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1. Introduction

Assuming thatp>1,4+1=1a b >0,0<)" aP<owand 0<) " b <o then we have the

m?!™~n

following Hardy-Hilbert’s inequality with the best possible constant factor g%/

M

b o x (3 a?)* (O b)) (1)
m=1 n=1

1 n=1

3
Il

and have the following Hardy-Littlewood-Polya’s inequality:
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0 o0 1

ZZ max{m n}< pq(zap) (qu E (2)

m=1 n=1

where the constant factor pq is the best possible (cf [1], Theorem 315 and Theorem 341).
In 2006, by introducing parameters 4 €(0,2] (i=12),4,+4,=4¢€(0,4], an extension of (1)

was provided by Krni¢ and Pecari¢ [2], as follows:

ii(mm)’ B(Al 12)[Zmp(l_ﬂi) - p] [Z nq(l_AZ)‘lbq % (3)

m=1 n=1

where the constant factor B(4,,4,) is the best possible (B(u,v)=j —_dt (u,v>0)is the beta

(l t)u v

function). For1=1,4 = ¢, 4, =+, inequality (3) reduces to inequality (1); for p=q=2,2,=2,=%
inequality (3) reduces to Yang’s work in [3]. Recently, by applying inequality (2), a new inequality

If f(x),g(y)=0, 0<_|:O fP(X)dx<oo and O<I0wgq(y)dy<w , then we have the following
Hardy -Hilbert’s integral inequality (cf. [1], Theorem 316):

[ [ Festaxdy < gy (| F P 090 ([ " g% (y)dly) (4)
where the constant factor z/sin(%) is the best possible. Inequalities (1), (2) and (3) with their
extensions and reverses are important in mathematical analysis and its applications (cf. [5-15]).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [1], Theorem 351):
If K(t) (t>0) isdecreasing, p>1++3:=10<¢(s)= J'Ow K (t)t**dt <o, then we have

[/ X 2 (K (wa,) dx < 6P (2) . ar. (5)

Some new extensions of inequality (5) and their reverses were provided in [16-20].

In 2016, by means of the technique of real analysis, Hong and Wen [21] considered some
equivalent statements of the extensions of (1) with the best possible constant factor related to
several parameters. The other similar works concerned with inequalities (2), (4) and (5) were
investigated in [22-27].

In this paper, following the way of [2,21], by making use of the weight coefficients, the idea of
introducing parameters and Euler-Maclaurin summation formula, an extension of inequality (2) with
parameters as well as the equivalent form are provided in Lemma 2 and Theorem 1. The equivalent
statements of the best possible constant factor related to several parameters and some particular cases
are discussed in Theorem 2 and Remark 2. The operator expressions are considered in Theorem 3.

2. Some lemmas

In what follows, we assume that p>1(q>1),++¢=1 1<(03], 4 €(0,5]In(0,2) (i=12).
We also assume thata,,,b, >0 (m,ne N={1,2,---}) such that
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© 1 (222 Ay > 1- (2244 Ay 1
0<>m™ Mgl <o and 0< > ™t <o,

m=1 n=1

Lemma 1. Define the weight coefficient:

0

— -1
@,(A,,m):=m* ZZZ (max{; = (meN)

Then, we have the following inequality:
K, (1) A= 5mm) <@, (A M) <K, (4) = 5457 (MeN)

2L

(max{m,t})*

o 0<t<m, G G ot <,
g (t) ﬂ 211 m(t): m A—A—2 *
4 t>m (4, — A -t "2 t>m

Proof. For fixed me N, we set function g,,(t) = ———(t > 0). Thereby we get

(i) For A, € (0,1], by the property of monotone decreasing, we obtain

oGy < [t = ([ [0 =k, ()

00 P o0 1
A=2, 221Gt _ A=Ay 7214t _ 2t
@ (4, m) > m J.l (max{m.t)* m [.[o (max{m,t})"* Io (max{m,t})"]

=k, (4,)-m* *zjﬂdt—k (4,)A-

oK, (4, )miz)

Thus, in this case the inequality (7) is proved.

