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Abstract: Most of the researchers developed their inventory models to forecast the optimal
replenishment quantity and time in view of minimizing the total inventory cost by considering
deterministic demand and the deterioration of the items. But, in real business these demands and
deterioration are mostly fuzzy in nature due to many practical factors, such as increase or decrease in
goodwill of the product, competition from the substitute products, scientific advancement in preserving
facilities, change in environmental conditions and so on. So by following researcher’s classical
inventory model, retailer may order less or excess amount of items than the actual requirement. As
a result, retailer may face loss in business or increase in cost. Moreover, in many cases, suppliers
offer trade credit to increase their sales, and by availing the trade credit facility the retailer purchases
a number of items more than the existing storage capacity (in own warehouse) in order to minimize
the ordering cost and investment capital. To accommodate these excess amounts of items retailer may
hire a warehouse on rent basis. In the light of these facts, we develop a cost optimization model for the
inventory items having fuzzy demand and deterioration with two-warehouse facility under trade credit
financing by considering triangular fuzzy numbers for the associated parameters. The Graded Mean
Integration Representation defuzzification technique is used and numerical examples are provided to
justify the validity of the proposed model. Finally, sensitivity analysis of major parameters has been
incorporated to draw the managerial insight on optimal solution.
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1. Introduction

In day-to-day life, inventory management plays a key role in the most of the business firms,
organizations and retail management, etc. The objective of the inventory management is to minimize
the total inventory cost by deciding the time when a replenishment of items to be occurring and the
amount of such replenishment is to be ordered. While developing inventory models, researchers
consider many constraints such as demand, deterioration, warehouse facility, ordering cost, holding
cost, inflation, shortages, backlogging, trade credit, advertisement cost and so on.

Deterioration means spoilage, decay, damage or loss of its utility for the original purpose of items.
This leads to increase in the inventory cost. So, it acts as a key component of the inventory management
systems for most of the business firms. Thus, it’s drawn the considerable attention by researchers and
academicians. Initially, Ghare and Schrader [1] incorporated the deterioration in their EOQ model.
Recently, Mishra et al. [2], Banerjee and Agrawal [3], Tiwari et al. [4], Chen et al. [5], Zhang and
Wang [6], Braglia et al. [7], and Alvarez et al. [8], and Shaik et al. [9] developed inventory models by
considering different deteriorations.

In classical inventory models, based on the existing historical data, researchers consider the
demand, deterioration, holding cost, deterioration cost and other constraints; but in general, these
decisions may have vagueness due to lack of accurate information and the ambiguity arising from the
qualitative judgment of decision-makers. For instance, estimated demand for inventory model may
have uncertainty due to introduction of substitute products into the market or in the case of single
period inventory. Also, the competitors strategy to increase their sales may affect the estimated
demand. As a result, the total amount of items ordered for the cycle becomes deficit or surplus to the
actual requirement. Thus, the crisp values for the parameters associated with inventory are inadequate
to model the real world stock management problems. Hence, to overcome these imprecisions in
inventory constrains many researchers incorporated fuzziness in their models. Initially, Lee and Yao
[10] considered fuzziness in demand and production quantity constraints in their economic production
quantity model. Consequently, Kao and Hsu [11], Dutta et al. [12], Wang et al. [13], Sadeghi et al.
([14, 15]), and Kundu et al. [16] assumed fuzzy demand in their inventory models. Next, Maiti and
Maiti [17], and Rong et al. [18] considered fuzzy lead time in their inventory models. Shabani et al.
[19] considered both demand and deterioration as fuzzy numbers for their inventory problem. Further,
Singh et al. [20], Samal and Pratihar [21], Mahata and Mahata [22], Jain et al. [23], Shaikh et al. [24]
and Pal et al. [25] developed their inventory models in fuzzy environment.

