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1. Introduction

The applications of the generalized inverse of matrices or operators are of interest in numerical
mathematics. Indeed, when a matrix is singular or rectangular, many computational and theoretical
problems require different forms of generalized inverses. In the finite-dimensional case, an important
application of the Moore-Penrose inverse is to minimize a Hermitian positive definite quadratic form
xtx where t denotes the transpose, under linear constraints. Precisely, weighted Moore-Penrose inverse
plays a prominent role in the indefinite linear least-square problems [1, 2].

Let Cm×n denotes the set of all matrices of order m × n, having complex entries. Further, assume
that for an arbitrary matrix A ∈ Cm×n, and two Hermitian positive definite matrices M ∈ Cm×m, and
N ∈ Cn×n, there exist a unique matrix S ∈ Cn×m such that satisfying the following properties:

1) AS A = A, 2) S AS = S , 3) (MAS )∗ = MAS , 4) (NS A)∗ = NS A. (1.1)
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Then, S is said to be a weighted Moore-Penrose inverse (WMPI) of A with respect to matrices M and
N; generally, it is denoted by A†MN . In particular, when the matrix M and N are the identity matrix of
order m and n, respectively, then S is known as Moore-Penrose inverse, denoted by A†. Moreover, the
above relation is reduced to well-known Penrose equations [3, 4] as follows:

1) AS A = A, 2) S AS = S , 3) (AS )∗ = AS , 4) (S A)∗ = S A. (1.2)

The elementary technique for computing the WMPI of the matrix is entirely based on the weighted
singular value decomposition [5], in accordance with the following form. Let A ∈ Cm×n

r , where Cm×n
r

be a set of complex matrices of order m × n with rank r, there exist matrices P ∈ Cm×m and Q ∈ Cn×n

satisfying the conditions P∗MP = Im and Q∗N−1Q = In, such that

A = P
(

D 0
0 0

)
Q∗, (1.3)

where D = diag(σ1, σ2, . . . , σr), σ2
i is the nonzero eigenvalue of matrix N−1A∗MA, and it satisfies the

relation: σ1 ≥ σ2 ≥ . . . σr > 0. Then, the WMPI (A†MN) of matrix A could be expressed as:

A†MN = N−1Q
(

D−1 0
0 0

)
P∗M. (1.4)

Note that, in this manuscript weighted conjugate transpose of matrix A is denoted by A# and is equal to
N−1A∗M, whereas A∗ denotes the conjugate transpose of the matrix A ∈ Cm×n. Consequently, (A†MN)# =

M−1(A†MN)∗N = M−1(A∗)†
N−1 M−1 N and (AA†MN)# = P

(
Ir 0
0 0

)
P−1 [6, pp. 41]. Moreover, the following

properties hold:

A#AA†MN = A#, A#(AA†MN)# = A#, (A†MN A)#A# = A#, A†MN AA# = A#.

A diverse range of other methodologies has presented in the literature to determine the WMPI
of a matrix. For calculating the generalized inverse numerically, Greville’s partitioning method was
introduced in [7]. A new proof of Greville’s method was illustrated by Wang [8] for WMPI. But, such
methods involve more operations and therefore more rounding errors are accumulated. Often numerical
techniques for finding the Moore-Penrose inverse lack in numerical stability [9]. Besides it, Wang
[10] obtained a comprehensive proof for the WMPI of a partition matrix in a recursive form. Also,
WMPI method was introduced in [9] for the multi-variable polynomial. Moreover, new determinantal
representations for weighted generalized inverse were presented in [11]. Whereas, a representation
of the WMPI of a quaternion matrix was discussed by Ivan Kyrchei [12, 13]. Further, its explicit
representation for the two-sided restricted quaternionic matrix equations was investigated in [14].

