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and have the following Hardy-Littlewood-Polya’s inequality: 
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where the constant factor pq is the best possible (cf [1], Theorem 315 and Theorem 341). 

In 2006, by introducing parameters
1 2(0,2] ( 1,2), (0,4],i i         an extension of (1) 

was provided by Krnić and Pečarić [2], as follows: 
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221
  qp  

inequality (3) reduces to Yang’s work in [3]. Recently, by applying inequality (2), a new inequality 

with the kernel )(

1
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involving partial sums was given in [4]. 
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Hardy -Hilbert’s integral inequality (cf. [1], Theorem 316): 
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where the constant factor )sin(/
p
 is the best possible. Inequalities (1), (2) and (3) with their 

extensions and reverses are important in mathematical analysis and its applications (cf. [5–15]).  

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [1], Theorem 351):  

If ( ) ( 0)K t t   is decreasing, 11 1
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Some new extensions of inequality (5) and their reverses were provided in [16–20].  

In 2016, by means of the technique of real analysis, Hong and Wen [21] considered some 

equivalent statements of the extensions of (1) with the best possible constant factor related to 

several parameters. The other similar works concerned with inequalities (2), (4) and (5) were 

investigated in [22–27]. 

In this paper, following the way of [2,21], by making use of the weight coefficients, the idea of 

introducing parameters and Euler-Maclaurin summation formula, an extension of inequality (2) with 

parameters as well as the equivalent form are provided in Lemma 2 and Theorem 1. The equivalent 

statements of the best possible constant factor related to several parameters and some particular cases 

are discussed in Theorem 2 and Remark 2. The operator expressions are considered in Theorem 3. 

2. Some lemmas 

In what follows, we assume that ,1),1(1 11 
qp

qp ],3,0( ),0(],0(
8
11  i  )2,1( i . 

We also assume that 0, nm ba ( , N {1,2, })m n   such that 
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Thus, in this case the inequality (7) is proved. 
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and then it follows that 
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Hence, in view of (i), we still have the inequality (7). This completes the proof of Lemma 1.  

 

Lemma 2. The following extended Hardy-Littlewood-Polya’s inequality holds true: 
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Then by (7) and (9), we obtain inequality (8). The proof of Lemma 2 is complete.  

Remark 1. By inequality (8), for )2,1(0]),3,0(](,0(
8
11

4
11

21  ii , we have 

 .00
1

1)1(

1

1)1( 21  









 q

n

n

qp

m

m

p
bnandam


 

and the following inequality: 

21

1 1
}),(max{ 


 







n m
nm

ba nm qp q

n

n

qp

m

m

p
bnam

1

2

1

1 }{}{
1

1)1(

1

1)1(











 
.           (10) 

Lemma 3. For ],0(
4

11
21   , the constant factor

21
 in (10) is the best possible. 

Proof. For any 10  p , we set 

)N,(:
~

,:~ 11 21




nmnbma qp

nm

 
. 

If there exists a constant M
21

  such that (10) is valid when replacing
21

 by M , then in particular, 

substitution of nnmm bbandaa
~~  in (10), we have 

 









1 1

}),(max{

~~

:
~

n m
nm

ba nmI 

qp q

n

n

qp

m

m

p
bnamM

1

2

1

1 }
~

{}~{
1

1)1(

1

1)1(















.        (11) 

By (11) and the decreasingness property, we obtain 

).1()1()1(

)1()1(

][}{
~

11

11

1

22

1

11

1

1

1

1

2

1

2

1

1

1)1(

1

1)1(



















































M

nm

qq

n

qpp

m

p

qp

qp

qp

dyydxxM

nmM

nnmmMI

  

By (9), setting ),ˆˆ0(),0(),0(ˆ
1228

11
11   

pp
we get 



1555 
 

AIMS Mathematics  Volume 5, Issue 2, 1550–1561. 



