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1. Introduction

Chemical graph theory is a branch of graph theory in which a chemical compound is represented by
simple graph called molecular graph in which vertices are atoms of compound and edges are the atomic
bounds. A graph is connected if there is at least one connection between its vertices. Throughout this
paper we take 1" a connected graph. Now a day another emerging field is Cheminformatics, which helps
to predict biological activities with the relationship of Structure-property and quantitative structure-
activity. Topological indices are valuable parameters that are given by graph theory. A number that
describe the topology of a graph is called topological index.

A representation of numbers, polynomials and matrices are representations of a graph. Graph has its
own characteristics which can be determined by topological indices and the topology of graph remains


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020107

1563

unchanged under automorphism of graph. In the different classes of indices, degree based topological
indices are of extraordinary significance and assume an essential job in substance graph hypothesis
and especially in science. In increasingly exact manner, a topological index Top(H) of a graph, is a
number with the property that for each graph G isomorphic to H, Top(H) = Top(G). The idea of
topological index originated from Wiener [26] while he was dealing with boiling point of paraffin,
named this record as path number. Later on, renamed as Wiener index [7].

A lot of people have been worked in the Chemical Graph Theory. The importance of honeycomb
network can not be ignored in all the work of graph theory. The Honeycomb shape is present
everywhere in nature, in plants, animal and human cells. No other shape provides such an optimal
cover and strength. It is one of the most stable structures. Honeycomb structures are natural or
man-made structures that have the geometry of a honeycomb to allow the minimization of the
material used to reach minimal weight and maximum strength. A honeycomb structure provides a
material with least density and relative high compression properties and shear properties.

1.1. Honeycomb network

Built recursively using the hexagon tessellation [24], honeycomb networks are widely used in
computer graphics [24], cellular phone base stations, image processing, and in chemistry as the
representation of benzenoid hydrocarbons. Honeycomb network HC(?) is obtained from HC(z — 1) by
adding a layer of hexagons around the boundary of HC(t — 1).

In this paper, we are going to find the topological indices of graphs derived from the honeycomb
structure. Dominating David Derived networks are the graphs derived from honeycomb structure.

The method of drawing Dominating David Derived networks (dimension ¢) is as follows.

STEP 1:-Consider a Honeycomb network HC(#) dimension #, as shown in Figure 1.

STEP 2:-Split each edge into two by embedding another vertex.

STEP 3:-In each hexagon cell, connect the new vertices by an edge if they are at a distance of 4 units
within the cell.

STEP 4:-Place vertices at new edge crossings.

STEP 5:-Remove initial vertices and edges of Honeycomb network.

STEP 6:-Split each horizontal edge into two edges by inserting a new vertex. The resulting Graph is
called Dominating David Derived system DDD(¢t) of measurement ¢ [22], as shown in Figure 2.

The First type of Dominating David Derived network D;(¢) can be obtained by connecting vertices
of degree two by an edge, which are not in the boundary, as shown in Figure 3.

The second type of Dominating David Derived network D,(#) can be obtained by sub dividing once
the new edge introduced in D, (), as shown in Figure 4.

The Third type of Dominating David Derived network D;(f) can be obtained from D;(f) by
introducing parallel path of length 2 between the vertices of degree two which are not in the boundary.
See the Figure 5 for third type of Dominating David derived network of dimension 2, D3(2).

In this article, Y is considered a network with a V(T') vertex set and an edge set of E(Y), d, is the
degree of vertex r € V(T).

Some indices associated to Wiener’s and Gutman. They derived new topological indices which are
named as the first Multiplicative Zagreb index and the second Multiplicative Zagreb index [11] and
they are described as:
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Let Y be a graph. Then

=[] @ (L1)
reV(T)

11(7) = 1_[ (d, x d,). (1.2)
rseE(T)

V. R. Kulli [15] further described some new and advanced topological indices and he named them as
the first Hyper-Zagreb index and the second Hyper-Zagreb index of a graph . They are defined as:

HIL () = ]—[ d, +d,)?, (1.3)
rseE(T)

HIL(YT) = ]—[ (d, x d,)™. (1.4)
rseE(T)

The first Universal Zagreb index and the second Universal Zagreb index introduced by V. R. Kulli [15].
These indices are defined as:

Mzt = | | @ +do, (1.5)
rseE(Y)

mzsey = | | @ xdyy. (1.6)
rseE(Y)

The sum and product connectivity of Multiplicative indices [15] described as:

1
SCII(Y) = — (1.7)
rsl:(L) Vd, + d;
1
PCII(Y) = (1.8)

ml;lr) Vd xd,

Wei Gao et al. [9] define new topological indices which are named as Multiple atom-bond Connectivity
index and Multiple Geometric-Arithmetic index and these indices are defined as follow:

IM, + M, -2

rseE(Y)
2VM, X M,
rseE(T) (M, + M;)
where
M= ] doM,= ] a.
rseE(YT) rseE(T)
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Figure 1. Construction Algorithm for Dominating David Derived network DDD(2).
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Figure 2. Isomorphic graph of DDD(2).
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Figure 3. First type of Dominating David Derived network D;(2).
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Figure 4. Second type of Dominating David Derived network D,(2).
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Figure 5. Third type of Dominating David Derived network D5(2).
2. Results

We have study the multiplicative indices such as first and second multiplicative Zagreb Index, first
and second hyper-Zagreb index, first and second Universal Zagreb index, sum and product
connectivity of multiplicative indices, Multiple atom-bond connectivity index, Multiple
Geometric-Arithmetic index and give closed formulae of these indices for Dominating David Derived
networks. Haidar ef al. studied degree based topological indices for various networks [2]. Nowadays,
there is an extensive research activity on ABC and GA indices and their invariants, for further study of
topological indices of various graph families see, [1-5, 8, 12-14, 16-20, 23, 27]. For the basic
notations and definitions, see [6,21,26].