(6)

(7)

(i) For A, € (1L&], by using Euler-Maclaurin summation formula (cf. [20]), for p(t) =t —-[t]-%,we

have
> 9,(M = [ 9, dt+19, OF +[ PO} Ot
n=2
= [ gn®dt+39, @O ! + 22 [ pot™ ot
= [ gn(dt+1g, O ] + 22 57|

<[ g, ()t +3g,OF (4, -1>00< <),

> 0u =] 9,0t + 20,0 17 +[ A Mg, Ot

n=m+1
= [ 9nOdt+3g, O [7 +257 et
<j g, (t)dt+1g, ®) 2 + 22 m* 2 (1> 4,,0< ¢, <1),

and then it follows that
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Zg (n)<j g, (t)dt+1g, (1) +2 2t mb 42
:IOwgm(t)dt_hm(/?’!ﬂz)y
in which, for h(4,):=12-104, + 4,

1 —Ap+
(4 2) = || 9 (®)dt =39, (1) - 1;&;

—_1 1 A- Z,z+l (
LMt 2mt 1omiER A

drpy 1 _ )
) 12

Since h'(4,)=-10+24, <0 (4, €(L%]), we have

(4, 25) > ) » RO a0,

122,m* 122,m* 256 1,m*

We obtain

@, (A, m)=m"" " g, () <m*7 ["g, (O)dt =k, (4,) = 5
n=1

On the other hand, we have

Z gm (n) = J.lm gm (t)dt +%gm(t) |:an + iz;l%tiz—Z |:an
n=2

m

> Lm O (Ot +1g, () [ +22- (m™? 1),

3 00 = [ 0, Odt+ 30, O + 25t st

n=m+1
> [“gn(dt+ 10, M) 5,
% > 2nlq‘ 12m oo >0 (ﬂg < 2) we obtain

Zg (M) > [ 9, (0dt+5 g, @)+ 125 (™ -1)

> [ g dt+ (G -2

j g, (t)dt.

Hence, in view of (i), we still have the inequality (7). This completes the proof of Lemma 1. [J

Lemma 2. The following extended Hardy-L.ittlewood-Polya’s inequality holds true:

o0 0

=) ot < <K} (A)K! (2)

n=1 m=1

X{ m pI-(A2+ )1 p} {Zn al-(22+4A)] 1bQ}q

m*  122,m*’

(8)

AIMS Mathematics Volume 5, Issue 2, 1550-1561.



1554

Proof. In the same way as the proof of inequality (7), under the assumption conditions A <(0,3],

4 €(0,4]1M (0, 1), we can deduce the following inequality for the weight coefficient:

0

() ) < @) =75 D i <k, (7). (neN).

By Holder’s inequality (cf. [28]), we obtain

0

1 rn()z -1)/p ][m(fl 1)/q ]
(max{m n})‘ Lm(/»l 1)/q m n21/p ~n

Il
i)

o o0

= ni2-L Al q
Z (max{m n mul (pD) m} {Z z (max{m oy n“Z =Ty b i
n=1 m=1

n=1

IA

s IDMs

{

A M

(A2 Ay 1 = _(f2, A-a1y]_- 1
(2, mm"™ T RS (2, mn ™

{

1
Then by (7) and (9), we obtain inequality (8). The proof of Lemma 2 is complete. [
Remark 1. By inequality (8), for 4 +4, =4€(0,2](=(0,3]),0< 4 <& (i=12), we have

3
Il

0<> mPEA™aP <o and 0< D nEHhd < oo,

m=1 n=1

and the following inequality:

Y L N p(l*ﬂ/l)*l p 1.8 q(1-2,)-1pq 1
33 iy <t M Al
n=! = —

1 m=1

Lemma 3. For A4 +A4, =4 <(0,%], the constant factor |n (20) is the best possible.

Proof. For any0 < ¢ < pA,, we set

3 = mﬂ“_%_l,ﬁn —n it (m,neN).

m

S5

(9)

(10)

If there exists a constantM < -2~ such that (10) is valid when replacingﬁ by M , then in particular,

substitution of a, =a,, and b, = bn in (10), we have

_ E N PU-4)-13 pyp N a(-2)-1p aya
—ZZ( R <|v|{mz:‘;m ary {Z;n bi}e.

By (11) and the decreasingness property, we obtain

I~ <M {i mP&A)m M*S*P}% [i a0-A2)-1 0% —5- ]%

m=1 n=1
SMAE Y M e S ey
m=2 n=2

<M+ x X)L+ [ yldy)t =M (g +1).