The hyperpower iterative method was given by Altman [15] for inverting a linear bounded operator
in the Hilbert space, whereas it’s applicability for generating the Moore-Penrose inverse of a matrix
was shown by Ben-Israel [16]. Several iterative methods fall in this category of hyperpower matrix
iterations and the general pth order iterative method is written as follows:

S k+1 = S k(I + Rk + R2
k + · · · + Rp

k ), (1.5)
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where Rk = I − AS k, I is identity matrix of order m and S 0 is the initial approximation to input matrix
A−1. This scheme is attractive as it is entirely based on matrix-matrix products, which is implemented
fruitfully in parallel machines. By this approach, each pth- order iterative method brought forward in
terms of hyperpower series, which require p times matrix-matrix multiplications. If p = 2, iterative
method (1.5) yields well known Newton-Schulz method (derived in [17, 18]):

S k+1 = S k(2I − AS k), k = 0, 1, . . . . (1.6)

Although it is a quadratically convergent method, and its complexity is poly-logarithmic and
numerically stable (discussed in [19]). But, scheme (1.6) often shows slow convergence behavior
during the initial process, thus would lead to an increment in computational workload while
calculating matrix inverse.

In 2017, H. Esmaeili and A. Pirnia [20] constructed a quadratic convergence iterative scheme as
follows:

S k+1 = S k(5.5I − AS k(8I − 3.5AS k)), k = 0, 1, . . . . (1.7)

If p = 3, the hyperpower iterative method (1.5) turns into a cubically convergent method and can also
be derived from Chebyshev scheme [21]:

S k+1 = S k(3I − AS k(3I − AS k)), (1.8)

and investigated by Li et al. [21] in 2001. Along with this, they developed two other third-order iterative
methods, from the mid-point rule method [22] and Homeier’s method [22], given as:

S k+1 =
(
I +

1
4

(I − S kA)(3I − S kA)2)S k, (1.9)

and

S k+1 = S k
(
I +

1
2

(I − AS k)(I + (2I − AS k)2)
)
, (1.10)

respectively. In 2017, a fourth-order scheme has been presented by Esmaeili et al. [23] and
demonstrated below:

S k+1 = S k(9I − 26(AS k) + 34(AS k)2 − 21(AS k)3 + 5(AS k)4). (1.11)

Toutounian and Soleymani [24] have proposed the following fourth-order method:

S k+1 =
1
2

S k(9I − AS k(16I − AS k(14I − AS k(6I − AS k)))). (1.12)

As a general way of extracting can be done by using equation (1.5). Thus, for p = 4 the fourth-order
iterative scheme:

S k+1 = S k(4I − 6AS k + 4(AS k)2 − (AS k)3), (1.13)

that uses four matrix-matrix multiplications. In 2013, Soleymani [25] demonstrated the fifth-order
iterative method with the use of six times matrix multiplications at each step and scheme is presented
below:

S k+1 = −
1
2

S k(−11I + AS k(25I + AS k(−30I + AS k(20I + AS k(−7I + AS k))))). (1.14)
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In this paper, we have been investigated the fifth-order convergent iterative method for computing
the weighted Moore-Penrose inverse. We focused on one of the major factors of computational cost
which is paying close attention to reduce the time of computations. In addition, the theoretical study
was carried out to justify the ability to finding the weighted Moore-Penrose inverse of any matrix.
Also, the aim of the presented work have been supported by the numerical performance.

2. Iterative method

Our aim is to derive a fifth-order iterative method with the help of Eq. (1.5) to find the weighted
Moore-Penrose inverse of a matrix A, that uses minimum number of matrix multiplications than the
required ones in (1.5). The hyperpower series for p = 5 can be written as:

S k+1 = S k(5I − 10AS k + 10(AS k)2 − 5(AS k)3 + (AS k)4) = S kΦ(AS k), (2.1)

where Φ(AS k) = 5I − 10AS k + 10(AS k)2 − 5(AS k)3 + (AS k)4. The count of matrix multiplications
in the iterative method (2.1) is five. The computational time used by the iterative method (2.1) can
be minimized by reducing the count of matrix-matrix multiplications at each step. For this, we re-
formulate the above scheme (2.1) as follows:

Xk = AS k,

Yk = X2
k ,

Vk = 5I − 5Xk,

Xk+1 = S k(Vk − 5Xk +Yk(5I +Vk +Yk)) = S kΦ(AS k), k = 0, 1, 2, . . . .