2.1. Results for first type of Dominating David Derived networks

In this section, we calculate degree-based topological indices of the dimension ¢ for first type of
Dominating David Derived networks. In the coming theorems, we compute some important
multiplicative indices.

Theorem 2.1.1. Consider the first type of Dominating David Derived network Yy = D, (t) for t € N.
The first and second multiplicative indices of Zagreb indices are equal to

I (Cy) = 34560(—=1 + 26)(5 + t(—=13 + 91))(4 + t(—11 + 91)),
I1,(7)) = 3397386241(t — 1)(7t — 4)(6 + (9t — 14))(5 + 1(9t — 13))*.

Proof. Let T be the first type of Dominating David Derived network. The Yy has 20z — 10 vertices of
degree 2, 181> — 261 + 10 vertices of degree 3 and 271> — 33t + 12 vertices of degree 4. The edge set of
D (?) is divided into three partitions based on the degree of end vertices. Table 1, shows such an edge
partition of D;(¢). Thus from (1.1) is follows that,

mery= || @2
reV(Try)
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Table 1. Edge partition of first type of Dominating David Derived network (D, (7)) based on
degrees of end vertices of each edge.

(d,,dy) where rs € E(;) Number of edges

2,2) 4t

2,3) 4t -4
2,4 28t —16
(3,3) 92 —13t+5
(3,4 361 — 56t + 24
4,4 361 — 52t + 20

By using vertex partitions, we get

(2)%(207 — 10) x (3)%(187% — 261 + 10) x (4)*(27£* — 33t + 12),
4201 — 10) x 9(187* — 261 + 10) x 16(27¢* — 331 + 12),

I (7))

By doing some calculations, we have
= 11;((}) = 34560(—1 + 26)(5 + t(—13 + 91))(4 + t(—11 + 91)).

From (1.2), we have

iy =[] @ xd).

rseE(Ty)

By using Table 1 edge partitions, we get

1L (") 4E (T1(0))] X 6lEXT1(0)] X 8|E3(TT())] X IEL(Y1(1)] X 12|Es(YL(1))] X 16|E6(L1(1))],
4(41) x 6(4t — 4) x 8(281 — 16) x 9(9r* — 131 + 5) x 12(36¢* — 56¢ + 24) x

16(36¢> — 521 + 20),

By doing some calculations, we have
= I1,(")) = 3397386241t — 1)(7t — 4)(6 + t(9t — 14))(5 + (9 — 13))*.

O

Now, we compute advance topological indices and name them as the first Hyper-Zegreb index and
second Hyper-Zegreb index for first type of Dominating David Derived network D (t).
Theorem 2.1.2. Let 1} = D,(¢) be the first type of Dominating David Derived network, then

HIIL (")) = 1664719257600¢(t — 1)(7t — 4)(6 + 1(9t — 14))(5 + t(9t — 13))?,

HILCC,) = 1127171217162241(t — 1)(7t — 4)(6 + t(9t — 14))(5 + £(9t — 13))>.

Proof. The outcome can be obtained by using the edge partition in Table 1. By using equation (1.3),

HIL() = [ ] @ +d)
rseE(Ty)
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L6|E (Y1(6))] X 25|E>(Y1(1))] x 36|E5(C1(2))| X 36|E4(C1(2))| X 49|E5(T1(2))| X
64|Es(T1(1))],

= 16(41) X 25(41 — 4) x 36(287 — 16) X 36(97* — 131 + 5) X 49(361* — 561 + 24) X
64(361% — 52t + 20),

HIL(T))

By doing some calculations, we get

= HII|(T)) = 16647192576001(t — 1)(7t — 4)(6 + 1(9t — 14))(5 + (9t — 13))*.

Thus from (1.4),
HIL() = [ ] @xd)

rseE(T))
16|E1(C1())| X 36|E2(T1()| X 64|E5(T1(2))| X 81|E4(Y1(2))| X 144|E5(Y1(2))| X
256|Es(T1(1))l,
= 16(41) x 36(41 — 4) x 64287 — 16) x 81(97* — 131 + 5) x 144(361* — 561 + 24) x
256(361* — 52t + 20),

HIL(T))

— HIL(Y,)) = 112717121716224¢(t — 1)(7t — 4)(6 + (9t — 14))(5 + (9t — 13))*.

Now, we compute the first and second Universal Zagrab indices.
Theorem 2.1.3. Let Y} = D;(¢) be the first type of Dominating David Derived network, then

MZE(Cry) = 219774 x 315%(t — 1)(7t — 4)(6 + 1(9t — 14))(5 + (9t — 13))?,
MZS(r)) = 47704 x 8194(t — 1)(Tt — 4)(6 + t(9t — 14))(5 + 1(9¢ — 13))*.
Proof. We get the outcome with the edge partition in Table 1. It follows from (1.5),
MZS(r)) = ]_[ (d, + d,)".

rs€E(Y))

(DIE (Y1) X ) IE2(TL)] X (O)|E5(T1(@)] X (6)|Es(Y1 ()] X (D|Es(TL(D)] X

(8)|Ec(T1(1))l,
4%(41) x 544t — 4) x 6°(28f — 16) X 69(97* — 131 + 5) x 74(361* — 56¢ + 24) X

84(361° — 521 + 20),

MZ{((y)

By doing some calculations, we get

= MZ4(T)) = 2'%79 x 315%(t — 1)(7t — 4)(6 + 1(9t — 14))(5 + 1(9¢ — 13))*.