By (9), setting 4, =4, —£€(0,2) N (0,4) (0< 4, =4, +£=1-4 < 1), we get

(11)
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[S%s) . ©

_ A (E:n—e—l_QE 1 )>

- ) A A+E4
e —~ nta

) S Dty e
Z max{m np* ]n
m=1

0

—g—l
Az nzl( An’l)

(/% mn~~ >

5 L “xldx—0(1)

n=1
Then we have
e 4 O1) <& <M(s+1).
Fore —»0", we find;A-<M . Hence,M =%-is the best possible constant factor of (10). This

completes the proof of Lemma 3. [J

Setting 2, =" + %, 7, =

A "1 + . We obtain

A= 24 Bhgdyda g

UI&
als

Thus we can rewrite (8) as follows:

I _Zz(max{m nh* < k (AZ)k (A’l)

n=

1

X[Zmp(l 1)1 p] [Z nQ(l ) 1bq a

m=1

(12)

Lemma 4. If inequality (12) is valid and the constant factork;? (ﬂz)kﬁ (A4) in (12) is the best possible,

then we have A=4,+4,.
Proof. Note that

Hence, we havek , (A:) =

-
A (A=4)

A =2 +%>0,A~1<%+§=/1,

=ieR+ =(0,0).

If the constant factor k%(ﬂz)k%(ﬂl) in (12) is the best possible, then in view of (10), the unique

best possible constant factor must be A —k (Al)(eR ), namely, k (/11) k (Ag)k 4).

By Holder’s inequality, we obtaln

AIMS Mathematics

ki () =k, ((F=+%)

0 ﬁ ﬂ,l A-dp-1
) (max{ll,u}) du _Io (max{llu}) u '’ )(u - )du
(e I A= T 1
0 (max{1l.u}) (max{1,u})
0 1
- [J.o (max{ll,v})"vl12 ldv]P[J- 8 1du]q

(max{l up*
—k? (4,)KS (4)

(13)
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We observe that (13) keeps the form of equality if and only if there exist constants A and B ( not
all zero) such that (cf. [28])

Au*%*=Bu“tae. in R,.
Assuming that A=0, we haveu* ™ =2 ag. inR,, and thenA—-2,—4 =0, namely,1 =24, + 4,.
The Lemma 4 is proved. [J

3. Main results and some particular cases

Theorem 1. Inequality (8) is equivalent to the following inequality:

PN o PO )10 1 ot
T I i 2 Y
n=. m=;

<k} (A)K; (ﬂi){zm”“( RELYS (14)

If the constant factor in (8) is the best possible, then so is the constant factor in (14).
Proof. Suppose that (14) is valid. By Holder’s inequality (cf. [28]), we have
/1 A L)

;/11 )°° Ah
I _Z[np v Z(max{m nh* a ][np © b ]
1

< ‘]{Z - (FB+2)- 1bq}q . (15)

n=1

Hence by (14), we obtain inequality (8).
On the other hand, assuming that (8) is valid, we set

N N p-1
b, :=n [Z‘I e anl”neN.
m=

If J =00, then (14) is naturally valid; if J =0, then it is impossible to make (14) valid, namely,
J >0. Suppose that0 < J <. By (8), we have

>t I e 2 3 2 1 <k (4K (A)

n=1

B-CF24801 pad o0 I-CE+20 gq
{Zmp af}’ {Zn I N O
" n=1 "

D= <k (o m™ P ey

namely, inequality (14) follows. Hence, inequality (8) is equivalent to (14).

If the constant factor in (8) is the best possible, then so is the constant factor in (14). Otherwise,
by (15), we would reach a contradiction that the constant factor in (8) is not the best possible. The
proof of Theorem 1 is complete. [J

AIMS Mathematics Volume 5, Issue 2, 1550-1561.



1557

Theorem 2. The following statements (i), (ii), (iii) and (iv) are equivalent:
(1) kf (ﬂz)kﬁ (4,) is independent of p,q;
(i) kf (A,Z)kf(ﬂl) is expressible as a single integral,
(iii) kf (A,Z)kj (4,) In (8) is the best possible constant factor;

(iv) A=4+4,.

