\varepsilon \to 0^{+}} \frac{1}{\varepsilon} \int_{A_{\varepsilon}} |u| = 0$.

iv) ([31], Proposition 5.2) Let $u \in L^1(\Omega)$ and $h \in L^1(\Omega)$. If $-\Delta u \le h$ (respectively $-\Delta u = h$) in $D'(\Omega)$ and $\lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \int_A |u| = 0$ then $-\Delta u \le h$ (resp. $-\Delta u = h$) in the sense of $(C_0^{\infty}(\overline{\Omega}))'$.

v) ([31], Proposition 5.9) Let $f_1, f_2 \in L^1(\Omega)$. If $u_1, u_2 \in L^1(\Omega)$ are such that $\Delta u_1 \ge f_1$ and $\Delta u_2 \ge f_2$ in the sense of distributions in Ω , then $\Delta \max \{u_1, u_2\} \ge \chi_{\{u_1 > u_2\}} f_1 + \chi_{\{u_2 > u_1\}} f_2 + \chi_{\{u_1 = u_2\}} \frac{1}{2} (f_1 + f_2)$ in the sense of distributions in Ω .

If $h: \Omega \to \mathbb{R}$ is a measurable function such that $h\varphi \in L^1(\Omega)$ for any $\varphi \in C_c^{\infty}(\Omega)$, we say that $u: \Omega \to \mathbb{R}$ is a subsolution (respectively a supersolution), in the sense of distributions, of the problem $-\Delta u = h$ in Ω , if $u \in L_{loc}^1(\Omega)$ and $-\int_{\Omega} u\Delta\varphi \leq \int_{\Omega} h\varphi$ (resp. $-\int_{\Omega} u\Delta\varphi \geq \int_{\Omega} h\varphi$) for any nonnegative $\varphi \in C_c^{\infty}(\Omega)$.

AIMS Mathematics

Remark 2.10. ([28], Theorem 2.4) Let $f : \Omega \times (0, \infty) \to \mathbb{R}$ be a Caratheodory function, and let \underline{w} and \overline{w} be two functions, both in $L^{\infty}_{loc}(\Omega) \cap W^{1,2}_{loc}(\Omega)$, and such that $f(., \underline{w})$ and $f(., \overline{w})$ belong to $L^{1}_{loc}(\Omega)$. Suppose that \underline{w} is a subsolution and \overline{w} is a supersolution, both in the sense of distributions, of the problem

$$-\Delta w = f(.,w) \text{ in } \Omega. \tag{2.6}$$

Suppose in addition that $0 < \underline{w}(x) \le \overline{w}(x) a.e. x \in \Omega$, and that there exists $h \in L_{loc}^{\infty}(\Omega)$ such that $\sup_{s \in [\underline{w}(x), \overline{w}(x)]} |f(x, s)| \le h(x) a.e. x \in \Omega$. Then (2.6) has a solution w, in the sense of distributions, which satisfies $\underline{w} \le w \le \overline{w} a.e.$ in Ω . Moreover, as obverved in [28], if in addition $f(., w) \in L_{loc}^{\infty}(\Omega)$, then, by a density argument, the equality $\int_{\Omega} \langle \nabla w, \nabla \varphi \rangle = \int_{\Omega} f(., w) \varphi$ holds also for any $\varphi \in W_{loc}^{1,2}(\Omega)$ with compact support.

Remark 2.11. Let us recall the Hardy inequality (as stated, e.g., in [29], Theorem 1.10.15, see also [1], p. 313): There exists a positive constant *c* such that $\left\|\frac{\varphi}{d_{\Omega}}\right\|_{L^{2}(\Omega)} \leq c \|\nabla \varphi\|_{L^{2}(\Omega)}$ for all $\varphi \in H_{0}^{1}(\Omega)$.

Remark 2.12. Let *a* and $\{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2 and assume that $\alpha \in (0,1]$. Let $\varepsilon \in (0,1]$. If $u \in L^{\infty}(\Omega)$ and if, for some positive constant $c, u \ge cd_{\Omega} a.e.$ in Ω , then $au^{-\alpha} - g_{\varepsilon}(.,u) \in (H_0^1(\Omega))'$. Indeed, for $\varphi \in H_0^1(\Omega)$ we have $|au^{-\alpha}\varphi| \le c^{-\alpha}d_{\Omega}^{1-\alpha} \left|\frac{\varphi}{d_{\Omega}}\right|$. Since $d_{\Omega}^{1-\alpha} \in L^{\infty}(\Omega)$ (because $\alpha \le 1$), the Hardy inequality gives a positive constant c' independent of φ such that $||au^{-\alpha}\varphi||_1 \le c' ||\nabla\varphi||_2$. Also, since $u \in L^{\infty}(\Omega)$, from *h*6) and the Hardy inequality, $||g_{\varepsilon}(.,u)\varphi||_1 \le c'' ||\nabla\varphi||_2$, with c'' a positive constant independent of φ .

Lemma 2.13. Let a and $\{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2 and assume that $\alpha \in (0,1]$. Let $\varepsilon \in (0,1]$. Suppose that $u \in W_{loc}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ is a solution, in the sense of distributions, of the problem

$$-\Delta u = au^{-\alpha} - g_{\varepsilon}(., u) \text{ in } \Omega, \qquad (2.7)$$

and that there exist positive constants c, c' and γ such that $c'd_{\Omega} \leq u \leq cd_{\Omega}^{\gamma}$ a.e. in Ω . Then $u \in H_0^1(\Omega) \cap C(\overline{\Omega})$, and u is a weak solution, in the usual sense of $H_0^1(\Omega)$, of problem (1.6).

Proof. Since $u \in L^{\infty}(\Omega)$ and $u \ge c'd_{\Omega}$, we have $au^{-\alpha} - g_{\varepsilon}(., u) \in L^{\infty}_{loc}(\Omega)$. Thus, from the inner elliptic estimates in ([20], Theorem 8.24), $u \in C(\Omega)$ and, from the inequalities $c'd_{\Omega} \le u \le cd_{\Omega}^{\gamma}$ a.e. in Ω , u is also continuous on $\partial\Omega$. Then $u \in C(\overline{\Omega})$

The proof of that $u \in H_0^1(\Omega)$ and that u is a weak solution, in the usual sense of $H_0^1(\Omega)$, of problem (1.6), is a slight variation of the proof of ([24], Lemma 2.4). For the convenience of the reader, we give the details: For $j \in \mathbb{N}$, let $h_j : \mathbb{R} \to \mathbb{R}$ be the function defined by $h_j(s) := 0$ if $s \leq \frac{1}{j}$, $h_j(s) := -3j^2s^3 + 14js^2 - 19s + \frac{8}{j}$ if $\frac{1}{j} < s < \frac{2}{j}$ and h(s) = s for $\frac{2}{j} \leq s$. Then $h_j \in C^1(\mathbb{R})$, $h'_j(s) = 0$ for $s < \frac{1}{j}$, $h'_j(s) \geq 0$ for $\frac{1}{j} < s < \frac{2}{j}$ and $h'_j(s) = 1$ for $\frac{2}{j} \leq s$. Moreover, for $s \in (\frac{1}{j}, \frac{2}{j})$ we have $s^{-1}h_j(s) = -3j^2s^2 + 14js - 19 + \frac{8}{js} < -3j^2s^2 + 14js - 11 < 5$ (the last inequality because $-3t^2 + 14t - 16 < 0$ whenever $t \notin [\frac{8}{3}, 2]$). Thus $0 \leq h_j(s) \leq 5s$ for any $j \in \mathbb{N}$ and $s \geq 0$.