(2.2)

This is a new iterative method (2.2) for computing the generalized inverse of any matrix. It can be seen
easily that it uses four matrix-matrix multiplications at every step.

In the next section, we will prove theoretically that the order of convergence of the above scheme is
five and is applicable for generating the weighted Moore-Penrose inverse.

3. Weighted Moore-Penrose inverse (WMPI):

Lemma 3.1. For the approximate sequence {S k}
∞
k=0 generated by the iterative method (2.2) with the

initial matrix
S 0 = δA#, (3.1)

the following Penrose equations hold:
(a) S kAA†MN = S k, (b) A†MN AS k = S k, (c) (MAS k)∗ = MAS k, (d) (NS kA)∗ = NS kA.

Proof. This lemma could be proved via mathematical induction on k. For k = 0, the Eq. (a) is true.
That is,

S 0AA†MN = δA#AA†MN = δN−1A∗MAA†MN

= δN−1Q
(

D 0
0 0

)
P∗MP

(
D 0
0 0

)
Q∗N−1Q

(
D−1 0
0 0

)
P∗M

= δN−1Q
(

D 0
0 0

)
Im

(
D 0
0 0

)
In

(
D−1 0
0 0

)
P∗M
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= δN−1Q
(

D 0
0 0

)
P∗M = δA# = S 0.

Further, we assume that the result holds for k, i.e.,

S kAA†MN = S k or AS kAA†MN = AS k. (3.2)

Now, we will prove that the Eq. (a) continues to hold for k + 1, i.e., S k+1AA†M,N = S k+1. Thus,
considering its left-hand side expression and using the iterative scheme (2.2), we get

S k+1AA†MN = S k
(
5I − 10AS k + 10(AS k)2 − 5(AS k)3 + (AS k)4)AA†MN

= 5S kAA†MN − 10S kAS kAA†MN + 10S k(AS k)1AS kAA†MN − 5S k(AS k)2AS kAA†MN

+ S k(AS k)3AS kAA†MN .

Substituting Eq. (3.2) in the above equation, one can obtain

S k+1AA†MN =5S k − 10S kAS k + 10S k(AS k)1(AS k) − 5S k(AS k)2AS k + S k(AS k)3AS k

=S k
(
5I − 10AS k + 10(AS k)2 − 5(AS k)3 + (AS k)4)

=S k+1.

Hence, by the principle of mathematical induction, the Eq. (a) holds for k ∈W, whereW = {0, 1, 2,
3, . . . }. Now, third Eq. (c) of this lemma can easily be verified for k = 0. Let the result is true for k i.e.,
(MAS k)∗ = MAS k. Next, we will show that the result holds for k + 1. Using the iterative scheme (2.2),

(MAS k+1)∗ =
(
MAS k

(
5I − 10AS k + 10(AS k)2 − 5(AS k)3 + (AS k)4))∗

= 5(MAS k)∗ − 10
(
M(AS k)2)∗ + 10

(
M(AS k)3)∗ − 5

(
M(AS k)4)∗ +

(
M(AS k)5)∗. (3.3)

Using the fact (MAS k)∗ = MAS k, and also for q > 0,(
M(AS k)q)∗ =

(
M(AS k) (AS k) . . . (AS k)︸            ︷︷            ︸

q−1 terms

)∗
= (AS k)∗(AS k)∗ . . . (AS k)∗︸                        ︷︷                        ︸

q−1 terms

(MAS k)∗

= (AS k)∗(AS k)∗ . . . (AS k)∗︸                        ︷︷                        ︸
q−1 terms

MAS = (AS k)∗(AS k)∗ . . . (AS k)∗︸                        ︷︷                        ︸
q−1 terms

M∗AS

= (AS k)∗(AS k)∗ . . . (AS k)∗︸                        ︷︷                        ︸
q−2 terms

(MAS k)∗AS = (AS k)∗(AS k)∗ . . . (AS k)∗︸                        ︷︷                        ︸
q−2 terms

M(AS )2

...