Also from (1.6),
MZ4(Y)) = ]_[ (d, % d,)".
rseE("y)
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MZ5(Yy) DE (YL X (6)[EL(C L) X (8)!|E5(YL())] X (9)|E4(YL(2))] X (12)*|Es(Y1(2))| x
(16)*|Es(Y1(1))],
4%(41) X 6%(4t — 4) x 84281 — 16) X 94(97* — 131 + 5) x 124(361* — 56¢ + 24) X

16%(361* — 52t + 20),

By making some calculations, we get

= MZI(T)) = &< 81t — 1)(Tt — 4)(6 + t(9t — 14))(5 + (9t — 13))*.

The sum and product connectivity of multiplicative indices are computed as follows.
Theorem 2.1.4. Let Y = D,(¢) be the first type of Dominating David Derived network, then

64 [2
SCII(Y)) = =3 gt(r — 1)(7t — 4)(9¢* — 141 + 6)(97* — 13t + 5)?,

16
PCII(C)) = -1t = 1)(Tt - 4)(9F — 14t + 6)(9¢ — 13t + 5)°.
Proof. We get the outcome with the edge partition in Table 1. It follows from (1.7),

1

rseE(Ty)

SCII(T))

1 1 1 1 1
SIEA(TT@0)] % %IEz(Tl(I))I X %IEz(Tl(t))l%lEzt(Tl(t))l X ﬁ|E5(T1(f))| X
1

V8

1 1 1 1 1
= (4 X —=(41 — 4) X — (281 — 16) x —= (97 — 131 + 5) x —=(361> — 561 + 24) X
2 V5 V6 V6 V7

(361% — 52t + 20),

|Es(T1(N)I,

1
V8

By doing some calculations, we get

4 [2
— SCII(Y)) = % gr(t — 1)(7t — 4)(9¢* — 141 + 6)(97* — 131 + 5)%.

Thus from (1.8),
1

PCII(T)) = ﬂ S
rseE(ry) Vdr X ds

1 1 1 1 1
PCH(TY) = SIE(TIO) x %IEz(Tl(I))I X %IEs(Tl(t))l X ZIES(Y10)] % ﬁlEs(Tl(t))l X
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1
7/Ee(Y10)],

1 1 1 1 1
= —(4) X — (4t — 4) x — (281 — 16) + x—(9¢> — 131 + 5) x ——(36¢*> — 561 + 24) x
2 V6 V8 \o V12

1
——(36¢% — 52t + 20),
V16

By making some calculations, we get
16
= PCII(Y,) = Et(r — 1)(7t — 4)(9¢* — 141 + 6)(97* — 131 + 5)°.
O

Wei Gao et al. defines topological indices which are named as Multiple atom-bond connectivity
index and Multiple Geometric-Arithmetic index and these indices are computed as follows.

Table 2. Edge partition of first type of Dominating David Derived network (D;(?)) based on
degrees product of end vertices of each edge.

(M,, M) where rs € E(T;) Number of edges (M,, M) where rs € E(T;) Number of edges

(8.8) 4t (48,64) 4

(8,48) 4t (48,96) 4t-4
(8,64) 4 (48,128) 4t-4
(8,128) 4t-4 (48,144) 3612 — 72t + 36
(12,24) 4t-4 (48,256) 4t-4
(12,64) 4t-4 (64,144) 4t-4
(16,48) 12t-8 (96,128) 4t-4
(16,96) 4t-4 (96,256) 4t-4
(24,24) 2t-2 (128,144) 4t-4
(24,144) 4t-4 (144,256) 3612 — 76t + 40
(48.,48) 92 — Tt +3

Theorem 2.1.5. Let 1} = D,(¢) be the first type of Dominating David Derived network, then

1
ABCy(T)) = m(-18\/%—48\/ﬁ—15\/ﬁ—18«/@—12\/4_6—12\/7_1—9\/7_4+9«/9_—

18 V134 — 12 V165 — 24 V186 — 6 V206 — 12 V222 — 8 V249 + 6 V330 + 30 V396 +
1
36 V570 — 3 Y906) + mt(216+72x/ﬁ+ 18 V15 +48 V17 + 15V21 + 18 V29 +

36 V35 + 12 V46 + 12 V71 + 9 V74 — 21 Vo4 + 18 V134 + 12 V165 + 36 V186 +
1
6 V206 + 12 V222 + 8 V249 — 57398 — 72 V570 + 3 V906) + — (27 V94 +

144
2398 + 36 V570),

GAu(T)) =

37377 976\/§+202\/§ 400\/3+(488\/5+416\/§ 3238\/5 377829)t
1105 153 19 77 77 51 133 5525

AIMS Mathematics Volume 5, Issue 2, 1562—-1587.
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9
—(121 2,
25( +50V3)t

Proof. We get the outcome with the edge partition in Table 2. It follows from (1.9),

M,+M,-2
ABCWO = D) N g,

rseE("y)

7 9 35 67
ABCy(Yy) = \/3:2|E1(T1(t))|+ \/6:4|E2(T1(t))|+ 256 B3I+ [ 55 [E (T +

17 37 31 55
\/m|E5(T1(l))| + \/@IEa(Tl(t))l + \/@|E7(T1(t))l + \/ﬁlEs(Tl(t))l +

23 83 47
§|E9(T1(t))| + \/ Trog B0 1O + [ 75 [En(THEo)] +

71 29
—ar En(CLO) + | 577 [Ei(T10)] + ) ———|E14(T1(0)] +

153 2304 1024
——|Eis(T1()] + ol ——|E6(T1(2)| + 105 ——|E7(T1()| +

345 15 6144 '° 4608" "7

37 ——<|Es(T1()| + 17> ——5|E1(Y1(0)] + 1> ——|E(T1()| +

2048 '8 12288 " 1024

199
Ey (Y1t

18432' 21 (C1@)I,

9 35 67 17 37
w/3—2(4z)+ ‘/6_4(‘”” 25 @+ s -9+ E(4t—4)+ 2534 -
1 2
4) + 3—(12t—8)+ £(4t—4)+ —3(2t—2)+ 172 ——@4r-4)+
47 71 29
_ 4t — 4t — 4