Let $h_j(u) := h_j \circ u$. Then, for all j, $\nabla(h_j(u)) = h'_j(u) \nabla u$. Since $u \in W^{1,2}_{loc}(\Omega)$, we have $h_j(u) \in W^{1,2}_{loc}(\Omega)$, and since $h_j(u)$ has compact support, Remark 2.10 gives, for all $j \in \mathbb{N}$, $\int_{\Omega} \langle \nabla u, \nabla(h_j(u)) \rangle = \int_{\Omega} (au^{-\alpha} - g_{\varepsilon}(., u)) h_j(u)$, i.e.,

$$\int_{\{u>0\}} h'_{j}(u) |\nabla u|^{2} = \int_{\Omega} (au^{-\alpha} - g_{\varepsilon}(., u)) h_{j}(u).$$
(2.8)

AIMS Mathematics

Now, $h'_{j}(u) |\nabla u|^{2}$ is a nonnegative function and $\lim_{j\to\infty} h'_{j}(u) |\nabla u|^{2} = |\nabla u|^{2}$ *a.e.* in Ω , and so, by (2.8) and the Fatou's lemma,

$$\int_{\Omega} |\nabla u|^2 \leq \underline{\lim}_{j \to \infty} \int_{\Omega} (au^{-\alpha} - g_{\varepsilon}(., u)) h_j(u).$$

Also,

$$\lim_{j\to\infty} (au^{-\alpha} - g_{\varepsilon}(.,u)) h_j(u) = au^{1-\alpha} - ug_{\varepsilon}(.,u) \ a.e. \text{ in } \Omega.$$

Now, $0 \le au^{-\alpha}h_j(u) \le 5au^{1-\alpha}$. Since *a* and *u* belong to $L^{\infty}(\Omega)$ and $\alpha \le 1$, we have $au^{1-\alpha} \in L^1(\Omega)$. Also,

$$0 \le g_{\varepsilon}(.,u) h_{j}(u) \le 5ug_{\varepsilon}(.,u) \le 5 ||u||_{\infty}^{2} \sup_{0 < s \le ||u||_{\infty}} s^{-1}g_{\varepsilon}(.,s) \ a.e. \text{ in } \Omega,$$

and, by *h*6), $\sup_{0 \le s \le ||u||_{\infty}} s^{-1}g_{\varepsilon}(., s) \in L^{\infty}(\Omega)$. Then, by the Lebesgue dominated convergence theorem,

$$\lim_{j\to\infty}\int_{\Omega}\left(au^{-\alpha}-g_{\varepsilon}\left(.,u\right)\right)h_{j}\left(u\right)=\int_{\Omega}\left(au^{1-\alpha}-ug_{\varepsilon}\left(.,u\right)\right)<\infty.$$

Thus $\int_{\Omega} |\nabla u|^2 < \infty$, and so $u \in H^1(\Omega)$. Since $u \in C(\overline{\Omega})$ and u = 0 on $\partial\Omega$, we conclude that $u \in H_0^1(\Omega)$. Also, by Remark 2.12, $au^{-\alpha} - g_{\varepsilon}(., u) \in (H_0^1(\Omega))'$. Then, by a density argument, the equality

$$\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle = \int_{\Omega} \left(a u^{-\alpha} - g_{\varepsilon}(., u) \right) \varphi$$

which holds for $\varphi \in C_c^{\infty}(\Omega)$, holds also for any $\varphi \in H_0^1(\Omega)$.

Lemma 2.14. Let $a, \alpha, and \{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2. Let $\varepsilon \in (0,1]$ and let $f_{\varepsilon} : \Omega \times [0,\infty) \to \mathbb{R}$ be defined by $f_{\varepsilon}(.,s) := \chi_{(0,\infty)}(s) as^{-\alpha} - g_{\varepsilon}(.,s)$. Let v_1 and v_2 be two nonnegative functions in $L^{\infty}(\Omega) \cap H_0^1(\Omega)$ such that $f_{\varepsilon}(.,v_i) \in L^1_{loc}(\Omega)$ for i = 1, 2; and let $v := \max\{v_1, v_2\}$. Then: $i) f_{\varepsilon}(.,v) \in L^1_{loc}(\Omega)$.

ii) If v_1 and v_2 are subsolutions, in the sense of distributions, to problem (1.7), then v is also a subsolution, in the sense of distributions, to the problem

$$-\Delta u = \chi_{\{u>0\}} a u^{-\alpha} - g_{\varepsilon}(., u) \text{ in } \Omega.$$

Proof. Since $0 \le v \in L^{\infty}(\Omega)$, from h7) and h8) it follows that $g_{\varepsilon}(., v) \in L^{1}(\Omega)$. Similarly, $g_{\varepsilon}(., v_{1})$ and $g_{\varepsilon}(., v_{2})$ belong to $L^{1}(\Omega)$ and so, since $f_{\varepsilon}(., v_{i}) \in L^{1}_{loc}(\Omega)$ for i = 1, 2; we get that $\chi_{\{v_{1}>0\}}av_{1}^{-\alpha}$ and $\chi_{\{v_{2}>0\}}av_{2}^{-\alpha}$ belong to $L^{1}_{loc}(\Omega)$. Therefore, to prove *i*) it suffices to see that $\chi_{\{v>0\}}av^{-\alpha} \in L^{1}_{loc}(\Omega)$. Note that if $x \in \Omega$ and v(x) > 0 then either $v_{1}(x) > 0$ or $v_{2}(x) > 0$. Now, $\chi_{\{v>0\}}av^{-\alpha} = av^{-\alpha} \le av_{1}^{-\alpha} = \chi_{\{v_{1}>0\}}av_{1}^{-\alpha}$ in $\{v_{1} > 0\}$, and similarly, $\chi_{\{v>0\}}av^{-\alpha} \le \chi_{\{v_{2}>0\}}av_{2}^{-\alpha}$ in $\{v_{2} > 0\}$. Also, $\chi_{\{v>0\}}av^{-\alpha} = 0$ in $\{v = 0\}$. Then $\chi_{\{v>0\}}av^{-\alpha} \le \chi_{\{v_{1}>0\}}av_{2}^{-\alpha}$ in Ω and so $\chi_{\{v>0\}}av^{-\alpha} \in L^{1}_{loc}(\Omega)$. Thus *i*) holds.

To see *ii*), suppose that $-\Delta v_i \leq f_{\varepsilon}(., v_i)$ in $D'(\Omega)$ for i = 1, 2; and let φ be a nonnegative function in $C_c^{\infty}(\Omega)$. Let Ω' be a $C^{1,1}$ subdomain of Ω , such that $supp(\varphi) \subset \Omega'$ and $\overline{\Omega'} \subset \Omega$. Consider the restrictions (still denoted by v_1 and v_2) of v_1 and v_2 to Ω' . For each i = 1, 2, we have $v_i \in L^1(\Omega')$, $f_{\varepsilon}(., v_i) \in L^1(\Omega')$ and $-\Delta v_i \leq f_{\varepsilon}(., v_i)$ in $D'(\Omega')$. Thus, from Remark 2.9 v),

$$\begin{aligned} -\Delta v &\leq \chi_{\{v_1 > v_2\}} f_{\varepsilon}(., v_1) + \chi_{\{v_2 > v_1\}} f_{\varepsilon}(., v_2) + \chi_{\{v_1 = v_2\}} \frac{1}{2} \left(f_{\varepsilon}(., v_1) + f_{\varepsilon}(., v_2) \right) \\ &= f_{\varepsilon}(., v) \text{ in } D'(\Omega') \end{aligned}$$

and then $-\int_{\Omega} v \Delta \varphi \leq \int_{\Omega} f_{\varepsilon}(., v) \varphi.$

AIMS Mathematics

Volume 5, Issue 3, 1779–1798.

Lemma 2.15. Let $a, \alpha, and \{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2. Then for any $\varepsilon \in (0,1]$ there exists a weak solution u_{ε} , in the sense of Definition 1.1, of problem (1.7), which is maximal in the following sense: If v is a weak solution, in the sense of Definition 1.1, of problem (1.7), then $v \leq u_{\varepsilon}$ a.e. in Ω . Moreover, u_{ε} is a solution, in the usual sense of $H_0^1(\Omega)$, of problem (1.7).

Proof. Let *z* be as given in Remark 2.4, and let *S* be the set of the nonidentically zero weak solutions, in the sense of Definition 1.1, of problem (1.7). By Lemma 2.2, $S \neq \emptyset$ and, for any $u \in S$, by Lemma 2.5 we have $u \leq z$ in Ω and, by Lemma 2.6, there exists a positive constant *c* such that $u \geq cd_{\Omega}$ in Ω . Then $0 < \int_{\Omega} u \leq \int_{\Omega} z < \infty$ for any $u \in S$. Let $\beta := \sup \{\int_{\Omega} u : u \in S\}$. Thus $0 < \beta < \infty$. Let $\{u_k\}_{k \in \mathbb{N}} \subset S$ be a sequence such that $\lim_{k\to\infty} \int_{\Omega} u_k = \beta$. For $k \in \mathbb{N}$, let $w_k := \max \{u_j : 1 \leq j \leq k\}$. Thus $\{w_k\}_{k \in \mathbb{N}}$ is a nondecreasing sequence in $H_0^1(\Omega) \cap L^{\infty}(\Omega)$, and a repeated use of Lemma 2.14 gives that each w_k is a subsolution, in the sense of $D'(\Omega)$, of the problem

$$-\Delta u = au^{-\alpha} - g_{\varepsilon}(., u) \text{ in } \Omega.$$
(2.9)