In the present competitive business world, it is very difficult for the retailer to get a warehouse with
sufficient space to store the items and operate it as a sales center in a busy market place due to scarcity
of space and high rent. So, they maintain a decorative showroom at busy market places to attract the
customers in return boost their sales. At the same time, to avoid heavy rent, a separate warehouse may
be little away from the market is used for storage. Further, retailer place the order for more quantity
than the existing storage capacity, when the seasonal products or new products having high demand
arrives to the market. Also, it has been observed that, when a supplier offers a price discount or trade
credit financing, retailer purchase the items in bulk. In such scenarios, to accommodate the excess
amount of items, the retailer may hire a warehouse on rent basis. Thus, by recognizing these practical
situations, many researchers developed two warehouse inventory models. An early discussion on two
warehouse inventory model was made by Hartley [26]. Following Hartley [26], Sarma [27], Pakkala
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and Achary [28], Lee and Hsu [29], Yang [30], Agarwal et al. [31], Sett et al. [32] and Shaik et al.
[33] developed two warehouse house inventory models by considering deterministic demand.

In the traditional inventory models, it is often assumed that the supplier receives his payment as
soon as the retailer receives the items. But, with the change in business trend and globalization, many
multinational companies enter into the retail business. This effects a fierce competition among the
suppliers to enhance their business. So, they are implementing many strategies to promote their sales.
Among all those, trade credit financing has been popularly acknowledged as an imperative way to
increase the sales. Since, the trade credit offer encourages the existing retailers to purchase more
quantity and attract new retailers. This causes a decrease in on-hand inventory and holding cost of
the supplier. Moreover, beyond the offer period supplier collect the interest on due amount from the
retailer. As a result, supplier maximizes his profit and minimizes the inventory cost. On the other
hand, trade credit offer acts as an alternative price discount, reduction in ordering cost and investment
capital to the retailer. During the credit period, retailers can earn the interest on revenue accumulated
by selling the items and this may improve retailer’s profit. Though, a retailer buys more quantity to
avail the benefits of trade credit. In fact, the existing warehouse is not enough to keep these items.
Then the situation demands retailer to hire a rented warehouse. Thus, the above literature motivated
many researchers to incorporate the concept of trade credit financing in their inventory models. In
this direction, the first attempt was made by Haley and Higgins [34]. Later on, many researchers
contributed their work in the field of trade credit financing. Recently, Liang and Zhou [35], Liao et al.
[36], Guchhait et al. [37], Lio et al. [38], Bhunia et al. [39], Jaggi et al. ([40, 43, 46]), Bhunia and
Shaikh [41], Tiwari et al. [42], Kaliraman et al. [44], and Chakraborthy et al. [45] obtained useful
results in their inventory problems having two warehouse facility under trade credit financing. Further,
Shabani et al. [19], Sing et al. [20], and Rong et al. [18] developed two warehouse inventory model
with trade credit financing by considering one or more fuzzy constraints. Next, Shaikh et al. [24] and
Mahata and Mahata [22] obtained optimal result for a fuzzy EOQ model by considering trade credit.

Motivated essentially by the above discussed aspects, we develop a two warehouse cost
optimization model for the inventory items having fuzzy demand and deterioration under trade credit
financing. In particular, we have considered the triangular fuzzy numbers for the associated demand
and deterioration parameters, and the Graded Mean Integration Representation (GMIR) technique is
used for defuzzification in view of getting the results in crisp versions. The model is also supported
by numerical examples justifying the validity of the study. The overall aim of the authors is to obtain,
the more realistic, optimal values for total inventory cost and replenishment time. Finally, sensitivity
analysis of major parameters is conducted to draw the managerial insight on optimal solution. The
literature related to present study as discussed above is presented briefly in Table 1.
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Table 1. Literature review related to present paper in brief.