T ~ T+ 153 536V T V30z W YT oW DT
(36t — 72t +36) + 15 (4 —4) + 103 —— 4t-4)+ 37 —_(4t—4) +

345 6144 4608 2048
—oo4r—4)+ 15 (4t 4) + 199 —— (3612 — 761 + 40),

12288 \V 1024 \V 18432

By doing some calculations, we get
= ABCy(Y)) = —( 18 V15 — 48 V17 - 15 V21 — 18 V29 — 12 V46 — 12V71 - 9V74 +

144
9v94 — 18 V134 — 12V165 — 24 V186 — 6\/206—12\/222 8 V249 +

6 V330 + 30 V396 + 36 V570 — 3 V906) + mr(216+72\/ﬁ+ 18 V15 +
48 V17 +15V21 + 18 V29 + 36 V35 + 12 V46 + 12 V71 + 9 V74 — 21 Vo4 +
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18 V134 + 12 V165 + 36 V186 + 6 V206 + 12 V222 + 8 V249 — 57 V398 —
1
72 V570 + 3V906) + mt2(27 V94 + 2398 + 36 V570).

Thus from (1.10),
2VM, x M,

GAu(T)) = M+ M)

rseE(Ty)

2V6 42 8 242
GA(T)) = 1E/(T1(0) + —\/_|E2(T1(f))| + im(‘rlmn + IECTI0)] + ims(‘rl(t)n +

8 2 2
iwém(z)n + £|E7(‘r1<t>>| ¥ img(‘rlm» + Es(T1(0)] + iuslom(z)n +

4 2 4
HE, (YL@ + T\/_lEIZ(Tl(t))l + T\/_lEB(Tl(t))l + 1—\{_|E14(T1(t))| +

3 V12288 12 V12288
7\/—|E15(T1(t))|+ 57 BT+ FIEn(Y1O) + —

V24576 V18432 24
76 |E1o(YL(D)] + 36 IEzo(Tl(t))|+—|E21(T1(t))|,

= 140+ £(4r) + £(4) + i(4z —4)+ i(m —4) + ﬂ@t —4)+

£(12t -8) + ¥(4t -4 +12t-2)+ ¥(4t —4)+ 192 - Tt +3) + ?(4) +

2 46 3 V12288
—\/_(4 r—4)+ 1—\{_(4t—4)+§(36t2—72t+36)+ 15

\/1228 V24576 V18432
(41— 4) + (41— 4) +
112 176 136

|Ers(Di(D)] +

(4t — 4) + —§(4t—4)+

—_— — 2 —_—
(4r-4) + 5 (36t 76t + 40),

= GAu (1))

37377  976V2 20243 400\/6+(488\/6+416\/§ \/33238

1105 153 19 77 77 51 7133
377829

5525

9 2
)r + 520121+ 50V3)P.

2.2. Results for second type of Dominating David Derived network

Now, we are calculating certain degree-based multiplicative topological indices of the Y, = D, (1),
where ¢ € N for second type of Dominating David Derived network.
Theorem 2.2.1. Consider the second type of Dominating David Derived network Y, = D,(f) for t € N.
The first and second multiplicative Zagreb indices are equal to

I (Cp) = 3456(5 + t(—=13 + 91))(4 + t(—=11 + 91))(=5 + t(7 + 91)),

I1,('0) = 188743681(7t — 4)(6 + t(9t — 14))(5 + 1(9t — 13))(3 + #(9¢ — 11)).

AIMS Mathematics Volume 5, Issue 2, 1562—-1587.
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Proof. Let Y, be the second type of Dominating David Derived network. The D,(¢) has 97> + 7t — 5
vertices of degree 2, 18> — 26t + 10 vertices of degree 3 and 271> — 33t + 12 vertices of degree 4. The
edge set of D, (1) is divided into five partitions based on the degree of end vertices. Table 3, shows such
an edge partition of D;(#). Thus from (1.1) is follows that

It = | ] @
reV(r,)
By using vertex partitions, we get
11,(°"5) (297 + 7t — 5) x (3)*(187* — 261 + 10) x (4)*(27£* — 33t + 12),
= 4097 + 7t — 5) x 9(181* — 26t + 10) x 16(27£* — 33t + 12),

By doing some calculations, we have

Table 3. Edge partition of second type of Dominating David Derived network (D,(7)) based
on degrees of end vertices of each edge.

(d,,dy) where rs € E(;) Number of edges

2,2) 4

2,3) 182 — 22t + 6
2,4) 28— 16
(3,4) 3612 — 56t + 24
4,4) 3612 — 52t + 20

= I1,(V,) = 3456(5 + t(=13 + 90)(4 + t(—=11 + 91))(—5 + t(7 + 91)).
Thus from (1.2), we have
Ihr) =[] @ xd,).

rs€E(T2)
By using Table 3 edge partitions, we get
I(Ty) = 41E\(Y2(0)] X 6lE2D(T2(0)] X 8IE5(T2(1)] X 12|E4(T2(0)] X
16|E5(T2(n),
= 4(4f) x 6(181* — 22t + 6) x 8(28t — 16) x 12(36¢* — 561 + 24) X
16(361° — 521 + 20),

By doing some calculations, we have
= 11,(;) = 18874368¢(7t — 4)(6 + t(9t — 14))(5 + t(9t — 13))(3 + t(9¢ — 11)).
]

Now, we compute the topological indices named as first Hyper-Zagreb index and second Hyper-
Zagreb index of a graph 1.