Since $w_k \in L^{\infty}(\Omega)$ and $w_k \ge u_1 \ge c_1 d_{\Omega} a.e.$ in Ω , Remark 2.12 gives that $aw_k^{-\alpha} - g_{\varepsilon}(., w_k) \in (H_0^1(\Omega))'$. Then, by a density argument, the inequality

$$\int_{\Omega} \langle \nabla w_k, \nabla \varphi \rangle \le \int_{\Omega} \left(a w_k^{-\alpha} - g_{\varepsilon}(., w_k) \right) \varphi, \qquad (2.10)$$

which holds for $\varphi \in C_c^{\infty}(\Omega)$, holds also for any $\varphi \in H_0^1(\Omega)$, i.e., w_k is a subsolution, in the usual sense of $H_0^1(\Omega)$, of problem (2.9)

Note that $\left\{\int_{\{a>0\}} aw_k^{1-\alpha}\right\}_{k\in\mathbb{N}}$ is bounded. Indeed, since $u_k \leq z$ a.e. in Ω for any $k \in \mathbb{N}$, we have $w_k \leq z$ a.e. in Ω for all k, and so $\int_{\{a>0\}} aw_k^{1-\alpha} \leq \int_{\Omega} az^{1-\alpha} < \infty$. Moreover, $\{w_k\}_{k\in\mathbb{N}}$ is bounded in $H_0^1(\Omega)$. In fact, taking w_k as a test function in (2.10) we get, for any $k \in \mathbb{N}$,

$$\int_{\Omega} |\nabla w_k|^2 + \int_{\Omega} g_{\varepsilon}(., w_k) w_k \le \int_{\{a>0\}} a w_k^{1-\alpha}$$
(2.11)

Then, after pass to a subsequence if necessary, we can assume that there exists $w \in H_0^1(\Omega)$ such that $\{w_k\}_{k\in\mathbb{N}}$ converges in $L^2(\Omega)$ and *a.e.* in Ω to w; and $\{\nabla w_k\}_{k\in\mathbb{N}}$ converges weakly in $L^2(\Omega, \mathbb{R}^n)$ to ∇w . Let us show that w is a subsolution, in the sense of distributions of problem (2.9). Let φ be a nonnegative function in $C_c^{\infty}(\Omega)$ and let $k \in \mathbb{N}$. Since w_k is a subsolution, in the sense of distribution, of (2.9), we have

$$\int_{\Omega} \langle \nabla w_k, \nabla \varphi \rangle + \int_{\Omega} g_{\varepsilon}(., w_k) \varphi \leq \int_{\Omega} a w_k^{-\alpha} \varphi.$$
(2.12)

Since $\{\nabla w_k\}_{k \in \mathbb{N}}$ converges weakly in $L^2(\Omega, \mathbb{R}^n)$ to ∇w , we have

$$\lim_{k\to\infty}\int_{\Omega}\left\langle \nabla w_{k},\nabla\varphi\right\rangle =\int_{\Omega}\left\langle \nabla w,\nabla\varphi\right\rangle.$$

Also, since $\{g_{\varepsilon}(., w_k)\varphi\}_{k\in\mathbb{N}}$ converges to $g_{\varepsilon}(., w)\varphi$ *a.e.* in Ω , and

$$|g_{\varepsilon}(.,w_{k})\varphi| \leq \sup_{s\in[0,\|z\|_{\infty}]} \left(s^{-1}g_{\varepsilon}(.,s)\right)w_{k}|\varphi| \in L^{1}(\Omega),$$

AIMS Mathematics

the Lebesgue dominated convergence theorem gives

$$\lim_{k\to\infty}\int_{\Omega}g_{\varepsilon}(.,w_{k})\varphi=\int_{\Omega}g_{\varepsilon}(.,w)\varphi.$$

On the other hand, $\{aw_k^{-\alpha}\varphi\}_{k\in\mathbb{N}}$ converges to $aw^{-\alpha}\varphi$ *a.e.* in Ω ; and $w_k \ge u_1 \ge cd_\Omega$ *a.e.* in Ω , and so $|aw_k^{-\alpha}\varphi| \le c^{-\alpha}ad_\Omega^{1-\alpha} |d_\Omega^{-1}\varphi|$ *a.e.* in Ω ; and, since $d_\Omega^{1-\alpha} \in L^{\infty}(\Omega)$, the Hardy inequality gives that $ad_\Omega^{1-\alpha} |d_\Omega^{-1}\varphi| \in L^1(\Omega)$. Then, by the Lebesgue dominated convergence theorem, $\lim_{k\to\infty} \int_\Omega aw_k^{-\alpha}\varphi = \int_\Omega aw^{-\alpha}\varphi < \infty$. Hence, from (2.12),

$$\int_{\Omega} \langle \nabla w, \nabla \varphi \rangle + \int_{\Omega} g_{\varepsilon}(., w) \varphi \leq \int_{\Omega} a w^{-\alpha} \varphi,$$

and so *w* is a subsolution, in the sense of distributions to problem (2.9). Note that *z* is a supersolution, in the sense of distributions, of problem (2.9) and that $w \le z$ a.e. in Ω (because $u_k \le z$ for all $k \in \mathbb{N}$). Also, for some positive constant *c* and for any $k, w \ge w_k \ge u_1 \ge cd_{\Omega}$ a.e. in Ω . Then there exists a positive constant *c'* such that

$$\sup_{s \in [w(x), z(x)]} \left(\chi_{\{s>0\}} a(x) \, s^{-\alpha} - g_{\varepsilon}(x, s) \right) \le c' d_{\Omega}^{-\alpha} \text{ for } a.e \, x \in \Omega$$

and so, by Remark 2.10, there exists a solution $u_{\varepsilon} \in W_{loc}^{1,2}(\Omega)$, in the sense of distributions, of (2.9) such that $w \le u_{\varepsilon} \le z \ a.e. \ a.e.$ in Ω . Therefore, by Remark 2.4, $cd_{\Omega} \le u_{\varepsilon} \le c'd_{\Omega}^{\tau} \ a.e.$ in Ω , with c, c' and τ positive constants. Then, by Lemma 2.13, $u_{\varepsilon} \in H_0^1(\Omega) \cap C(\overline{\Omega})$ and u_{ε} is a weak solution, in the sense of Definition 1.1, of problem (1.7). Also, $u_{\varepsilon} \ge w \ge w_k \ge u_k \ a.e.$ in Ω for any $k \in \mathbb{N}$, and so $\int_{\Omega} u_{\varepsilon} \ge \beta$ which, by the definition of β , implies $\int_{\Omega} u_{\varepsilon} = \beta$.

Let us show that u_{ε} is the maximal solution of problem (1.7), in the sense required by the lemma. Suppose that w^* is a nonidentically zero weak solution, in the sense of Definition 1.1, of (1.7). By Lemmas 2.5, 2.7 and 2.6, $w^* \leq z$ in Ω , $w^* \in C(\overline{\Omega})$ and $w^* \geq cd_{\Omega} a.e.$ in Ω with c a positive constant c. Let $w^{**} := \max\{u_{\varepsilon}, w^*\}$. Thus w^{**} is a subsolution, in the sense of distributions, of problem (2.9), Remark 2.10 applies to obtain a solution \widetilde{w} , in the sense of distributions, of problem (1.7), such that $w^{**} \leq \widetilde{w} \leq z$, and Lemma 2.13 applies to obtain that $\widetilde{w} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ and that \widetilde{w} is a weak solution, in the sense of Definition 1.1, to problem (1.7). Then $\int_{\Omega} \widetilde{w} \leq \beta$. Since $u_{\varepsilon} \leq w^{**} \leq \widetilde{w}$ we get $\beta = \int_{\Omega} u_{\varepsilon} \leq \int_{\Omega} w^{**} \leq \int_{\Omega} \widetilde{w} \leq \beta$, and so $u_{\varepsilon} = w^{**}$. Thus $u_{\varepsilon} \geq w^*$.

For $\varepsilon \in (0, 1]$, let u_{ε} be the maximal weak solution to problem (1.7) given by Lemma 2.15.

Lemma 2.16. Let $a, \alpha, and \{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2. Then the map $\varepsilon \to u_{\varepsilon}$ is nondecreasing on (0, 1].