Author(s) Year Demand Deterioration Storages Trade
Pattern Pattern Credit

Haley and Higgins [34] 1973 Deterministic One Yes
Hartley [26] 1976 Deterministic Deterministic Two No
Sarma [27] 1987 Deterministic Deterministic Two No

Pakkala and Achary [28] 1992 Deterministic Deterministic Two No
Lee and Yao [10] 1998 Fuzzy No One No
Kao and Hsu [11] 2002 Fuzzy No One No
Dutta et al. [12] 2007 Fuzzy No One No
Rong et al. [18] 2008 Deterministic Deterministic Two No

Lee and Hsu [29] 2009 Deterministic Deterministic Two No
Liang and Zhou [35] 2011 Deterministic Deterministic Two Yes

Sett et al. [32] 2012 Deterministic Deterministic Two No
Liao et al. [36] 2012 Deterministic Deterministic Two Yes

Yang [30] 2012 Deterministic Deterministic Two No
Agarwal et al. [31] 2013 Deterministic Deterministic Two No

Sing et al. [20] 2013 Fuzzy No Two Yes
Guchhait et al. [37] 2013 Deterministic Deterministic Two Yes

Lio et al. [38] 2013 Deterministic Deterministic Two Yes
Bhunia et al. [39] 2014 Deterministic Deterministic Two Yes
Jaggi et al. [40] 2014 Deterministic Deterministic Two Yes

Bhunia and Shaikh [41] 2015 Deterministic Deterministic Two Yes
Sadeghi et al. [15] 2015 Fuzzy No One No
Tiwari et al. [42] 2016 Deterministic Deterministic Two Yes

Shabani et al. [19] 2016 Fuzzy Fuzzy Two Yes
Sadeghi et al. [14] 2016 Fuzzy No One No

Jaggi et al. [43] 2017 Deterministic Deterministic Two Yes
Kaliraman et al. [44] 2017 Deterministic Deterministic Two Yes

Kundu et al. [16] 2017 Fuzzy No One No
Chakraborthy et al. [45] 2018 Deterministic Deterministic Two Yes

Present Paper Fuzzy Fuzzy Two Yes

2. Assumptions and notations

2.1. Assumptions

Assumptions made for the model are as follows:

(i) all items in the inventory are of the same kind
(ii) items in the inventory have fuzzy exponential demand and constant fuzzy deterioration

(iii) inventory designed for Two-Warehouses (that is, Owned Warehouse (OW), and Rented
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Warehouse (RW))
(iv) owned warehouse has limited capacity to store the items; where as the rented warehouse has

infinite capacity
(v) there is no loss of customers during the cycle, that means, shortages are not allowed

(vi) the lead time is negligible
(vii) the rate of deterioration in RW is less than that of OW, since it provides better facilities than of

OW
(viii) the holding cost of items in RW is greater than that of OW, as it includes transportation charges

and better facilities
(ix) the rate of replenishment is infinite
(x) the maximum number of deteriorating units in OW should not exceed the demand at any time.

2.2. Notations

Following notations are used while developing the model.
R(t): Demand function (R(t) = α̃eβ̃t α̃ > 0, 0 < β̃ < 1, with fuzzy parameters).
N: The maximum number of items can be stored in OW.
κ̃: Fuzzy rate of deterioration in OW.
λ̃: Fuzzy rate of deterioration in RW.
εo: Ordering cost per cycle.
εp: Purchase cost per unit item.
εs: Selling price per unit item.
Ho: Holding cost in OW per unit item.
Hr: Holding cost in RW per unit item .
τ: At which RW becomes empty.
T : At which OW becomes empty, that is, total cycle time.
Qo(t): Inventory level at any time t in OW, t ∈ [0,T ].
Qr(t): Inventory level at any time t in RW, t ∈ [0, τ]
M: Trade Credit period offered by the supplier.
θ: Rate of interest on payable amount.
ϑ: Rate of interest earned on revenue accumulated by selling the items.
T̃C(τ): Fuzzy total cost of the inventory.
GTC(τ): Defuzzified total cost of inventory.
GT : Defuzzified total cycle time.