= M(AS k)q.

Thus, the Eq. (3.3) becomes:

(MAS k+1)∗ = 5MAS k − 10M(AS k)2 + 10M(AS k)3 − 5M(AS k)4 + M(AS k)5 = MAS k+1. (3.4)

Thus, third equality holds for k + 1. The second and the fourth equations (i.e., (c) & (d) ) can be proved
analogously. Hence, the proof is completed. �
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Let A be a complex matrix of order m × n having rank r. Assume that the matrices P ∈ Cm×m,
Q ∈ Cn×n, M and N are the Hermitian positive definite matrices satisfy P∗MP = Im and Q∗N−1Q = In.
Then, the weighted singular value decomposition of matrix A can be expressed by Eq. (1.4).

Lemma 3.2. Considering the conditions of Lemma 3.1, for each approximate inverse produced by the
iterative scheme (2.2), the following expression holds:

Θk = (Q−1N)S k(M−1(P∗)−1) =

(
Tk 0
0 0

)
, (3.5)

where Tk is a diagonal matrix and it is given by

Tk =

{
Tk−1Φ(DTk−1), k ≥ 1,

δD, k = 0.
(3.6)

Here, D denotes the diagonal matrix of order r.

Proof. We prove this lemma by using the mathematical induction on k. For k = 0, we have

(Q−1N)S 0(M−1(P∗)−1) = δ(Q−1N)A#(M−1(P∗)−1)
= δ(Q−1NN−1)A∗(MM−1(P∗)−1)

= δ(Q−1NN−1Q)
(

D 0
0 0

)
(P∗MM−1(P∗)−1)

=

(
δD 0
0 0

)
. (3.7)

Further, we assume that the result holds for k. Now, we will prove that the result (3.5) is valid for k + 1.
For this, it is sufficient to prove that

(Q−1N)S k+1(M−1(P∗)−1) =

(
TkΦ(DTk) 0

0 0

)
.

Thus,

(Q−1N)S k+1(M−1(P∗)−1) =Q−1N
(
S k(5I − 10AS k + 10(AS k)2 − 5(AS k)3 + (AS k)4)

)
(M−1(P∗)−1)

=5(Q−1N)S k(M−1(P∗)−1) − 10(Q−1N)S kAS k(M−1(P∗)−1)
+ 10(Q−1N)S k(AS k)2(M−1(P∗)−1) − 5(Q−1N)S k(AS k)3(M−1(P∗)−1)
+ (Q−1N)S k(AS k)4(M−1(P∗)−1)

=Θk(5I − 10DΘk + 10(DΘk)2 − 5(DΘk)3 + (DΘk)4)

=

(
TkΦ(DTk) 0

0 0

)
. (3.8)

�

Theorem 3.1. For a complex matrix A ∈ Cm×n, the sequence {S k}
∞
k=0 generated by (2.2) with initial

matrix S 0 = δA#, for any k > 0 converges to A†MN with at least fifth-order of convergence.
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Proof. In view of iterative scheme (2.2) and to establish this result, we must show that

lim
k→∞

(Q−1N)S k(M−1(P∗)−1) =

(
D−1 0
0 0

)
. (3.9)

It follows from Lemma 3.2, that

Tk = diag(t(k)
1 , t

(k)
2 , . . . , t

(k)
r ), where t(0)

i = δξi, (3.10)

and
tk+1
i = tk

i (5I − 10ξti + 10(ξti)2 − 5(ξti)3 + (ξti)4). (3.11)