If the statement (iv) follows, namely, A=4 +4,, then we have (10) and the following
equivalent inequalities with the best possible constant factorﬁ :

O ph, -l B S A-2)-1.p1s
{zlnp ’ [Zl (max{rln,n})Z am]p}n <ﬁ[zlmp afg]p ' (16)
n=. m= m=

Proof. (i)= (ii). By (i) , we have
3 (K] () = lim lim k? (2,)K] () =k, ().

namely, kf (ﬂg)kj (4,) is expressible as a single integral

_[” 1 A1
kﬂ(ﬂi)_J‘o (max{,u})* u™du.

(i) =(iv). Ifkf (ﬂz)kj (4)) is expressible as a convergent single integral ki(ﬁfz +%), then (13) keeps

the form of equality. In view of the proof of Lemma 4, it follows that A = 4, + 4, .

(V)= (i). F A=A, +4,, then k?(1,)k!(4)=k,(4), which is independent of p,q. Hence, it follows
that (i) <> (ii) <> (iv).

(ili)=(iv). By Lemma 4, we have A=4 +4,.

(iv)=(iii). By Lemma 3, forA=4+4,, kf (ﬂ?)kﬁ W= ﬁ) Is the best possible constant factor of

(8). Therefore, we have (iii) < (iv).

Hence, the statements (i), (ii), (iii) and (iv) are equivalent. This completes the proof of Theorem 2.[J
Remark 2. (i) ForA =14, = ¢, 4, =+in (11) and (17), we obtain the inequality (2) and the following

equivalent inequality with the best possible constant factor pq :

[Z(Z max{m n} m) ]p < pq(Zap)p (17)
n=l m=1
It follows that (8) and (11) are extensions of (2).
(i) ForA=14, =+,4, =¢in (11) and (17), we have the following equivalent inequalities with the
best possible constant factor pq :

0 1

Zw:max{mn} m n < pq(zmp B p) (an qu E (18)

n=1 m=1
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an 2(2 e an)’ T’ < pq(Zmp “al)".
(iii) For p=q =2, Both inequality (2) and inequality (18) reduce to

ZZmax{mn} m™n <4(Za zbZ)%’

n=1 m=1

(19)

(20)

moreover, both inequality (17) and inequality (19) reduce to the equivalent form of (20), as follows:

[Z(Zmax{mn} a,)’T <4(Za ).

n=l1 m=1

4. Operator expressions

We set functions

o(m) = mPE Ty g

wherefrom, one has

A Jay
y () =n""" " (mneN)

Define the following real normed spaces:

oo =8 ={adoslall,, = (C o(m) 2, )} <

= O=0Yilbl, =y |b, [ <o}

= le =Xl = (Cw )b, 7) <ok,

Assuming that® € Ipv‘/’, setting

0

c={c,}°,.c,= z(max{mn})ﬁam,neN

m=1

we can rewrite (14) as follows:
el 1p<k (4K () 61I|p,,,<oO

namely, ce Ipywl,p .

Definition 2. Define a Hardy-Littlewood-Polya’s operator T:1I, I o @S follows:

(21)

Forany ael, ,, there exists a unique representation ce IWH, : Deflne the formal inner product of

Ta and bel,,,and the norm of T as follows:

(Ta b) = Z[Z (max{m nhH* ]b

n=l m=

AIMS Mathematics Volume 5, Issue 2, 1550-1561.
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a
Imall, oy

l1allp o

IT =

a(=0)ely,

By Theorem 1 and Theorem 2, we have

Theorem 3. If ael ,bel,, lal,,lbl,, >0, then we have the following equivalent

p.p? g’ p.p?

inequalities:
(Ta,b) <kj (L)ki ()l all, bl 22)

ITall, . <ki (ki (A)lal,, (23)

Furthermore, 4, +4, =4 if and only if the constant factor kf(ﬂq)kj(ﬂl) in (22) and (23) is the

best possible, namely,

5. Conclusion

Let us give a brief summary of this paper, by applying the weight coefficients, the idea of
introducing  parameters and  Euler-Maclaurin ~ summation  formula, an  extended
Hardy-Littlewood-Polya’s inequality and the equivalent form are given in Lemma 2 and Theorem 1.
The equivalent statements of the best possible constant factor related to several parameters, and some
particular cases are considered in Theorem 2 and Remark 2. The operator expressions are given in
Theorem 3. The lemmas and theorems depict some essential characters of this type of inequalities.
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