3. Mathematical model

The inventory cycle is started with W items at t = 0. At first, the OW is filled to its maximum
capacity N, and then the rest of the items are kept in RW. To reduce the cost of the inventory system,
the retailer sells the items from RW first and then sells the items from OW. The inventory level in RW
decreases due to both demand and deterioration in the interval t ∈ [0, τ] and reaches to zero at t = τ.
Similarly, the inventory level in OW decreases due to deterioration in the interval [0, τ], and due to
both demand and deterioration in the interval [τ,T ] both the warehouses become empty at t = T . The
Figure 1 depicts the inventory level at any time t.
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Figure 1. Inventory level at any time t in both the warehouses.

Inventory level in RW at any time t (0 ≤ t ≤ τ) is governed by the differential equation

dQr(t)
dt

+ λ̃Qr(t) = −α̃eβ̃t (1)

under the boundary condition Qr(τ) = 0.
On solving Eq 1, we get

Qr(t) = −
α̃eλ̃(−t)

β̃ + λ̃

(
et(β̃+λ̃) − eτ(β̃+λ̃)

)
(0 ≤ t ≤ τ). (2)

Inventory level in OW at any time t (0 ≤ t ≤ τ) is governed by the differential equation

dQo(t)
dt

+ κ̃Qo(t) = 0 (0 ≤ t ≤ τ) (3)

under the boundary condition Qo(0) = N.
On solving Eq 3, we get

Qo(t) = Neκ̃(−t) (0 ≤ t ≤ τ). (4)

Inventory level in OW at any time t, (τ ≤ t ≤ T ) is governed by the differential equation

dQo(t)
dt

+ κ̃Qo(t) = −α̃eβ̃t (τ ≤ t ≤ T ), (5)

under the boundary condition Qo(τ) = Neκ̃(−τ).
On solving differential Eq 5, we get

Qo(t) =
eκ̃(−t)

β̃ + κ̃

(
α̃eτ(β̃+κ̃) + β̃N + κ̃N − α̃et(β̃+κ̃)

)
. (6)
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As per our assumption Qo(t) is 0 at t = T . Thus using Qo(T ) = 0 in equation (6) and solving for T ,
we get

T =
1

β̃ + κ̃
log

(
eβ̃τ+κ̃τ +

β̃N

α̃
+
κ̃N

α̃

)
. (7)

The different costs associated with inventory are

(i) ordering cost

OC = εo (8)

(ii) stock holding cost

S HC = Hr

∫ τ

0
Qr(t) dt + Ho

( ∫ τ

0
Qo(t) dt +

∫ T

τ

Qo(t) dt
)

=
Hrα̃

β̃λ̃(β̃ + λ̃)

(
β̃eτ(β̃+λ̃) − (β̃ + λ̃)eβ̃τ + λ̃

)
+ Ho

(
N − Ne−κ̃τ

κ̃
+

(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

) )
(9)

(iii) deterioration cost

DC = εp

(
λ̃

∫ τ

0
Qr(t) dt + κ̃

( ∫ τ

0
Qo(t) dt +

∫ T

τ

Qo(t) dt
))

= εp

{
λ̃α̃

β̃λ̃(β̃ + λ̃)

(
β̃eτ(β̃+λ̃) − (β̃ + λ̃)eβ̃τ + λ̃

)
+ κ̃

(
N − Ne−κ̃τ

κ̃
+

(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

) )}
(10)

(iv) interest payable by retailer

case 1 (M ≤ τ ≤ T )

IP1 = θεp

( ∫ τ

M
Qr(t) dt +

∫ τ

M
Qo(t) dt +

∫ T

τ

Qo(t) dt
)

= θεp

{
α̃

β̃λ̃(β̃ + λ̃)

(
− (β̃ + λ̃)eβ̃τ + β̃eτ(β̃+λ̃)−λ̃M + λ̃eβ̃M

)
+
N

κ̃

(
eκ̃(−M) − e−κ̃τ

)
+

(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

e− ˜κT α̃β̃eτ(β̃+κ̃)

β̃κ̃(β̃ + κ̃)
+ β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

}
(11)

case 2 (τ < M ≤ T )