 

























1

1ˆ

ˆˆ

1

1

1

1 1

11)(

}),(max{

1
)(

)1(),ˆ(

][
~

1
ˆ

2

21

12

n
n

n

n m
nm

nnn

nmnI pp























 

)).1(1(

))1(()(

21

21
11

2

21

ˆˆ

1

1

ˆ,ˆ

1 1

1
ˆ1

ˆˆ

O

Odxxn
n n n q






















  















 

Then we have 

).1(
~

))1(1(
))(( 21




 

 MIO
pp

 

For 0  , we find M
21

 . Hence,
21 ,

M is the best possible constant factor of (10). This 

completes the proof of Lemma 3.  
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Lemma 4. If inequality (12) is valid and the constant factor )()( 12
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We observe that (13) keeps the form of equality if and only if there exist constants A and B ( not 

all zero) such that (cf. [28]) 

..
11 12 eaBuAu



 in R . 

Assuming that 0A  , we have ..12 eau
A
B

 
in R , and then 012   , namely, 21   . 

The Lemma 4 is proved.  

3. Main results and some particular cases 

Theorem 1. Inequality (8) is equivalent to the following inequality: 
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If the constant factor in (8) is the best possible, then so is the constant factor in (14). 

Proof. Suppose that (14) is valid. By Hӧlder’s inequality (cf. [28]), we have  
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Hence by (14), we obtain inequality (8). 

On the other hand, assuming that (8) is valid, we set 
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namely, inequality (14) follows. Hence, inequality (8) is equivalent to (14). 

If the constant factor in (8) is the best possible, then so is the constant factor in (14). Otherwise, 

by (15), we would reach a contradiction that the constant factor in (8) is not the best possible. The 

proof of Theorem 1 is complete.  
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Theorem 2. The following statements (i), (ii), (iii) and (iv) are equivalent: 

(i) )()( 12

11

 
qp kk is independent of ,p q ; 

(ii) )()( 12

11
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equivalent inequalities with the best possible constant factor
21

 : 

p

n

p

m

mnm

p
an

1

2 }][{
1 1

}),(max{

11

 











 pp

m

m

p
am

1

1

21
][

1

1)1(












 .           (16) 

Proof. (i) (ii). By (i) , we have 
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qp
k



 
 , then (13) keeps 

the form of equality. In view of the proof of Lemma 4, it follows that 21   .  

(iv) (i). If 21   , then )()()( 112
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  kkk qp  , which is independent of ,p q . Hence, it follows 

that (i) (ii) (iv).  

(iii) (iv). By Lemma 4, we have 21   .  

(iv) (iii). By Lemma 3, for 21   , ))(()(
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(8). Therefore, we have (iii) (iv). 

Hence, the statements (i), (ii), (iii) and (iv) are equivalent. This completes the proof of Theorem 2.  

Remark 2. (i) For
pq
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1 ,,1   in (11) and (17), we obtain the inequality (2) and the following 

equivalent inequality with the best possible constant factor pq : 
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It follows that (8) and (11) are extensions of (2). 
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(iii) For ,2 qp  Both inequality (2) and inequality (18) reduce to 
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moreover, both inequality (17) and inequality (19) reduce to the equivalent form of (20), as follows: 
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4. Operator expressions 

We set functions 
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we can rewrite (14) as follows: 
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Definition 2. Define a Hardy-Littlewood-Polya’s operator ppp llT  1,,:
  as follows:  
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By Theorem 1 and Theorem 2, we have 

Theorem 3. If ,0||||,||||,, ,,,,   qpqp balbla  then we have the following equivalent 

inequalities: 

,||||||||)()(),( ,,12

11

  qp bakkbTa qp
                         (22) 
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.                           (23) 

Furthermore,   21  if and only if the constant factor )()( 12

11

 
qp kk  in (22) and (23) is the 

best possible, namely, 

21
)(|||| 1 


   kT

.                                  (24) 

5. Conclusion 

Let us give a brief summary of this paper, by applying the weight coefficients, the idea of 

introducing parameters and Euler-Maclaurin summation formula, an extended 

Hardy-Littlewood-Polya’s inequality and the equivalent form are given in Lemma 2 and Theorem 1. 

The equivalent statements of the best possible constant factor related to several parameters, and some 

particular cases are considered in Theorem 2 and Remark 2. The operator expressions are given in 

Theorem 3. The lemmas and theorems depict some essential characters of this type of inequalities. 
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