The sequence generated by Eq. (3.11) gives rise to the result of applying the iterative scheme (2.2) for
computing the zero ξ−1 of the function f (t) = ξ − t−1 with the initial guess t(0)

i . It could be seen that
the iteration converges to ξ−1

i , provided 0 < t(0)
i < 2

ξi
, which leads to the condition on δ (so the choice

of initial guess is proved). Thus, Tk → D−1 and relation (3.9) is satisfied. It proves that the iterative
method (2.2) converges to its weighted matrix inversion A†MN . Now, we will show that the obtained
sequence {S k}

∞
k=0 converges with the fifth-order. For this, assume that

S kA = N−1Q
(

Tk 0
0 0

)
P∗MP

(
D 0
0 0

)
Q∗. (3.12)

Since P∗MP = Im, and Q∗N−1Q = In, we have (Q∗)−1 = N−1Q. Consequently,

S kA = (Q∗)−1
(

TkD 0
0 0

)
Q∗ = (Q∗)−1

(
Ek 0
0 0

)
Q∗, (3.13)

where Ek = TkD = diag(β(k)
1 , β

(k)
2 , . . . , β

(k)
3 ). This yields to

S k+1A = N−1Q
(

TkΦ(DTk) 0
0 0

)
P∗MP

(
D 0
0 0

)
Q∗, (3.14)

therefore

S k+1A = (Q∗)−1
(

TkDΦ(DTk) 0
0 0

)
Q∗. (3.15)

Eqs. (3.13) and (3.15) implies Ek+1 = Ek p(Ek). Now by simplifying, we obtain

I − Ek+1 = (I − Ek)5, (3.16)

and thus for all j, 1 ≤ j ≤ r, we have (1 − β(k+1)
j ) ≤

(
1 − β(k)

j
)5. That shows at least the fifth-order of

convergence of the method (2.2) for finding the WMPI. This completes the proof. �

4. Numerical results and discussions

The purpose of this section is to confirm the theoretical aspects through numerical testing. For this,
an attempt is made to illustrate the comparison of the proposed strategy with the existing schemes on
practical and academic models. The outcomes are estimated by using the Mathematica software, as
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numerical calculations are accomplished with high accuracy. Moreover, its programming language
posses the symbolic calculations and exact arithmetics. The software Mathematica 11 with the
specification of a processor is Intel(R) Core(TM) i7-8565U CPU @ 1.89GHz (64-bit operating
system) Window 10 Pro @ 2019 Microsoft Corporation was used. The comparisons have been done
by considering the total number of matrix multiplications (T MM), actual running time (T ) in seconds,
and the computational order of convergence (ρ). For calculating the ρ,

ρ =
ln(‖S k+1 − A#

MN‖/‖S k − A#
MN‖)

ln(‖S k − A#
MN‖/‖S k−1 − A#

MN‖)
, k = 1, 2, . . . , (4.1)

the last three approximations S k−1, S k, S k+1 are used and here, ‖ · ‖∗ denotes the generic matrix norm.
For comparison purposes, the proposed scheme PM5 (2.2) is compared with methods proposed by
Schulz (1.6), Esmaeili et al. (1.7), Li. et al. {(1.8), (1.9) and (1.10)}, Esmaeili et al. (1.11), Toutounian
and Soleymani (1.12), Li et al. (1.13), and Soleymani (1.14) and denoted by S M2, EM2, CM3, MP3,
HM3, EM4, T M4, LM4, and S O5, respectively.

Example 1. (Academic problem) Consider the rank-deficiency matrix

A =



1 2 3 4 1
1 3 4 6 2
2 3 4 5 3
3 4 5 6 4
4 5 6 7 6
6 6 7 7 8


. (4.2)

The comparison of this test problem is calculated by using initial guess S 0 =
1

σ2
min + σ2

max
A [26],

where σmin and σmax are the bounds of singular values of A. Moreover, the stopping criteria ‖S k+1 −

S k‖ < 10−100 is used for finding a better approximation. From Table 1, we can observe that the
presented method attains the desired result with the lesser number of multiplications of the matrix
than the existing schemes, in minimum time. The presented scheme is, therefore, more efficient for
this rank-deficient matrix because it shows better outcomes in each component, whereas some of the
techniques are not able to determine the solution for this test problem.