Theorem 2.2.2. Let T, = D,(¢) be the second type of Dominating David Derived network, then
HIIL () = 231211008001(7t — 4)(6 + (9t — 14))(5 + (9t — 13))(3 + #(91 — 11)),
HIL(Y5) = 695784701952¢(7t — 4)(6 + t(9t — 14))(5 + (9t — 13))(3 + t(91 — 11)).

AIMS Mathematics Volume 5, Issue 2, 1562-1587.
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Proof. The outcome is obtained by using the edge partition provided in Table 3. The result is from
(1.3),
HILOR) = || @ +d)

rseE(")

HIL () L16|E(T2(0))| X 25|E5(Y2(1)| X 36|E3(T2(2))] X 491E4(T2(1))] X 64|E5(T2(D))],
16(41) X 25(181* — 221 + 6) x 36(28¢ — 16) x 49(36t* — 56¢ + 24) x

64(361* — 52t + 20),

By doing some calculations, we get

= HII, (M) = 231211008001(7¢ — 4)(6 + #(9t — 14))(5 + #(9t — 13))(3 + t(9¢ — 11)).

Also from (1.4),
HIL() = [ ] @ xd)
rs€E(Ts)

HIL(Y,) 161E1(C2(0))| X 36|E2(T2(1))| x 64|E5(T2(1))| % 144|E4(Y2(1))| X 256|Es(Y2(1))],
16(4¢1) + x36(187> — 22t + 6) x 64(28¢ — 16) x 144(36¢> — 561 + 24) x

256(361% — 52t + 20),

= HIL(T,;) = 695784701952t(7t — 4)(6 + (9t — 14))(5 + (9t — 13))
B+ 19— 11)).

Now, we calculate first and second Universal-Zagreb indices.
Theorem 2.2.3. Let T, = D,(¢) be the second type of Dominating David Derived network, then

MZ8(T5) = 83*291051(7t — 4)(6 + (9t — 14))(5 + 1(9t — 13))(3 + 1(9t — 11)),

MZ(05) = 84 x 94Tt — 4)(6 + t(9t — 14))(5 + t(9t — 13))(3 + (9 — 11)).

Proof. The outcome is obtained by using the edge partition provided in Table 3. The result is from
(1.5),
MZ4(Y) = ]_[ (d, +d,)".
rseE(12)

MZ{(Y>) BE1CL20)] % ) IE2(T2(0))] X (6)|Es(C2()] X (T)*|E4(Y2(2))] X (8)|Es(T2(N)],

4%(41) x 5%(181* — 22t + 6) X 6%(28¢ — 16) x 74(361*> — 561 + 24) x 8*(36¢* — 52t + 20),

By doing some calculations, we get
= MZ%(,) = 821051(7t — 4)(6 + (9t — 14))(5 + 1(9t — 13))(3 + 1(9¢ — 11)).
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Also from (1.6),
MZ5(r) = || @ xdy.

rseE("))

MZy(Y3) = (DIEL(C2(0)] X (6)|E2(T2(0))] X ()| E3(L2(N)] X (12)|E4(L2(1))] X
(16)*|Es(T2(0)],
4%(41) x 6°(181% — 22t + 6) X 8(281 — 16) X 12°(361° — 561 + 24) X

16%(361* — 52t + 20),

= MZ5(Yy) = 8™ x 9Tt —4)(6 + t(9t — 14))(5 + 1(9t — 13))(3 + t(9¢ — 11)).

The sum and product connectivity of multiplicative indices are as follows.
Theorem 2.2.4. Let T, = D,(¢) be the second type of Dominating David Derived network, then

4
— 1(7t — 4) (92 — 141 + 6)(9> — 131 + 5)(9* — 111 + 3),

SCII(T,) =

PCII(Y,) = gzm — 497 — 141 + 6)(9> — 131 + 5)(9¢* — 111 + 3).

Proof. The outcome is obtained by using the edge partition provided in Table 3. The result is from
(1.7),
1

rs€E(YT2)

SCII(Y»)

1 1 1 1
S IE(T2D)] X %IEz(TZ(I))I X %|E3(T2(t))| X WIE4(T2(t))I X

L Esc20),

V8

1 1 1 1
= —(41) x — (182 = 221 + 6) x — (281 — 16) x — (361> — 561 + 24) x
2 \5 V6 7

1
—(36¢* — 52t + 20),
V8

By doing some calculations, we get

4
— 1(7t — 4)(9¢% — 141 + 6)(97% — 131 + 5)(97 — 111 + 3).

= SCII((,) =

Also from (1.8),
1

PCII(Yy) = S —
rselE_('[Y'Z) 'dr X ds
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1 1 1 1 1
PCII(Y>) SIEI(T2(r)] X %|E2(‘I‘2(t))| X —8|E3(T2(I))I X EI&(TZO))I X ZIEs(Y2(n)],

2 V3
= 1(4r)>< ! (182 — 22t + 6) x ! (28¢ — 16) x ! (361 — 561 + 24) x
2 V6 V8 V12
1
——(36¢* — 52 + 20),
V16
By doing some calculations, we get

8
= PCII(Y,) = gt(7z — 497 — 141 + 6)(9£> — 131 + 5)(9¢*> — 111 + 3).
O

Now we calculate Multiple atom-bond connectivity index and Multiple Geometric-Arithmetic
index.

Table 4. Edge partition of second type of Dominating David Derived network (D,(7)) based
on degrees product of end vertices of each edge.