Proof. For $0 < \varepsilon < \eta$ we have, in the sense of definition 1.1,

$$-\Delta u_{\varepsilon} = a u_{\varepsilon}^{-\alpha} - g_{\varepsilon} (., u_{\varepsilon}) \le a u_{\varepsilon}^{-\alpha} - g_{\eta} (., u_{\varepsilon}) \text{ in } \Omega,$$

and so $u_{\varepsilon} \in H_0^1(\Omega) \cap C(\overline{\Omega})$ is a subsolution, in the sense of distributions, to the problem

$$-\Delta u = au^{-\alpha} - g_n(.,u) \text{ in } \Omega.$$
(2.13)

AIMS Mathematics

Let z be as in Remark 2.4. Thus z is a supersolution, in the sense of distributions, of problem (2.9), and $z \leq cd_{\Omega}^{\tau}$ a.e. in Ω , with c and τ positive constants c. Taking into account that, for some positive constant c, $u_{\varepsilon} \geq cd_{\Omega}$ a.e. in Ω , Remark 2.10 applies, as before, to obtain a weak solution, in the sense of distributions, $\tilde{u}_{\eta} \in W^{1,2}_{loc}(\Omega)$ of (2.13) such that $u_{\varepsilon} \leq \tilde{u}_{\eta} \leq z$. Now, Lemma 2.13 gives that $\widetilde{u}_{\eta} \in H_0^1(\Omega) \cap C(\overline{\Omega})$ and that \widetilde{u}_{η} is a weak solution, in the sense of Definition 1.1, of problem (2.13), which implies $\widetilde{u}_{\eta} \leq u_{\eta}$. Thus $u_{\varepsilon} \leq u_{\eta}$.

Lemma 2.17. Let $a, \alpha, and \{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ be as in Lemma 2.2. Then $\{u_{\varepsilon}\}_{\varepsilon \in (0,1]}$ is bounded in $H_0^1(\Omega)$.

Proof. Let z be as in Remark 2.4. by Lemma 2.5 $u_{\varepsilon} \leq z$ in Ω and so, since $0 < \alpha \leq 1$, we have $\int_{a>0} au_{\varepsilon}^{1-\alpha} \leq \int_{\Omega} az^{1-\alpha} < \infty.$ By taking u_{ε} as a test function in (1.7) we get, for any $\varepsilon \in (0, 1]$,

$$\int_{\Omega} |\nabla u_{\varepsilon}|^{2} + \int_{\Omega} u_{\varepsilon} g_{\varepsilon} (., u_{\varepsilon}) = \int_{\{a>0\}} a u_{\varepsilon}^{1-\alpha}.$$

Then $\int_{\Omega} |\nabla u_{\varepsilon}|^2 \leq \int_{\Omega} a z^{1-\alpha} < \infty$.

Lemma 2.18. Let a, α , and $\{g_{\varepsilon}\}_{\varepsilon \in \{0,1\}}$ be as in Lemma 2.2. Let $u := \lim_{\varepsilon \to 0^+} u_{\varepsilon}$. Then: *i*) $\boldsymbol{u} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$. *ii*) u > 0 *a.e. in* $\{a > 0\}$. *iii*) $\chi_{\{\boldsymbol{u}>0\}} a \boldsymbol{u}^{-\alpha} \varphi \in L^1(\Omega)$ for any $\varphi \in H^1_0(\Omega) \cap L^{\infty}(\Omega)$. iv) If $\{\varepsilon_j\}_{j\in\mathbb{N}}$ is a decreasing sequence in (0,1] such that $\lim_{j\to\infty}\varepsilon_j = 0$ then $\lim_{j\to\infty}\int_{\{a>0\}}au_{\varepsilon_j}^{-\alpha}\varphi = 0$ $\int_{\{a>0\}} a\mathbf{u}^{-\alpha}\varphi \text{ for any } \varphi \in H^1_0(\Omega) \cap L^{\infty}(\Omega).$

Proof. To see *i*), consider a nonincreasing sequence $\{\varepsilon_j\}_{j\in\mathbb{N}} \subset (0,1]$ such that $\lim_{j\to\infty} \varepsilon_j = 0$. By Lemma 2.17, $\{u_{\varepsilon_j}\}_{j\in\mathbb{N}}$ is bounded in $H_0^1(\Omega)$ and so, after pass to a subsequence if necessary, $\{u_{\varepsilon_j}\}_{j\in\mathbb{N}}$ converges, strongly in $L^{2}(\Omega)$, and *a.e.* in Ω , to some $\widetilde{u} \in H_{0}^{1}(\Omega)$, and $\{\nabla u_{\varepsilon_{j}}\}_{j \in \mathbb{N}}$ converges weakly in $L^{2}(\Omega, \mathbb{R}^{n})$ to $\nabla \widetilde{u}$. Since $u_{\varepsilon_{j}}$ converges to u *a.e.* in Ω we have $u = \widetilde{u}$ *a.e.* in Ω , and so $u \in H_{0}^{1}(\Omega)$. Also, $0 \le u \le u_{\varepsilon_1} \in L^{\infty}(\Omega)$ and then $u \in H^1_0(\Omega) \cap L^{\infty}(\Omega)$. Thus *i*) holds.

To see *ii*) and *iii*), consider an arbitrary nonnegative function $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$. From (1.7) we have, for each *i*,

$$\int_{\Omega} \left\langle \nabla u_{\varepsilon_j}, \nabla \varphi \right\rangle + \int_{\Omega} g_{\varepsilon_j} \left(., u_{\varepsilon_j} \right) \varphi = \int_{\Omega} a u_{\varepsilon_j}^{-\alpha} \varphi.$$
(2.14)

 $\{\nabla u_{\varepsilon_j}\}_{j\in\mathbb{N}}$ converges weakly in $L^2(\Omega, \mathbb{R}^n)$ to ∇u , and thus

$$\lim_{j\to\infty}\int_{\Omega}\left\langle \nabla u_{\varepsilon_j},\nabla\varphi\right\rangle = \int_{\Omega}\left\langle \nabla \boldsymbol{u},\nabla\varphi\right\rangle.$$

By Lemma 2.16, $\left\{au_{\varepsilon_{j}}^{-\alpha}\varphi\right\}_{j\in\mathbb{N}}$ is nondecreasing, then, by the monotone convergence theorem, $\lim_{j\to\infty} \int_{\Omega} a u_{\varepsilon_j}^{-\alpha} \varphi = \lim_{j\to\infty} \int_{\{a>0\}} a u_{\varepsilon_j}^{-\alpha} \varphi = \int_{\{a>0\}} a u^{-\alpha} \varphi.$ Let z be as in Lemma 2.5. Then $u_{\varepsilon_j} \leq z$ in Ω and so, taking into account h4),

 $\int_{\Omega} g_{\varepsilon_j}(., u_{\varepsilon_j}) \varphi \leq \int_{\Omega} \sup_{0 \leq s \leq ||z||_{\infty}} g(., s) \varphi < \infty.$ Thus

$$\int_{\{a>0\}} a\boldsymbol{u}^{-\alpha}\varphi = \lim_{j\to\infty} \int_{\Omega} au_{\varepsilon_j}^{-\alpha}\varphi = \lim_{j\to\infty} \left(\int_{\Omega} \left\langle \nabla u_{\varepsilon_j}, \nabla \varphi \right\rangle + \int_{\Omega} g_{\varepsilon_j} \left(., u_{\varepsilon_j}\right)\varphi \right)$$

AIMS Mathematics

Volume 5, Issue 3, 1779-1798.

$$\leq \overline{\lim}_{j \to \infty} \int_{\Omega} \left\langle \nabla u_{\varepsilon_{j}}, \nabla \varphi \right\rangle + \overline{\lim}_{j \to \infty} \int_{\Omega} g_{\varepsilon_{j}} \left(., u_{\varepsilon_{j}}\right) \varphi$$
$$\leq \int_{\Omega} \left\langle \nabla u, \nabla \varphi \right\rangle + \int_{\Omega} \sup_{0 \leq s \leq \|z\|_{\infty}} g\left(., s\right) \varphi < \infty.$$

Therefore $\int_{\{a>0\}} a u^{-\alpha} \varphi < \infty$. Since this holds for any nonnegative $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, we conclude that u > 0 *a.e.* in $\{a > 0\}$. Thus *ii*) holds. Now,

$$\int_{\Omega} \chi_{\{u>0\}} a \boldsymbol{u}^{-\alpha} \varphi = \int_{\{a>0\}} \chi_{\{u>0\}} a \boldsymbol{u}^{-\alpha} \varphi = \int_{\{a>0\}} a \boldsymbol{u}^{-\alpha} \varphi < \infty,$$

and then *iii*) holds for any nonnegative $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$. Hence, by writing $\varphi = \varphi^+ - \varphi^-$, *iii*) holds also for any $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$. Finally, observe that, in the case when $\varphi \ge 0$, the monotone convergence theorem gives *iv*). Then, by writing $\varphi = \varphi^+ - \varphi^-$, *iv*), holds also for an arbitrary $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$.