IP2 = θεp

( ∫ T

M
Qo(t) dt

)
AIMS Mathematics Volume 5, Issue 2, 1603–1620.
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= θεp

{
eκ̃(−M)

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eM(β̃+κ̃)

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

)}
(12)

case 3 (M > T )

IP3 = 0 (13)

(v) interest earned by retailer

case 1 (M ≤ T )

IE1 = ϑεs

( ∫ M

0
t ∗ R(t) dt

)
=
α̃ϑεs

β̃2T

(
eβ̃M(β̃M − 1) + 1

)
(14)

case 2 (M > T )

IE2 = ϑεs

( ∫ M

0
t ∗ R(t) dt + (M − T )

∫ M

0
R(t) dt

)
= ϑεs

(
α̃

β̃
(M − T )

(
eβ̃T − 1

)
+
α̃

β̃2

(
eβ̃T (β̃T − 1) + 1

) )
(15)

Thus, the total relevant fuzzy total cost of the inventory per unit time is

T̃C(τ,T )=(Ordering Cost + Stock Holding Cost + Deterioration Cost + Interest Payable -Interest
Earned)/T.

Therefore,

T̃C(τ,T ) =


T̃C1, M ≤ τ ≤ T

T̃C2, τ < M ≤ T

T̃C3, M > T.

(16)

Here, we have

T̃C1(τ) =
1
T

{
εo +

Hrα̃

β̃λ̃(β̃ + λ̃)

(
β̃eτ(β̃+λ̃) − (β̃ + λ̃)eβ̃τ + λ̃

)
+ Ho

[
N − Ne−κ̃τ

κ̃

+
(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

) ]
+ εp

[
λ̃α̃

β̃λ̃(β̃ + λ̃)

(
β̃eτ(β̃+λ̃) − (β̃ + λ̃)eβ̃τ + λ̃

)
+ κ̃

(
N − Ne−κ̃τ

κ̃
+

(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

) )]
−

[
α̃ϑεs

β̃2T

(
eβ̃M(β̃M − 1) + 1

) ]
AIMS Mathematics Volume 5, Issue 2, 1603–1620.
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+ θεp

[
α̃

β̃λ̃(β̃ + λ̃)

(
−(β̃ + λ̃)eβ̃τ + β̃eτ(β̃+λ̃)−λ̃M + λ̃eβ̃M

)
+
N

κ̃

(
eκ̃(−M) − e−κ̃τ

)
+

(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

]}
. (17)

T̃C2(τ) =
1
T

{
εo +

Hrα̃

β̃λ̃(β̃ + λ̃)

(
β̃eτ(β̃+λ̃) − (β̃ + λ̃)eβ̃τ + λ̃

)
+ Ho

[
N − Ne−κ̃τ

κ̃

+
(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

) ]
+ εp

[
λ̃α̃

β̃λ̃(β̃ + λ̃)

(
β̃eτ(β̃+λ̃) − (β̃ + λ̃)eβ̃τ + λ̃

)
+ κ̃

(
N − Ne−κ̃τ

κ̃
+

(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

) )]
+ θεp

[ eκ̃(−M)

β̃κ̃(β̃ + κ̃)
(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eM(β̃+κ̃))

−
eκ̃(−T )

β̃κ̃(β̃ + κ̃)
(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃))] − [

α̃ϑεs

β̃2T

(
eβ̃M(β̃M − 1) + 1

) ]}
. (18)

T̃C3(τ) =
1
T

{
εo +

Hrα̃

β̃λ̃(β̃ + λ̃)

(
β̃eτ(β̃+λ̃) − (β̃ + λ̃)eβ̃τ + λ̃

)
+ Ho

[
N − Ne−κ̃τ

κ̃

+
(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

) ]
+ εp

[
λ̃α̃

β̃λ̃(β̃ + λ̃)