(M,, My)whereuv € E((;) Number of edges (M,, My)whereuv € E(Y,) Number of edges

(8.8) 4t (32,48) 8t-4
(8,48) 4¢ (32,96) 4t-4
(8,64) 4 (32,144) 362 — 72t + 36
(8,128) 4t-4 (48,64) 4
(9,16) 4t-4 (48,128) 4t-4
(9,32) 1872 — 30t + 14 (48,256) 4t-4
(12,16) 4t-4 (64,144) 4t-4
(12,64) 4t-4 (96,128) 4t-4
(16,48) 12t-8 (96,256) 4t-4
(16,96) 4t-4 (128,144) 4t-4

(16,144) 4t-4 (144,256) 362 — 76t + 40

Theorem 2.2.5. Let 1, = D,(¢) be the second type of Dominating David Derived network, then

1
ABCy(T>) = m(—lOZO\/ﬁ—@S\/ﬁ—1360@—510@+1020\/§—510\/4_—

255 V74 + 1700 V78 + 3060 V87 — 510 V134 — 340 V165 — 680 V186 — 170 V206 —

340 V222 + 170 V330 — 816 V395 + 850 V398 — 720 V510 — 85 V906) +

1
20501(6120 + 2040 V13 + 2040 V14 + 425 V21 + 1360 V23 + 510 V29 + 510 V42 +
255 V74 — 4420 V78 — 6120 V87 + 510 V134 + 340 V165 + 1020 V186 + 170 V206 +

1
340 V222 + 816 V395 — 1615 V398 + 720 V510 + 85 V906) + mﬂ@oa) V78 +
3060 V87 + 765 V398),
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(146884 1848296 V2 15503 2176\/5)+t(—315728 414096 N

GA (Y _ _ -
m(12) 5525 69003 133 385 5525 7667
21203 , 3232 \/6) .\ t2(864 , 13608 «/E)
133 385 25 451 )

Proof. The outcome is obtained by using the edge partition provided in Table 4. The result is from

(1.9),
M, +M,-2
ABCH(t) = D, N T

rseE(")

7 9 35 67
ABCy(Y) = \/3:2|E1(T2(t))| + \/6:4|E2(T2(t))| + \/ﬁlEs(m(t))l + \/51—2|E4(T2(t))| +

23 13 13 37
Taz /Es(T20)] + \/9:6|E6(T2(f))| + \/:IE7(T2(I))| + 4 3gg B (L2 +
5 79

1 5 13
@IEg(‘U(I))I + ﬁlElo(TZ(t))l + A\ 11 En (20N + ﬁlElz(Tz(Z))l +

1152

—1|E13(T2(t)>|+ me(’rz(mu > BT +

1536
151 103
1024|1516(Dz(f))| * \ graa ErD2O) + 4 752l Ers(T20)] +
37 175 15
\/204 |E10(C2(0))] + 4/ T22gg Eo(T2(0)] + e Topa E21 (Y20 +

199
Tgazs E2(T2(M),

[7 [ 35 67 23 3,

13 37 31 55
30t+14)+,/9—6(4r—4)+ gD+ 312 = 8) + o (-4 +

79 13 21 29
F(4r—4)+ e B =4+ 5T(4t—4)+\/—(36t—72t+36)+

29 151 103
153 1536 T V102aW TV Vo1 Y Vagos P 204 20484~
175 [ 15 | 199
4) + 12288( 4) + 024 — 4t -4)+ 18432(36t — 76t + 40),
By making some calculations, we are getting
— ABCy(T,) = —(—1020\/_ 42521 - 1360 V23 — 510 V29 + 1020 V35 - 510 V42 —

4080
255 V74 + 1700 V78 + 3060 V87 — 510 V134 — 340 V165 — 680 V186 —
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170 V206 — 340 V222 + 170 V330 — 816 V395 + 850 V398 — 720 V510 —
1
85 V906) + mt(6120 + 2040 V13 + 2040 V14 + 425 V21 + 1360 V23 +

510 V29 + 510 V42 + 255 V74 — 4420 V78 — 6120 V87 + 510 V134 +
340 V165 + 1020 V186 + 170 V206 + 340 V222 + 816 V395 — 1615 V398 +

1
720 V510 + 85 V906) + mﬁ@%o V78 + 3060 V87 + 765 V398).

Thus from (1.10),

GAp(T>)

= GAM(Tz)

2VM, x M,

GO = ) G

rseE(T)

26 42 8 24
LHE (T2()] + ilEz(TZ(t))l + —\/_IEa(T2(t))| + —|E4(T2(t))| + —IEs(T2(t))| +

ﬂwﬁ(‘rzmn " £|E7(‘r2<t>>| . Eiws('}fza)» + £|E9<T2<r)>| +

2
ilElo(T2(t))l + SIEn(T20) + 5 ‘/5|E12(T2(t))| + £|E13(T2(t))l +

6 4 4 V12288
iwm(‘rz( ))|+i|E15<‘r2( ))|+i|E]6(‘r2< DI+~ En(T20)] +

V12288 V24576 V18432
12 Ew(2O) + —Z—E2(T20)] + —==

|E2 (F2(0)] +

1_3|E18(T2(t))| +

24
g|E22(T2(f))|,

1(41) + 2—\/6(4r) + %(4) + i(4z —4) + %(m —4) + @(18# —30r + 14) +

£(4 t—4)+ £(4t—4)+ £(12z—8)+ £(4t—4)+ S@r—d)+

i(& —4) + £(4t —4)+ o «5(36# — 721 + 36) + 4f(4) +2 ‘/_(4t —4)+

x/122 12 Vi22 V2457 V184
88 ar—ay+ 24y 88 4r— 4y 4 Y270 4, _ 4y, V18432
152 13 112 176 136

24,
4) + g(36t — 76t + 40),

(4t —

(146884 1848296 V2 15503 2176\/5)+t(—315728 414096 V2

5525 69003 133 385 5525 7667
2120V3 . 3232 \/6) . t2(864 . 13608 «/5)
133 385 25 451 )

O
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2.3. Results for third type of Dominating David Derived Network

In this section, we calculate the multiplicative topological degree based indices for third type of
Dominating David Derived network D;(¢) of dimension f.
Theorem 2.3.1. Consider the third type of Dominating David Derived network T3 = D;(¢) for t € N.
The first and second multiplicative Zagreb indices are equal to

11 ((3) = 3841(—1 + 31)(22 + (=59 + 451)),

1L, (73) = 32768¢*(9t — 5)(11 + 9¢(21 — 3)).