Remark 2.19. Assume that *a* satisfies the conditions *h1*), *h2*) and also the condition *h6*) of Theorem 1.4; and let Ω^+ be as in *h6*). Taking into account *h6*), Remark 2.4 (applied in each connected component of Ω^+) gives that the problem

$$\begin{cases} -\Delta \zeta = a \zeta^{-\alpha} \text{ in } \Omega^+, \\ \zeta = 0 \text{ on } \partial \Omega^+, \\ \zeta > 0 \text{ in } \Omega^+, \end{cases}$$
(2.15)

has a unique weak solution, in the sense of Definition 1.1, $\zeta \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, and that it satisfies: i) $\zeta \in C(\overline{\Omega^+})$.

ii) There exists a positive constant *c* such that $\zeta \ge cd_{\Omega^+}$ in Ω^+ .

iii) ζ is also a solution of problem (2.15) in the usual sense of $H_0^1(\Omega^+)$, i.e., $a\zeta^{-\alpha}\varphi \in L^1(\Omega)$ and $\int_{\Omega} \langle \nabla \zeta, \nabla \varphi \rangle = \int_{\Omega} a\zeta^{-\alpha}\varphi$ for any $\varphi \in H_0^1(\Omega^+)$.

Lemma 2.20. Assume that a and g satisfy the conditions h1)-h4) and also the condition h6) of Theorem 1.4. Let Ω^+ and A^+ be as in the statement of Theorem 1.4 and assume, in addition, that g(.,s) = 0 a.e. in A^+ for any $s \ge 0$. Let ζ be as in Remark 2.19, let $\varepsilon \in (0,1]$, and let $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ be a weak solution, in the sense of Definition 1.1, of problem (1.5). Then $u \ge \zeta$ in Ω^+ .

Proof. By Remark 2.19 *i*), $\zeta \in C(\overline{\Omega^+})$ and, by Lemma 2.7, $u \in C(\overline{\Omega})$. Also, since g(., s) = 0 *a.e.* in Ω^+ for $s \ge 0$, we have $-\Delta(u-\zeta) = a(u^{-\alpha} - \zeta^{-\alpha}) \ge 0$ in $D'(\Omega^+)$. We claim that $u \ge \zeta$ in Ω^+ . To prove this fact we proceed by the way of contradiction: Let $U := \{x \in \Omega^+ : u(x) < \zeta(x)\}$ and suppose that $U \ne \emptyset$. Then U is an open subset of Ω^+ and $-\Delta(u-\zeta) = a(u^{-\alpha} - \zeta^{-\alpha}) \ge 0$ in D'(U). Notice that $u-\zeta \ge 0$ on ∂U . In fact, if $u(x) < \zeta(x)$ for some $x \in \partial U$ we would have, either $x \in \Omega^+$ or $x \in \partial \Omega^+$; if $x \in \Omega^+$ then, since u and ζ are continuous on Ω^+ , we would have $u < \zeta$ on some ball around x, contradicting the fact that $x \in \partial U$, and if $x \in \partial \Omega^+$, then $u(x) \ge 0 = \zeta(x)$ contradicting our assumption that $u(x) < \zeta(x)$. Then $U = \emptyset$ and so $u \ge \zeta$ in Ω^+ ; and then, by continuity, also $u \ge \zeta$ on $\partial \Omega^+$. Therefore, from the weak maximum principle, $u \ge \zeta$ in Ω^+ .

3. Proof of the main results

Observe that if $g : \Omega \times [0, \infty) \to \mathbb{R}$ satisfies the conditions *h*3) and *h*4) stated at the introduction, and if, for $\varepsilon \in (0, 1]$, $g_{\varepsilon} : \Omega \times [0, \infty) \to \mathbb{R}$ is defined by

$$g_{\varepsilon}(.,s) := s \left(s + \varepsilon \right)^{-1} g \left(.,s\right), \tag{3.1}$$

then, for any s > 0, $g(., s) = \lim_{\varepsilon \to 0^+} g_{\varepsilon}(., s)$ *a.e.* in Ω ; and the family $\{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$ satisfies the conditions *h7*)-*h9*). Therefore all the results of the Section 2 hold for such a family $\{g_{\varepsilon}\}_{\varepsilon \in (0,1]}$.

Lemma 3.1. Let $a : \Omega \to \mathbb{R}$ and $g : \Omega \times [0, \infty) \to \mathbb{R}$ satisfying the conditions h1)-h4) and, for $\varepsilon \in (0, 1]$, let $g_{\varepsilon} : \Omega \times [0, \infty) \to \mathbb{R}$ be defined by (3.1), let u_{ε} be as given by Lemma 2.15, and let $u := \lim_{\varepsilon \to 0^+} u_{\varepsilon}$. Let $\{\varepsilon_j\}_{j \in \mathbb{N}} \subset (0, 1]$ be a nonincreasing sequence such that $\lim_{j \to \infty} \varepsilon_j = 0$ and, for

 $j \in \mathbb{N}$, let u_{ε_j} be as given by Lemma 2.15. Let $\theta_j := u_{\varepsilon_j} (u_{\varepsilon_j} + \varepsilon_j)^{-1}$. Then there exist a nonnegative function $\theta^* \in L^{\infty}(\Omega)$ and a sequence $\{w_m\}_{m \in \mathbb{N}} \subset L^2(\Omega, \mathbb{R}^n) \times L^2(\Omega)$ with the following properties: i) for each $m \in \mathbb{N}$, $w_m = \sum_{l \in \mathcal{F}_m} \gamma_{l,m} (\nabla u_{\varepsilon_l}, \theta_l g(., u_{\varepsilon_l}))$, where each \mathcal{F}_m is a finite subset of \mathbb{N} satisfying $\lim_{m \to \infty} \min \mathcal{F}_m = \infty$; $\gamma_{l,m} \in [0, 1]$ for any $m \in \mathbb{N}$ and $l \in \mathcal{F}_m$; and $\sum_{l \in \mathcal{F}_m} \gamma_{l,m} = 1$ for any $m \in \mathbb{N}$. ii) $\{w_m\}_{m \in \mathbb{N}}$ converges strongly in $L^2(\Omega, \mathbb{R}^n) \times L^2(\Omega)$ to $(\nabla \mathbf{u}, \theta^*)$.

iii) $\lim_{m\to\infty} \sum_{l\in\mathcal{F}_m} \gamma_{l,m}\theta_l g(., u_{\varepsilon_l}) = \theta^* a.e.$ in Ω .

iv) $\theta^* = \chi_{\{\mathbf{u}>0\}}g(.,\mathbf{u}) \ a.e. \ in \{\mathbf{u}>0\}.$

Proof. By Lemma 2.17 $\{u_{\varepsilon_j}\}_{j\in\mathbb{N}}$ is bounded in $H_0^1(\Omega)$. Then, after pass to a subsequence if necessary, we can assume that $\{u_{\varepsilon_j}\}_{j\in\mathbb{N}}$ converges to **u** in $L^2(\Omega)$ and that $\{\nabla u_{\varepsilon_j}\}_{j\in\mathbb{N}}$ converges weakly to $\nabla \mathbf{u}$ in $L^2(\Omega, \mathbb{R}^n)$. Moreover, by Lemma 2.5, $u_{\varepsilon_j} \leq z \ a.e.$ in Ω for all j, and so $\mathbf{u} \leq z \ a.e.$ in Ω . Since, for any $j, 0 < \theta_j < 1$ a.e. in Ω , and, by h3) and h4, $0 \le g(., u_{\varepsilon_j}) \le \sup_{s \in [0, ||z||_{\infty}]} g(., s) \in L^{\infty}(\Omega)$, we have that $\{\theta_j g(., u_{\varepsilon_j})\}_{j \in \mathbb{N}}$ is bounded in $L^2(\Omega)$. Thus, after pass to a further subsequence, we can assume that $\left\{\theta_{j}g\left(., u_{\varepsilon_{j}}\right)\right\}_{j \in \mathbb{N}}$ is weakly convergent in $L^{2}(\Omega)$ to a function $\theta^{*} \in L^{2}(\Omega)$, and that $\left\{\nabla u_{\varepsilon_{j}}\right\}_{j \in \mathbb{N}}$ is weakly convergent in $L^2(\Omega, \mathbb{R}^n)$ to $\nabla \mathbf{u}$. Then $\{ \left(\nabla u_{\varepsilon_j}, \theta_j g\left(., u_{\varepsilon_j}\right) \right) \}_{i \in \mathbb{N}}$ is weakly convergent to $(\nabla \mathbf{u}, \theta^*)$ in $L^2(\Omega, \mathbb{R}^n) \times L^2(\Omega)$. Thus (see e.g., [33] Theorem 3.13) there exists a sequence $\{w_m\}_{m \in \mathbb{N}}$ of the form $w_m = 1$ $\sum_{l \in \mathcal{F}_m} \gamma_{l,m} (\nabla u_{\varepsilon_l}, \theta_l g(., u_{\varepsilon_l}))$, where each \mathcal{F}_m is a finite subset of \mathbb{N} such that $\lim_{m \to \infty} \min \mathcal{F}_m = \infty, \gamma_{l,m} \in \mathbb{N}$ [0, 1] for any $m \in \mathbb{N}$ and $l \in \mathcal{F}_m$, for each m, $\sum_{l \in \mathcal{F}_m} \gamma_{l,m} = 1$ and such that $\{w_m\}_{m \in \mathbb{N}}$ converges strongly in $L^{2}(\Omega, \mathbb{R}^{n}) \times L^{2}(\Omega)$ to $(\nabla \mathbf{u}, \theta^{*})$. Then *i*) and *ii*) hold, and $\left\{ \sum_{l \in \mathcal{F}_{m}} \gamma_{l,m} \theta_{l} g(., u_{\varepsilon_{l}}) \right\}_{m \in \mathbb{N}}$ converges in $L^{2}(\Omega)$ to θ^* . Therefore, after pass to a further subsequence, we can assume that $\lim_{m\to\infty}\sum_{l\in\mathcal{F}_m}\gamma_{l,m}\theta_l g(.,\boldsymbol{u}_{\varepsilon_l}) = \theta^*$ *a.e.* in Ω and, since $\{\theta_j g(., u_{\varepsilon_j})\}_{j \in \mathbb{N}}$ is bounded in $L^{\infty}(\Omega)$, we have that $\theta^* \in L^{\infty}(\Omega)$. Thus *iii*) holds. Also $\{\theta_j\}_{j\in\mathbb{N}}$ and $\{g(., u_{\varepsilon_j})\}_{i\in\mathbb{N}}$ converge, *a.e.* in $\{\mathbf{u} > 0\}$, to $\chi_{\{\mathbf{u}>0\}}$ and to $g(., \mathbf{u})$ respectively, and then iv) follows from *iii*).