Table 1. Outcomes for comparison by testing schemes on Example 1.

Method S M2 EM2 CM3 MP3 HM3 EM4 T M4 LM4 S O5 PM5

ρ 2.0002 * 3.0000 3.0000 3.0000 * 4.0000 4.0000 5.0000 5.0467
T 1.141 * 0.860 0.938 0.875 * 0.856 0.873 0.719 0.610
T MM 38 * 39 48 48 * 50 44 54 32
∗ denotes the divergence

Example 2. Consider the following elliptic partial differential equation:

∂2φ

∂x2 +
∂2φ

∂y2 = 32φ(x, y), (4.3)

where φ is a function of x and y. It is satisfied at every point inside the square formed by x = ±1,
y = ±1 and subject to the following the boundary conditions:

AIMS Mathematics Volume 5, Issue 3, 1680–1692.
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(i) φ(x, y) = 0 on y = 1, −1 ≤ x ≤ 1,

(ii) φ(x, y) = 1 on y = −1, −1 ≤ x ≤ 1,

(iii)
∂φ

∂x
= −

1
2
φ(x, y) on x = 1, −1 ≤ y ≤ 1,

(iv)
∂φ

∂x
=

1
2
φ(x, y) on x = −1, −1 ≤ y ≤ 1.

By using the central difference formulae on Eq. (4.3), one can obtain

φi+1, j − 2φi, j + φi−1, j

h2 +
φi, j+1 − 2φi, j + φi, j−1

h2 = 32φi, j, (4.4)

here φi, j = φ(xi, y j). Consider square mesh size h = 1
4 which yields seventy finite difference equations

to find the approximate solution φ(xi, y j). By observing the boundary conditions, one can easily see
that the function φ is symmetric about the y-axis. Finally, implementing the boundary conditions on
(4.4), we obtain the linear system Aφ = u, of thirty-five unknown parameters, where

A =



Y I
I Y I

I Y I
I Y I

I Y I
I Y I

I Y


is a tri-diagonal matrix, I is the identity matrix of order 5 × 5,

Y =


−6 2 0 0 0
1 −6 1 0 0
0 1 −6 1 0
0 0 1 −6 1
0 0 0 2 −25

4


, φ and u are the column vector whose transpose is equal to

(φ1, φ2, . . . , φ34, φ35), and (0, 0, . . . , 0,−1,−1,−1,−1,−1), respectively. To tackle the large sparse
array, the S parseArray and Band function are applied for saving the memory space and reduce the
computational burden of matrix multiplication as follows:

A=SparseArray[{Band[{1, 1}, {i, i}]→ {-6, -6, -6, -6, - 25
4 }, Band[{2, 1}, {i, i}]→ {1, 1, 1, 2, 0}, Band[{1,

2}, {i, i}]→ {2, 1, 1, 1, 0}, Band[{1, 6}]→ 1, Band[{6, 1}]→ 1}, {i, i}, 0.]