(
β̃eτ(β̃+λ̃) − (β̃ + λ̃)eβ̃τ + λ̃

)
+ κ̃

(
N − Ne−κ̃τ

κ̃
+

(β̃ + κ̃)e−κ̃τ

β̃κ̃(β̃ + κ̃)

(
α̃eτ(β̃+κ̃) + β̃N

)
−

eκ̃(−T )

β̃κ̃(β̃ + κ̃)

(
α̃β̃eτ(β̃+κ̃) + β̃N(β̃ + κ̃) + α̃κ̃eT (β̃+κ̃)

) )]
− ϑεs

(
α̃

β̃
(M − T )

(
eβ̃T − 1

)
+
α̃

β̃2

(
eβ̃T (β̃T − 1) + 1

)) }
. (19)

In above functions, use T = 1
β̃+κ̃

log
(
eβ̃τ+κ̃τ +

β̃N

α̃
+ κ̃N

α̃

)
(see Eq 7).

Let us take fuzzy parameters α̃, β̃, λ̃ and κ̃ as triangular fuzzy numbers (α̃1, α̃2, α̃3), (β̃1, β̃2, β̃3),
(λ̃1, λ̃2, λ̃3), and (κ̃1, κ̃2, κ̃3) respectively. Then, using Eqs 17, 18 and 19, we obtain TCi j (i =

1, 2, 3 j = 1, 2, 3) by replacing α̃ by α j, β̃ by β j, λ̃ by λ j and κ̃ by κ j in T̃Ci. Now, by Graded Mean
Integration Representation Method

GTCi =
1
6

(TCi1 + 4 ∗ TCi2 + TCi3), (20)

we get the defuzzified total cost functions GTC1, GTC2 and GTC3.
In the similar fashion, the total cycle time can be defuzzified as

GT =
1
6

(T1 + 4T2 + T3), (21)

such that T j ( j = 1, 2, 3) can be obtained by replacing α̃ by α j, β̃ by β j, λ̃ by λ j and κ̃ by κ j in Eq 7.
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4. Solution procedure

Our objective is to find the minimal total cost in each case. The necessary and sufficient conditions
for GTCi(τ) is minimal are dGTCi(τ)

dτ = 0 and d2GTCi(τ)
dτ2 > 0 (i = 1, 2, 3). So, we have to find

(i) τ∗1 such that dGTC1(τ∗1)
dτ = 0 and d2GTC1(τ∗1)

dτ2 > 0

(ii) τ∗2 such that dGTC2(τ∗2)
dτ = 0 and d2GTC2(τ∗2)

dτ2 > 0

(iii) τ∗3 such that dGTC3(τ∗3)
dτ = 0 and d2GTC3(τ∗3)

dτ2 > 0.

Next, find the corresponding GTi∗ from the equation (21) just by replacing τ by τ∗i (i = 1, 2, 3).

Algorithm to find the optimal solution

Among all the minimal solutions the optimal solution can be found as follows:

Step 1 If M ≤ τ∗1 ≤ GT1∗, then set τ∗ = τ∗1, GT ∗ = GT1∗ and GTC∗(τ) = GTC1(τ∗)

Step 2 If τ∗2 < M ≤ GT2∗, then set τ∗ = τ∗2, GT ∗ = GT2∗ and GTC∗(τ) = GTC2(τ∗)

Step 3 If τ∗3 < GT3∗ < M, then set τ∗ = τ∗3, GT ∗ = GT3∗ and GTC∗(τ) = GTC3(τ∗)

Step 4 If all the three steps fail, then set GTC∗(τ) = min{GTC1(τ∗1), GTC2(τ∗2), GTC3(τ∗3)} and
τ∗= argmin{GTC1(τ∗1), GTC2(τ∗2), GTC3(τ∗3)}. GT ∗ can be find from the corresponding τ∗ from
the Eq 21.

Finally, the optimal solutions are τ∗, GT ∗ & GTC∗(τ).