Proof of Theorem 1.2. Let $\{\varepsilon_j\}_{j\in\mathbb{N}} \subset (0,1)$ be a nonincreasing sequence such that $\lim_{j\to\infty} \varepsilon_j = 0$, let θ^* and $\{w_m\}_{m\in\mathbb{N}} \subset L^2(\Omega, \mathbb{R}^n) \times L^2(\Omega)$ be as given by Lemma 3.1, and let $\varphi \in H_0^1(\Omega) \cap L^\infty(\Omega)$. Assume temporarily that $\varphi \ge 0$ in Ω . Then $\{\sum_{l\in\mathcal{F}_m} \gamma_{l,m}\theta_l g(., u_{\varepsilon_l})\varphi\}_{m\in\mathbb{N}}$ and $\{\sum_{l\in\mathcal{F}_m} \gamma_{l,m} \langle \nabla u_{\varepsilon_l}, \nabla \varphi \rangle\}_{m\in\mathbb{N}}$ converge

AIMS Mathematics

in $L^1(\Omega)$ to $\theta^* \varphi$ and $\langle \nabla \mathbf{u}, \nabla \varphi \rangle$ respectively. Thus

$$\lim_{m \to \infty} \int_{\Omega} \sum_{l \in \mathcal{F}_m} \gamma_{l,m} \theta_l g\left(., u_{\varepsilon_l}\right) \varphi = \int_{\Omega} \theta^* \varphi, \qquad (3.2)$$

$$\lim_{m \to \infty} \int_{\Omega} \sum_{l \in \mathcal{F}_m} \gamma_{l,m} \langle \nabla u_{\varepsilon_l}, \nabla \varphi \rangle = \int_{\Omega} \langle \nabla \mathbf{u}, \nabla \varphi \rangle$$
(3.3)

and both limits are finite. Since $\{u_{\varepsilon_j}\}_{j\in\mathbb{N}}$ is nonincreasing we have, for $m \in \mathbb{N}$ and $l \in \mathcal{F}_m$,

$$au_{\varepsilon_{L_m}}^{-\alpha}\varphi \le a\sum_{l\in\mathcal{F}_m}\gamma_{l,m}u_{\varepsilon_l}^{-\alpha}\varphi \le au_{\varepsilon_{L_m}^{+\alpha}}^{-\alpha}\varphi,$$
(3.4)

where $L_m := \max \mathcal{F}_m$ and $L_m^* := \min \mathcal{F}_m$. Also, by the monotone convergence theorem,

$$\lim_{j \to \infty} \int_{\Omega} a u_{\varepsilon_j}^{-\alpha} \varphi = \lim_{j \to \infty} \int_{\{a > 0\}} a u_{\varepsilon_j}^{-\alpha} \varphi = \int_{\{a > 0\}} a \mathbf{u}^{-\alpha} \varphi = \int_{\Omega} \chi_{\{\mathbf{u} > 0\}} a \mathbf{u}^{-\alpha} \varphi, \tag{3.5}$$

the last equality because, by Lemma 2.18, $\mathbf{u} > 0$ *a.e.* in $\{a > 0\}$. Then, since $\lim_{m\to\infty} L_m^* = \infty$, (3.4) and (3.5) give

$$\lim_{m\to\infty}\int_{\{a>0\}}a\sum_{l\in\mathcal{F}_m}\gamma_{l,m}\boldsymbol{u}_{\varepsilon_l}^{-\alpha}\varphi=\int_{\Omega}\chi_{\{\mathbf{u}>0\}}a\mathbf{u}^{-\alpha}\varphi.$$
(3.6)

(notice that, by Lemma 2.18, $\int_{\Omega} \chi_{\{\mathbf{u}>0\}} a \mathbf{u}^{-\alpha} \varphi < \infty$). Since $\theta_l g(., u_{\varepsilon_l}) = g_{\varepsilon_l}(., u_{\varepsilon_l})$ we have, for any $m \in \mathbb{N}$, and in the sense of definition 1.1,

$$\begin{cases} -\Delta \left(\sum_{l \in \mathcal{F}_m} \gamma_{l,m} u_{\varepsilon_l} \right) \\ = a \sum_{l \in \mathcal{F}_m} \gamma_{l,m} u_{\varepsilon_l}^{-\alpha} - \sum_{l \in \mathcal{F}_m} \gamma_{l,m} \theta_l g\left(., u_{\varepsilon_l}\right) \text{ in } \Omega, \\ \sum_{l \in \mathcal{F}_m} \gamma_{l,m} u_{\varepsilon_l} = 0 \text{ on } \partial \Omega \end{cases}$$
(3.7)

and so

$$\int_{\Omega} \sum_{l \in \mathcal{F}_m} \gamma_{l,m} \langle \nabla u_{\varepsilon_l}, \nabla \varphi \rangle$$

$$= \int_{\Omega} a \sum_{l \in \mathcal{F}_m} \gamma_{l,m} u_{\varepsilon_l}^{-\alpha} \varphi - \int_{\Omega} \sum_{l \in \mathcal{F}_m} \gamma_{l,m} \theta_l g(., u_{\varepsilon_l}) \varphi.$$
(3.8)

Taking the limit as $m \to \infty$ in (3.8), and using (3.2), (3.3), (3.6) and recalling that, by Lemma 3.1 *iv*), $\theta^* = \chi_{\{\mathbf{u}>0\}}g(.,\mathbf{u}) a.e.$ in $\{\mathbf{u}>0\}$, we get that

$$\int_{\Omega} \langle \nabla \mathbf{u}, \nabla \varphi \rangle = \int_{\Omega} \chi_{\{\mathbf{u}>0\}} a \mathbf{u}^{-\alpha} \varphi - \int_{\Omega} \theta^* \varphi$$

$$= \int_{\Omega} \chi_{\{\mathbf{u}>0\}} a \mathbf{u}^{-\alpha} \varphi - \int_{\Omega} \chi_{\{\mathbf{u}>0\}} g(., \mathbf{u}) \varphi - \int_{\{\mathbf{u}=0\}} \theta^* \varphi.$$
(3.9)

for any nonnegative $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, and by writing $\varphi = \varphi^+ - \varphi^-$ it follows that (3.9) holds also for any $\varphi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$.