Proof. Let ('3 be the third type of Dominating David Derived network. The '3 has 18> — 6¢ vertices of
degree 2 and 451> — 59¢ + 22 vertices of degree 4. The edge set of Ds(f) is divided into three partitions
based on the degrees of end vertices. Table 5, shows such an edge partition of D;(¢). Thus from (1.1)
is follows that,

meey = || @r.

rEV(Tg)

By using vertex partition, we get

Table 5. Edge partition of third type of Dominating David Derived network (Ds(#)) based on
degrees of end vertices of each edge.

(d,,dy) where rs € E((3) Number of edges

(2,2) 4t
2,4 3612 — 20t
“4,4) 7212 — 108t + 44

11,(03)

(2)*(187* — 61) X (4)*(45¢* — 59¢ + 22),

11, (73)

4(181% — 61) X 16(45¢> — 591 + 22),
By making some calculations, we have
= [1,('M3) = 3841(—1 + 31)(22 + 1(=59 + 451)).

Also from (1.2), we have
ir) = || @ xd,).

rseE(13)

By using Table 5 edge partitions, we get

15,(Y5) 4 E (T3] X 8|E;Y3(1)] X 16|E3Y3(1)],

4(41) x 8(36F* — 20¢) x 16(72¢* — 1081 + 44),
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By making some calculations, we have
= I1,(3) = 32768¢*(9¢ — 5)(11 + 912 — 3)).

O

Now we calculate some advanced topological indices named as first Hyper-Zagreb index and second
Hyper-Zagreb index of a graph T’;.
Theorem 2.3.2. Let T3 = D;(¢) be the third type of Dominating David Derived network, then

HII (73) = 23592969t — 5)(11 + 9¢(2¢ — 3)),

HIL(3) = 16777216829t — 5)(11 + 91(2t — 3)).

Proof. The outcome is obtained by using the edge partition provided in Table 5. The result is from
(1.3)
HIL(G) = [ ] @, +dp)*

PGEE(T3)

HIL(T3) 16|E1(T2(0))] X 36| E2(Y2(1))| X 64|E3(2(1))],

16(41) x 36(36* — 20t) x 64(72* — 108t + 44),

By doing some calculations, we get

= HII(3) = 23592967*(9¢ — 5)(11 + 91(2t — 3)).

Also from (1.4),
HIL(G) = [ | @, xdp)*.

PGEE(T3)

HIL(T3) = 16|E;(Y3(1) x 64|E2(Y3(1))] X 256|E3(3(1))l,

HIL(T3) = 16(41) x 64(361* — 20t) X 256(72> — 108t + 44),
By doing some calculations, we get

= HIL(Y3) = 16777216*(9¢ — 5)(11 + 912 — 3)).

Now the first and second Universal-Zagreb indices are defined as.
Theorem 2.3.3. Let T3 = D;(¢) be the third type of Dominating David Derived network, then

MZS((3) = 364429t — 5)(11 + 91(2t - 3)),
MZS((3) = 827392 (9t — 5)(11 + 912t — 3)).
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Proof. The outcome is obtained by using the edge partition provided in Table 5. The result is from
(1.5),

MZi(rs) = | ] @, +dy),

P4EE(G)

MZ{(Y3) (DYNELCL3O)] % (0)°|E2(T3(1))] X (8)|E3(T3(N)],

4%(41) x 6*(361* — 201) x 84(72¢* — 1081 + 44),

By doing some calculation, we get

= MZO((3) = 3°64'*29r — 5)(11 + 912t — 3)).

Thus from (1.6),
MZ5(rs) = || (d, xdy).

PGEE(T3)

MZ5(C3) = DE(C3@)] x () |EL(Y3(1)| x (16)*|E3(T3(1))l,
4%(41) x 8*(361* — 201) x 16%(72¢* — 1081 + 44),

= MZ5(Y3) = 829t —5)(11+ 912t - 3)).

The sum and product connectivity of multiplicative indices are described as follows.
Theorem 2.3.4. Let 1’5 = D;(¢) be the third type of Dominating David Derived network of type 3, then

SCII(M3) = %tz(% = 5)(11 + 912t - 3)),

PCII(3) = 2V22(9t — 5)(11 + 912t — 3)).

Proof. The outcome is obtained by using the edge partition provided in Table 5. The result is from
(1.7),

1
SCII(N5) = _
uvle—E([G) le’ +d‘1

1 1 1
SCII(Y3) SIE(T3(0)] % —6|E2(T3(I))I X —8|E3(T3(t))l,

: V6 VB

1 1 1
= —(41) x — (361> — 201) x —(721* — 108t + 44),
2 V6 V8

By doing some calculation, we get

= SCII((3) = %t2(9t =5)(11 + 912t - 3)).
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Also from (1.8),
1

P q

PGEE(T3)

PCII(Y3)

1 1 1
SIEL(T3(@0)] X %|E2(T3(f))| X ZIE5(Y3(0)],

1 1 1
= —(41) x —(36¢* — 201) x ——(72¢* — 108t + 44),
2 V8 V16

By doing some calculations we get
= PCII(Y3) = 2V2291—5)(11 + 9121 — 3)).
]

The Multiple atom-bond connectivity index and Multiple Geometric-Arithmetic index are
calculated as follows.
Theorem 2.3.5. Let Y3 = D;(7) be the third type of Dominating David Derived network, then

1
ABCy(T3) = 19—2(—144x/§+48\/§—24\/7_1+96\/ﬁ—24\/%—24\/134—12\/14 -

1
6 V254 + 24 V318 + 30 V510 + 32 V573) + @t(168 V14 + 144 V23 + 48 V35 +

24 V71 =264 V78 + 24 V95 + 24 V134 + 12 V143 + 6 V254 — 90 V318 — 57 V510 +
1
32V573) + 19—2t2(216 V78 + 54 V318 + 27 V510),

8 8 10
GAu(Y3) = (3672 — 60t +36) + Tl -H+g V2(41 — 4) + > V2(41 + 4) +
2 2 4 4
3 V2(8t — 8) + 3 V212t - 12) + g(36t2 — 60 + 16) + g(36z2 — 44¢ + 16).