5. Numerical examples

Example 1 [Case 1 (M ≤ τ ≤ T )]

εo = 1600, εp = 10, εs = 16, Ho = 1, Hr = 4, M = 0.25, θ = 0.16, ϑ = 0.12, N = 120,
(α̃1, α̃2, α̃3) = (1500, 2000, 2500), (β̃1, β̃2, β̃3) = (0.2, 0.4, 0.6), (λ̃1, λ̃2, λ̃3) = (0.06, 0.08, 0.1),
and (κ̃1, κ̃2, κ̃3) = (0.1, 0.2, 0.3).

Solution The optimal solution is τ∗ = 0.38698, GT ∗ = 0.435557 and GTC∗ = 5784.98.

Example 2 [Case 2 (τ < M ≤ T )]

εo = 1630, εp = 15, εs = 22, Ho = 5, Hr = 12, M = 0.18, θ = 0.2, ϑ = 0.12, N = 300,
(α̃1, α̃2, α̃3) = (350, 850, 1350), (β̃1, β̃2, β̃3) = (0.4, 0.6, 0.8), (λ̃1, λ̃2, λ̃3) = (0.1, 0.12, 0.14),
and (κ̃1, κ̃2, κ̃3) = (0.3, 0.4, 0.5).

Solution The optimal solution is τ∗ = 0.140665, GT ∗ = 0.449989 and GTC∗ = 6541.33.

Example 3 [Case 3 (M > T )]
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εo = 2830, εp = 15, εs = 22, Ho = 5, Hr = 11, M = 0.35, θ = 0.2, ϑ = 0.15, N = 1000
(α̃1, α̃2, α̃3) = (3750, 4250, 4750), (β̃1, β̃2, β̃3) = (0.4, 0.6, 0.8), (λ̃1, λ̃2, λ̃3) = (0.1, 0.2, 0.3),
and (κ̃1, κ̃2, κ̃3) = (0.2, 0.4, 0.6).

Solution. The optimal solution is τ∗ = 0.0609184, GT ∗ = 0.262608 and GTC∗ = 14609.4.

6. Sensitivity analysis

Sensitivity of parameter θ

From the Table 2 and Figures 2 and 3, we conclude that as the rate of interest on payable amount θ
increases; (a) the inventory time of RW (τ) decreases, (b) the total cycle time (GT ) decreases, and (c)
the total inventory cost (GTC) increases significantly.

Table 2. Sensitivity of θ on inventory model.

Parameter Value τ GT GTC
0.16 0.38698 0.435557 5784.98
0.17 0.385074 0.433703 5794.08

θ 0.18 0.383209 0.431888 5803.04
0.19 0.381383 0.430112 5811.85
0.2 0.379596 0.428373 5820.52

N −−−−−−−−−−−− >

120 125 130 135 140 145 150 155 160
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

τ

GT

Figure 2. Effect of sensitivity of N
on τ and GT .

N −−−−−−−−−−−− >

120 125 130 135 140 145 150 155 160
5710

5720

5730

5740

5750

5760

5770

5780

5790

GTC

Figure 3. Effect of sensitivity of N
on GTC.

Sensitivity of parameter N

From the Table 3 and Figures 4 and 5, we conclude that as the storage capacity N of owned
warehouse (OW) increases; (a) the inventory time of RW (τ) decreases, (b) the total cycle time (GT )
decreases very slowly, and (c) the total inventory cost (GTC) decreases significantly.
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Table 3. Sensitivity of N on inventory model.

Parameter Value τ GT GTC
120 0.38698 0.435557 5784.98
130 0.383021 0.435704 5768.28

N 140 0.37907 0.435867 5751.77
150 0.375125 0.436045 5735.44
160 0.371188 0.436238 5719.3

θ −−−−−−−−−−−− >

0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.2 0.205
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

τ
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Figure 4. Effect of sensitivity of θ
on τ and GT .

θ −−−−−−−−−−−− >
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5785

5790
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5810

5815

5820

5825
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Figure 5. Effect of sensitivity of θ
on GTC.

Sensitivity of parameter εo

From the Table 4 and Figures 6 and 7, we conclude that as the ordering cost εo increases; (a) the
inventory time of RW (τ) increases, (b) the total cycle time (GT ) increases, and (c) the total inventory
cost (GTC) increases.

Table 4. Sensitivity of εo on inventory model.
Parameter Value τ GT GTC

1600 0.38698 0.435557 5784.98
1700 0.399225 0.447474 6011.61

εo 1800 0.411031 0.458966 6232.37
1900 0.422435 0.470068 6447.76
2000 0.43347 0.480813 6658.2
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ǫo −−−−−−−−−−−− >
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Figure 6. Effect of sensitivity of εo

on τ and GT .
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Figure 7. Effect of sensitivity of εo

on GTC.

Sensitivity of parameter εs

From the Table 5 and Figures 8 and 9, we conclude that as the selling price εs increases; (a) the
inventory time of RW (τ) decreases, (b) the total cycle time (GT ) decreases, and (c) the total inventory
cost (GTC) decreases.

Table 5. Sensitivity of εs on inventory model.
Parameter Value τ GT GTC

16 0.38698 0.435557 5784.98
17 0.385967 0.434571 5766.41

εs 18 0.384951 0.433583 5747.79
19 0.383931 0.432591 5729.14
20 0.382909 0.431596 5710.44

ǫs −−−−−−−−−−−− >

16 16.5 17 17.5 18 18.5 19 19.5 20
0.38
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0.43
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Figure 8. Effect of sensitivity of εs

on τ and GT .
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Figure 9. Effect of sensitivity of εs

on GTC.
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Sensitivity of parameter M

From the Table 6 and Figures 10 and 11, we conclude that as trade credit period M increases; (a) the
inventory time of RW (τ) decreases, but increases after certain trade credit period, (b) the total cycle
time (GT ) decreases, but increases after certain trade credit period, and (c) the total inventory cost
(GTC) decreases.

Table 6. Sensitivity of M on inventory model.
Parameter Value τ GT GTC

0.25 0.38698 0.435557 5784.98
0.3 0.386447 0.435038 5579.66

M 0.35 0.385468 0.434086 5367.31
0.4 0.383983 0.432641 5089.58

0.45 0.392559 0.440986 4926.0

M −−−−−−−−−−−− >

0.25 0.3 0.35 0.4 0.45
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Figure 10. Effect of sensitivity of M
on τ and GT .
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Figure 11. Effect of sensitivity of M
on GTC.

Sensitivity of parameter Hr

From the Table 7 and Figures 12 and 13, we conclude that as trade credit period M increases; (a) the
inventory time of RW (τ) decreases, (b) the total cycle time (GT ) decreases, and (c) the total inventory
cost (GTC) decreases.

Table 7. Sensitivity of Hr on inventory model.

Parameter Value τ GT GTC
4 0.38698 0.435557 5784.98
5 0.359275 0.408604 6156.99

Hr 6 0.336409 0.386369 6497.75
7 0.317111 0.367609 6812.86
8 0.300533 0.351499 7106.41
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Figure 12. Effect of sensitivity of
Hr on τ and GT .

Figure 13. Effect of sensitivity of
Hr on GTC.

7. Conclusions

The inventory management of items having imprecise demand and deterioration is quite relevant
in present business. So, we have developed a Two-Warehouse inventory model with a Trade Credit
offer for the items following fuzzy demand and fuzzy deterioration. While developing the model we
considered no shortages and the holding cost of items in RW is higher than of OW, as it provides
better preserving facility and includes transportation charges. Furthermore, triangular fuzzy numbers
and Graded Mean Integration Representation Method is used. The mathematical model is validated
with examples in different cases arise due to trade credit offer. Moreover, the sensitivity behavior of
different parameters are examined and are presented in the form of tables and figures. This article
can be extended by incorporating shortages with allowance of backlogging. Also, one may include
different types of demand functions with deterioration under inflation and time value of money.
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