AIMS Mathematics

Let Ω_0 be as in h3). If $\Omega_0 = \emptyset$ then $\mathbf{u} > 0$ *a.e.* in Ω (because $\mathbf{u} > 0$ *a.e.* in $\{a > 0\}$) and thus, by (3.9), \mathbf{u} is a solution, in the sense of Definition 1.1, of problem (1.2). Consider now the case when $\Omega_0 \neq \emptyset$. We claim that, in this case, $\mathbf{u} \in W_{loc}^{2,p}(\Omega_0)$ for any $p \in [1, \infty)$. Indeed, let Ω'_0 be a an arbitrary $C^{1,1}$ subdomain of Ω_0 such that $\overline{\Omega'_0} \subset \Omega_0$. We have $\chi_{\{\mathbf{u}>0\}}a\mathbf{u}^{-\alpha} = 0$ on Ω_0 , and so, from (3.9), $-\Delta \mathbf{u} = -\chi_{\{\mathbf{u}>0\}}g(.,\mathbf{u}) - \theta^*$ in $D'(\Omega_0)$. Also, the restrictions to Ω_0 of \mathbf{u} and θ^* belong to $L^{\infty}(\Omega_0)$ and so, from the inner elliptic estimates (as stated e.g., in [20], Theorem 8.24), $\mathbf{u} \in W^{2,p}(\Omega'_0)$. Then $\mathbf{u} \in W_{loc}^{2,p}(\Omega_0)$ for any $p \in [1, \infty)$. Thus, for any $p \in [1, \infty)$, \mathbf{u} is a strong solution in $W_{loc}^{2,p}(\Omega_0)$ of $-\Delta \mathbf{u} = -\chi_{\{\mathbf{u}>0\}}g(.,\mathbf{u}) - \theta^*$ in Ω_0 .

Taking into account (3.9), in order to complete the proof of the theorem it is enough to see that the set $E := \{\mathbf{u} = 0\} \cap \{\theta^* > 0\}$ has zero measure. Suppose that |E| > 0. Since $\mathbf{u} > 0$ *a.e.* in $\{a > 0\}$, from *h5*) it follows that $E \subset \Omega_0 \cup V$, for some measurable $V \subset \Omega$ such that |V| = 0. Since |E| > 0, there exists a subdomain Ω' , with $\overline{\Omega'} \subset \Omega_0$, and such that $E' := E \cap \Omega'$ has positive measure. Since $\mathbf{u} = 0$ *a.e.* in E' and $\mathbf{u} \in W^{1,p}(\Omega')$ we have $\nabla \mathbf{u} = 0$ *a.e.* in E' (see [20], Lemma 7.7). Thus $\frac{\partial \mathbf{u}}{\partial x_i} = 0$ *a.e.* in E' for each i = 1, 2, ..., n; and since $\frac{\partial \mathbf{u}}{\partial x_i} \in W^{1,p}(\Omega'_0)$ the same argument gives that also the second order derivatives $\frac{\partial^2 \mathbf{u}}{\partial x_i \partial x_j}$ vanish *a.e.* in E'. Then $\Delta \mathbf{u} = 0$ *a.e.* in E', which, taking into account that $g(., \mathbf{u})$ is nonnegative and $\theta^* > 0$ in E', contradicts the fact that $-\Delta \mathbf{u} = -\chi_{\{\mathbf{u}>0\}}g(., \mathbf{u}) - \theta^*$ *a.e.* in Ω_0 .

Proof of Theorem 1.3. Notice that the condition h4') is stronger than h4) and so Theorem 1.2 gives a weak solution u, in the sense of definition 1.1, of problem (1.2) which satisfies u > 0 a.e. in $\{a > 0\}$, and so, since a > 0 a.e. in Ω , by Lemma 2.18, we have u > 0 a.e. in Ω . Thus u is a weak solution, in the sense of Definition 1.1, of the problem

$$\begin{cases} -\Delta \boldsymbol{u} = a\boldsymbol{u}^{-\alpha} - g(.,\boldsymbol{u}) \text{ in } \Omega, \\ \boldsymbol{u} = 0 \text{ on } \partial \Omega. \end{cases}$$

Let $a_0 := \mathbf{u}^{-1}g(.,\mathbf{u})$. Since $g \ge 0$ and $\mathbf{u} \in L^{\infty}(\Omega)$, h4') gives $0 \le a_0 \in L^{\infty}(\Omega)$. Now, in the sense of Definition 1.1, $-\Delta \mathbf{u} + a_0\mathbf{u} = a\mathbf{u}^{-\alpha}$ in Ω , $\mathbf{u} = 0$ on $\partial\Omega$, and $\mathbf{u} > 0$ *a.e.* in Ω ; Then, for some $\eta > 0$ and some measurable set $E \subset \Omega$ with |E| > 0, we have $\chi_{\{u>0\}}a\mathbf{u}^{-\alpha} \ge \eta\chi_E$ *a.e.* in Ω . Let $\psi \in \bigcap_{1 \le q < \infty} W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega)$ be the solution of the problem $-\Delta \psi + a_0\psi = \eta\chi_E$ in Ω , $\psi = 0$ on $\partial\Omega$. By the Hopf maximum principle (as stated, e.g., in [34], Theorem 1.1) there exists a positive constant c_1 such that $\psi \ge c_1 d_\Omega$ in Ω ; and, from (1.7) we have $-\Delta \mathbf{u} + a_0\mathbf{u} \ge \eta\chi_E$ in $D'(\Omega)$. Then, by the weak maximum principle (as stated, e.g., in [20], Theorem 8.1), $\mathbf{u} \ge \psi$ *a.e.* in Ω . Therefore, $\mathbf{u} \ge c_1 d_\Omega$ *a.e.* in Ω . Thus, for some positive constant c', $a\mathbf{u}^{-\alpha} \le c' d_{\Omega}^{-\alpha} a.e.$ in Ω . Also, $g(.,\mathbf{u}) \in L^{\infty}(\Omega)$ and so, for a larger c' if necessary, we have $|a\mathbf{u}^{-\alpha} - g(.,\mathbf{u})| \le c' d_{\Omega}^{-\alpha} a.e.$ in Ω . Then, taking into account that $\alpha \le 1$, the Hardy inequality gives, for any $\varphi \in H_0^1(\Omega)$,

$$\int_{\Omega} \left| \left(a \boldsymbol{u}^{-\alpha} - g\left(., \boldsymbol{u} \right) \right) \varphi \right| \leq \int_{\Omega} c' d_{\Omega}^{1-\alpha} \left| d_{\Omega}^{-1} \varphi \right| \leq c'' \left\| \varphi \right\|_{H_{0}^{1}(\Omega)}.$$

with c'' a positive constant independent of φ . Thus $au^{-\alpha} - g(., u) \in (H_0^1(\Omega))'$. Let z be as in Lemma 2.5. Since $u \le u_{\varepsilon_j} \le z$, Lemma 2.5 gives that $u \le c''' d_{\Omega}^{\tau}$ for some positive constants c''' and τ . Therefore, by Lemma 2.13, u is a weak solution, in the usual sense of $H_0^1(\Omega)$, of problem (1.2). Moreover, since

$$cd_{\Omega} \le \boldsymbol{u} \le c^{\prime\prime\prime} d_{\Omega}^{\tau} \ a.e. \ \text{in } \Omega, \tag{3.10}$$

AIMS Mathematics

Proof of Theorem 1.4. Suppose that $0 < \alpha < \frac{1}{2} + \frac{1}{n}$ when n > 2, that and $0 < \alpha \le 1$ when $n \le 2$. Assume also that g(., s) = 0 on Ω^+ and that h1)-h4) and h5) hold. Let z be as in Remark 2.4, let $\{\varepsilon_j\}_{j\in\mathbb{N}} \subset (0, 1)$ be a nonincreasing sequence such that $\lim_{j\to\infty} \varepsilon_j = 0$, and let $\{u_{\varepsilon_j}\}_{j\in\mathbb{N}}$ be as in Theorem 1.2. Let $u := \lim_{j\to\infty} u_{\varepsilon_j}$. By Lemma 2.5 we have, $u_{\varepsilon_j} \le z$ in Ω for all $j \in \mathbb{N}$, and so $u \le z$ a.e. in Ω . Thus, by Remark 2.4, there exist positive constants c and τ such that $u \le cd_{\Omega}^{\tau}$ a.e. in Ω . Let Ω^+ as given by h6), and let $\zeta : \Omega^+ \to \mathbb{R}$ be as given by Remark 2.19. Thus, by Remark 2.19 *ii*), there exists a positive constant c' such that $\zeta \ge c'd_{\Omega^+}$ in Ω^+ , and by Remark 2.20, $u_{\varepsilon_j} \ge \zeta$ in Ω^+ for all $j \in \mathbb{N}$. Then $u_{\varepsilon_j} \ge c'd_{\Omega^+}$ in Ω^+ for all j, and so $u \ge cd_{\Omega^+} a.e.$ in Ω^+ .