The initial guess for this test problem is considered as S 0 =
1

‖A‖1‖A‖∞
A∗ [26], where

‖A‖1 = max j(
∑m

i=1 |ai, j|), and ||A||∞ = maxi(
∑n

j=1 |ai, j|). The results of comparisons are shown in Table
2. The methods LM4 and PM5 are better for this example than other methods, as uses minimum
computational cost (i.e., matrix products), despite it PM5 yields the result faster. Thus, overall it
demonstrates that the presented method converges faster than its competitors.
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Table 2. Outcomes for comparison by testing schemes on Example 2.
Method S M2 EM2 CM3 MP3 HM3 EM4 T M4 LM4 S O5 PM5

ρ 2.00234 1.98506 3.25404 3.12742 3.08096 4.08699 4.34940 4.58575 4.98237 5.10871
T 0.250 0.265 0.203 0.250 0.218 0.406 0.266 0.249 0.235 0.188
T MM 18 21 15 18 18 20 20 16 24 16

Example 3. In this test, we compute the weighted Moore-Penrose inverse of random dense matrix
Am×n as follows:

A = RandomReal[{−10, 10}, {m, n}], (4.5)

where the M and N are the Hermitian positive definite matrices and considered as:

MM = RandomReal[{2}, {m, n}];
MM = Transpose[MM].MM;
NN = RandomReal[{3}, {n, n}];
NN = Transpose[NN].NN;

The results are drawn by using initial guess and stopping criteria as
1

σ2
min + σ2

max
A# [26] and ‖S k+1−

S k‖ < 10−12, respectively. The comparisons of this problem are listed in Table 3, which manifests that
the PM5 is much efficient than other existing methods, in each aspect.

Table 3. Outcomes for comparison by testing schemes on Example 3.

Method S M2 EM2 CM3 MP3 HM3 EM4 T M4 LM4 S O5 PM5

T 2.172 1.391 1.329 1.610 1.282 1.265 1.188 1.437 1.157 1.047
T MM 156 105 132 200 168 130 190 164 186 116

Example 4. Consider the following different order of ill-conditioned Hilbert matrix for computing the
Moore-Penrose inverse

A = Table
[

1
i + j − 1

, {i,m}, { j, n}
]
. (4.6)

The comparison is obtained with the initial approximation
1

σ2
min + σ2

max
AT [26], with stopping

criteria ‖S k+1 − S k‖ ≤ 10−20. The results are listed in Table 4 for various order of matrices. It can be
concluded that the PM5 method gives the desired result faster than other methods, while in this test
problem some methods are failed. Moreover, PM5 over-performs using a minimum number of matrix
multiplications in each different order matrices. Hence, this justifies the aim of this paper.
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Table 4. Outcomes for comparison by testing schemes on Example 4

Method S M2 EM2 CM3 MP3 HM3 EM4 T M4 LM4 S O5 PM5

Order of matrix is 10 × 10
ρ 2.0000 * 3.0001 3.0029 3.0047 * 4.1194 4.0004 5.0000 5.2569
T 7.657 * 5.563 5.546 5.688 * 4.984 5.061 4.197 4.769
T MM 184 * 174 216 204 * 184 210 222 160

Order of matrix is 10 × 20
ρ 2.0000 * 3.0000 3.0027 3.0001 * 4.0006 4.0157 5.0059 5.1114
T 10.688 * 8.078 9.375 7.234 * 7.313 7.172 9.157 6.109
T MM 160 * 153 188 180 * 160 185 198 136

Order of matrix is 15 × 15
ρ 2.0000 * 3.0000 3.0003 3.0028 * 4.0027 4.0033 5.0305 5.0336
T 25.656 * 25.500 19.953 18.624 * 16.563 17.234 15.640 15.048
T MM 286 * 270 252 237 * 284 330 348 244

* denotes the divergence

5. Conclusion

In this manuscript, we have established new formulations of the fifth-order hyperpower method to
compute the weighted Moore-Penrose inverse. Compared to standard hyperpower method from a
theoretical perspective, this new formulation has improved efficiency indices. Such approximations
A†MN are found to be robust and effective when implemented as a preconditioned matrix to solve the
linear systems. Further, a wide range of the practical and academical test is performed to test our
proposed iterative scheme consistency and effectiveness. The outcomes in each test problems show
that the presented method gives the desired result with the least number of matrix multiplications in
minimum computational time. Hence, it supports our attempt for new transformations of the
hyperpower iterative scheme of order five.
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