Proof. The outcome is obtained by using the edge partition provided in Table 6. The result is from
(1.9).

Table 6. Edge partition of third type of Dominating David Derived network (Ds(#)) based on
degrees product of end vertices of each edge.

(M,, M) where rs € E((3) Number of edges (M,, M) where rs € E((3) Number of edges

(8,8) 4t (64,64) 8t

(8,64) 4t+4 (64,128) 8t-8
(8,128) 4t-4 (64,256) 361> — 60t + 16
(16,32) 12t-12 (128,128) 4t-4
(16,64) 3612 — 44t + 16 (128,256) 4t+4
(16,128) 4t-4 (256,256) 3612 — 76t + 40
(32,256) 4t-4
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M,+M,-2
ABCWCE) = D N iga

rseE(Y3)

7 35 67 23
ABCy(Y3) = \/%|E1(T3(t))| + 4 55 (T30 + \/—IE3(T3(t))I + \/—|E4(T3(t))| +
3

9 71 143 63
512 B3N+ [ 1522 Es (B3O + 4] 3506 BT + ) 555 1Es(L3 @) +

1024 4096
B (P3O + | B (L3O + 1|~ |1 (T3(0))] +
4096’ 819210 8192 !
191

255
Teaga Er(L3O)+ 4/ 3572 1E(T3(0)],

[7 2
3—2(4t) + %mt +4) + 5T(4t -4)+ %(IZI -12)+ 53T9(36t2 -

[ 71 [143 [ 63 [ 95
44t + 16) + o7 T M9+ 1096 (4z—4) 5048 ——(8) + 1006 (8t—8)+

159 1
- 1 4t — At + 4
192 (36t 60r + 16) + 819 ( 4) + 16384( r+4)+
255
— 761 + 4
32768(36t 61 + 40),
By doing some calculations, we get
— ABCy(T3) = 19—2( 144 V23 + 48 V35 — 24 V71 + 96 V78 — 24 V95 — 24 V134 — 12 V143 —

6 V254 + 24 V318 + 30 V510 + 32 V573) + @t(168\/ﬁ+ 14423 + 48 V35 +

2471 =264 V78 + 24 V95 + 24 V134 + 12 V143 + 6 V254 — 90 V318 —
1
57V510 + 32V573) + 19—2;2(216 V78 + 54 V318 + 27 V510).

Also from (1.10),
2VM,. X M,

GAy(Y3) = (M, + M,) .

rseE(T3)

42 8 2V2 4
(DIE,(F3(0)] + —\/_|E2(T3(f))| + B (T3] + T\/_IE4(T3(t))I + SIEs(3@0)] +

4 V8192 V8192
—\/_IEs(T3())|+ g VEr(3@O) + (DIECY30) + —
V32768
192

= (D|4D) + 49—\5(4z +4) + %(4; — 4|+ 23—\5(1% —12)+ g(smz — 441+ 16) +

GAu(Y3)

|[Eo(Y3(0)] +

§|E10(T3(t))| + (DIEL (T30)] + ( IER(Y3@0)] + (DIE(Y3(0)],
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%(M -4) + 8192(4t —-4)+ (1)(81) + 8192(8t -8)+ 4—1(36t2 - 607+ 16) +
9 144 96 5
(1)@4r-4)+ 313;68 (4t +4) + (1)(361* — 761 + 40),

8 8 10
= GAu(T3) = (3672 — 60t + 36) + ﬁ(4t —4)+ 5 V2(4t — 4) + > V2(4t + 4) +

2 2 4 4
3 V28t — 8) + 3 V212t - 12) + 5(36t2 — 60t + 16) + g(36:2 — 44¢ + 16).
O

The graphical representations of topological indices of these networks are depicted in Figures 6 and
7 for certain values of ¢. By varying the different values of ¢, the graphs are increasing. These graphs
show the accuracy of the results.

- ABCM (’yl)

150000 -~ ABCy () 4

| —— ABCp (r3)

100000

50000

0 g

100

Figure 6. Comparison of ABC), index for 7y, v, and 7y3.

[ ——- GAy(r) R
800000 |- ML R
[ —— GAy () ! ]
(4

r - GAM(r3) . ]
600000 - .
400000 - ]
200000 - 8
07 L L L \‘ L L L L L L L L L L n L n n n |

0 20 2 60 80 100

Figure 7. Comparison of GA,, index for yy, y, and ;.
3. Conclusion

In this article, we computed degree-based indices for some derived graphs of HC,, graph. We also
computed certain degree-based polynomials such as Multiplicative Zagreb, Hyper Zagreb, Universal
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Zagreb, Sum and Product connectivity of Multiplicative indices, Multiple Atom-Bond connectivity
index and Multiple Geometric Arithmetic index for three types of Dominating David Derived
networks. We also gave index comparison of these networks. Almost all indices increase with
increase in f. These facts may be useful for people working in computer science and chemistry who
encounter honeycomb networks. Finding expressions of derived graphs like these is an open problem
for many other topological indices.
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