Let $\varphi \in H_0^1(\Omega)$ and, for $k \in \mathbb{N}$, let $\varphi_k : \Omega \to \mathbb{R}$ be defined by $\varphi_k(x) = \varphi(x)$ if $|\varphi(x)| \le k$, $\varphi_k(x) = k$ if $\varphi(x) > k$ and $\varphi_k(x) = -k$ if $\varphi(x) < -k$. Thus $\varphi_k \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ and $\{\varphi_k\}_{k \in \mathbb{N}}$ converges to φ in $H_0^1(\Omega)$. By Theorem 1.2, *u* is a weak solution, in the sense of definition 1.1, of problem (1.2). Then, for all $k \in \mathbb{N}$,

$$\int_{\Omega} \langle \nabla \boldsymbol{u}, \nabla \varphi_k \rangle = \int_{\Omega} \chi_{\{\boldsymbol{u}>0\}} \left(a \boldsymbol{u}^{-\alpha} - g\left(., \boldsymbol{u}\right) \right) \varphi_k$$

$$= \int_{\Omega} \left(a \boldsymbol{u}^{-\alpha} - \chi_{\{\boldsymbol{u}>0\}} g\left(., \boldsymbol{u}\right) \right) \varphi_k$$

$$= \int_{\Omega} \left(\chi_{\{a>0\}} a \boldsymbol{u}^{-\alpha} - \chi_{\{\boldsymbol{u}>0\}} g\left(., \boldsymbol{u}\right) \right) \varphi_k.$$
(3.11)

Note that $\chi_{\{a>0\}}au^{-\alpha} - \chi_{\{u>0\}}g(., u) \in (H_0^1(\Omega))'$. Indeed, by h4), $\chi_{\{u>0\}}g(., u) \in L^{\infty}(\Omega) \subset (H_0^1(\Omega))'$, and, since $u \geq cd_{\Omega^+}$ a.e. in Ω^+ and a = 0 a.e. in $\Omega \setminus \Omega^+$, we have $\chi_{\{a>0\}}au^{-\alpha} \in L^{(2^*)'}(\Omega) \subset (H_0^1(\Omega))'$ when n > 2 (because $0 < \alpha < \frac{1}{2} + \frac{1}{n}$ if n > 2), and, in the case $n \leq 2$, $\chi_{\{a>0\}}au^{-\alpha} \in L^{\frac{1}{\alpha}-\eta}(\Omega) \subset (H_0^1(\Omega))'$ for η positive and small enough, (because $0 < \alpha \leq 1$ if $n \leq 2$). Now, we take $\lim_{k\to\infty}$ in (3.11), to obtain

$$\int_{\Omega} \langle \nabla \boldsymbol{u}, \nabla \varphi \rangle = \int_{\Omega} \left(\chi_{\{a>0\}} a \boldsymbol{u}^{-\alpha} - \chi_{\{\boldsymbol{u}>0\}} g(., \boldsymbol{u}) \right) \varphi$$
$$= \int_{\Omega} \chi_{\{\boldsymbol{u}>0\}} \left(a \boldsymbol{u}^{-\alpha} - g(., \boldsymbol{u}) \right) \varphi,$$

the last equality because u > 0 a.e. in $\{a > 0\}$.

Acknowledgment

The author wish to thank an anonymous referee for his/her helpful suggestions and critical comments, which led to a substantial improvement of the paper.

Conflict of interest

The author declare no conflicts of interest in this paper

References

- 1. H. Brezis, *Functional analysis, Sobolev spaces and partial differential equations*, Universitext, Springer, New York, 2011.
- 2. H. Brezis and X Cabre, *Some simple nonlinear PDE's without solutions*, Bollettino Della Unione Matematica Italiana, **2** (1998), 223–262.
- 3. A. Callegari and A. Nashman, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., **38** (1980), 275–281.
- 4. M. M. Coclite and G. Palmieri, *On a singular nonlinear Dirichlet problem*, Comm. Part. Differ. Equat., **14** (1989), 1315–1327.
- 5. D. S. Cohen and H. B. Keller, *Some positive problems suggested by nonlinear heat generators*, J. Math. Mech., **16** (1967), 1361–1376.
- 6. M. G. Crandall, P. H. Rabinowitz and L. Tartar, *On a Dirichlet problem with a singular nonlinearity*, Comm. Part. Differ. Equations, **2** (1977), 193–222.
- F. Cîrstea, M. Ghergu and V. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pures Appl., 84 (2005), 493–508.
- 8. Y. Chu, Y. Gao and W. Gao, *Existence of solutions to a class of semilinear elliptic problem with nonlinear singular terms and variable exponent*, J. Funct. Spaces, **2016** (2016), 1–11.
- 9. J. Dávila and M. Montenegro, *Positive versus free boundary solutions to a singular elliptic equation*, J. Anal. Math., **90** (2003), 303–335.
- 10. J. Dávila and M. Montenegro, *Existence and asymptotic behavior for a singular parabolic equation*, Trans. Amer. Math. Soc., **357** (2005), 1801–1828
- 11. M. A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. R. Soc. Edinburgh Sect. A, **122** (1992), 341–352.
- J. I. Díaz and J. Hernández, *Positive and free boundary solutions to singular nonlinear elliptic problems with absorption; An overview and open problems*, Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems, Electron. J. Differ. Eq., Conf., **21** (2014), 31–44.
- J. I. Díaz, J. M. Morel and L. Oswald, *An elliptic equation with singular nonlinearity*, Comm. Part. Diff. Eq., **12** (1987), 1333–1344.
- 14. L. Dupaigne, M. Ghergu and V. Rădulescu, *Lane-Emden-Fowler equations with convection and singular potential*, J. Math. Pures Appl., **87** (2007), 563–581.
- D. G. De Figueiredo, *Positive solutions of semilinear elliptic equations*, in: Guedes de Figueiredo D., Hönig C.S. (eds) Differential Equations. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, **957** (1982), 34–87
- 16. W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka Math. J., 12 (1960), 1–19.
- 17. L. Gasiński and N. S. Papageorgiou, Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities, Ann. Henri Poincaré, **13** (2012), 481–512.
- 18. M. Ghergu and V. D. Rădulescu, *Singular Elliptic Problems: Bifurcation and Asymptotic Analysis*, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, 2008.

- M. Ghergu and V. D. Rădulescu, Multi-parameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Royal Soc. Edinburgh, Sect. A, 135 (2005), 61–84.
- 20. D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
- 21. T. Godoy and A. Guerin, *Existence of nonnegative solutions for singular elliptic problems*, Electron. J. Differential Equations, **191** (2016), 1–16.
- 22. T. Godoy and A. Guerin, *Nonnegative solutions to some singular semilinear elliptic problems*, Journal of Nonlinear Functional Analysis, **2017** (2017), 1–23.
- 23. T. Godoy and A. Guerin, *Positive weak solutions of elliptic Dirichlet problems with singularities in both the dependent and the independent variables*, Electron. J. Qual. Theory Differ. Equ., **54** (2019), 1–17.
- 24. T. Godoy and A. Guerin, *Regularity of the lower positive branch for singular elliptic bifurcation problems*, Electron. J. Differential Equations, **49** (2019), 1–32.
- 25. T. Godoy and A. Guerin, *Existence of nonnegative solutions to singular elliptic problems, a variational approach*, Discrete Contin. Dyn. Syst., Series A, **38** (2018), 1505–1525.
- 26. A. C. Lazer and P. J. McKenna, *On a singular nonlinear elliptic boundary value problem*, Proc. Amer. Math. Soc., **111** (1991), 721–730.
- 27. M. Montenegro and A. Ponce, *The sub-supersolution method for weak solutions*, Proc. Amer. Math. Soc., **136** (2008), 2429–2438.
- 28. N. H. Loc and K. Schmitt, *Boundary value problems for singular elliptic equations*, Rocky Mt. J. Math., **41** (2011), 555–572.
- 29. N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, *Nonlinear Analysis–Theory and Methods*, Springer Monographs in Mathematics, Springer, Cham, 2019.
- N. S. Papageorgiou and G. Smyrlis, *Nonlinear elliptic equations with singular reaction*, Osaka J. Math., 53 (2016), 489–514.
- 31. A. C. Ponce, Selected problems on elliptic equations involving measures, arXiv:1204.0668 [v3], 2017.
- V. D. Rădulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, in: Handbook of Differential Equations: Stationary Partial Differential Equations, (M. Chipot, Editor), North-Holland Elsevier Science, Amsterdam, 4 (2007), 483–591.
- 33. W. Rudin, *Functional analysis*, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
- J. C. Sabina de Lis, *Hopf maximum principle revisited*, Electron. J. Differential Equations, 115 (2015), 1–9.
- 35. J. Shi and M. Yao, *On a singular nonlinear semilinear elliptic problem*, Proc. R. Soc. Edinburgh, Sect A, **128** (1998), 1389–1401.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics