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1. Introduction

Let v : [k, h;] — R be a differentiable mapping on (h, h;) whose derivative v’ : ((hy,h;) — R is
bounded on (hy, hy), i.e., | Y’ ()] < M for all [ € (hy, hy). Then the following inequality holds:

Ny _ 2 Y
f vindt < M [E=h) U =Dy (1.1)
h

v (l) -

hy — hy S hy—hy 2

for all [ € [hy, hy]. Many authors find the inequality (1.1) for other generalized convex functions. For
more results and details see [1, 36, 8-10].
Awan et al. [2] introduced following new class of convex functions.

Definition 1.1. ( [2]) A function v : H C R — R is called exponentially convex, if

v(hy) V(hy)

V(thi+(1-1)h) <1 + (1 - T)W, (1.2)

ewhl

for all hy,h, € H, v € [0,1] and @ € R. If the inequality (1.2) is in reversed order then V is called
exponentially concave.

Mehreen and Anwar [7] introduced an other class of functions as:
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Definition 1.2. ( [7]) Let s € (0,1] and ‘H C R, be an interval. A function v : H — R is called
exponentially s-convex in the second sense, if

v (thy + (1 = Dhy) < 7' w” (1 =y

) (1.3)

ahz

for all hy,h, € H, v € [0,1] and @ € R. If (1.3) is in reversed order then v is called exponentially
s-concave.

Example 1.1. A function v : [0,0) — R, defined by v(/) = In(l) for s € (0, 1) is an exponentially
s-convex in the second sense, for all @ < —1.

Mehreen and Anwar [7] proved following Hadamard’s inequality for exponentially s-convex in
second sense.

Theorem 1.2. ( [7]) Let v : H C Ry — R be an integrable exponentially s-convex function in the
second sense on H°. Then for hy,h, € H with hy < h, and a € R, we have

hi+h 1 "2 v(1 v(h v(h
2y =22 < J‘—¥m<m@)(” M()(” (1.4)
2 ]’lz—hl ev
where | |
3 dr B (1 =71)dr
Al(T)—fo g ad A= T

2. Ostrowski type inequalities

First we state the following lemma given in [3].

Lemma 2.1. ( [3]) Let v : H — R be a differentiable mapping on H° for hy, hy € H with hy < hy. If
V' € Li[hy, h,), then the following equality holds:

1 h
Y () - f v (t)dt
hy —hy Jy,

l—h 2 1
sgl 2 j“rv%ﬂ+(y—ﬂmur—
2 — ] 0

foreachl € [hy, hy].

2.1
(o = 1) @D

hy — hy

1
f V' (rl+ (1 — 1)hy)dr,
0

Now we prove the following theorem.

Theorem 2.1. Let v : H — R be a differentiable mapping on H° such that v’ € [hy, h,] for hy, hy € H
with hy < hy. If V' is exponentially s-convex in second sense on [hy, h;] for some s € (0,1] and
| V' (D] < M, [ € [hy, h,], then the following inequality holds:

1 h
v@—m_mflwmz

M (I-m)? (I-h) N (hy = 1)? (hy = 1)
- hz —hyled(s+2) eM(s+1)(s+2) ed(s+2) e™(s+1)(s+2)|

foreachl € [hy, hy].

(2.2)
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Proof. Using Lemma 2.1 and since v’ is exponentially s-convex, we have

1 &
v(l) - f v (1)dt
O | Y0
I—h)? (! hy =12 (!
< ( 1) f 7|V (1 + (1 — T)hy))|dT + (= D) f 7|V (1 + (1 = T)hy)|dT
hy —hy Jo hy —hy Jo
(I—h)? fl v (D) IV (hl)l
< S 1 _ d
== Jo T|T al +(1-7)° T
_n2 ol
+ (h2 l) f - | \4 (l)l (1 _ )Sl \4 (hZ)l dr (23)
h2 — ]’11 0 €
M - h)? 1 1
< +
hy—hy |e®(s+2) e™(s+1)(s+2)
M(hy — 1) 1 N 1
hy —hy |e®(s+2) e2(s+1)(s+2)
M [ d-m)? (I-m)? (hy — 1) (hy = 1)?
T hy—hy led(s+2)  e(s+ D(s+2) e¥(s+2) e(s+ D(s+2)|
Since
: +1 1 ! 1
dr = d l-7)dr= ———.
I:T T2 M i:ﬂ VAT = T e+
This completes the proof. O

Remark 2.1. In Theorem 2.1, by letting a = 0, we get inequality 2.1 of Theorem 2 in [1].

Corollary 2.1. Under the similar considerations of Theorem 2.1, by taking s = 1, we get

1 o
Y (1)dt
hZ_hl\Ll )

< M [(-m)? (-m)? (hh=-D* (=17
T hy—h;| 3ev 6eMm 3eo! 6e?h2 |’

v () -

(2.4)

Remark 2.2. In Corollary 2.1, by letting a = 0, we get inequality (1.1).

Theorem 2.2. Let v : ‘H — R be a differentiable mapping on H° such that V' € [hy, h,] for hy,h, € H
with hy < hy. If | V' |1 is exponentially s-convex in the second sense on [hy, hy] for some s € (0, 1], p,
qg>1, é + é =land| V' (D)l £ M, | € [hy, hy], then the following inequality holds:

1 h2
Y (t)dt
hy — hy »f};

] m (l_hl)z( T ); (2.5)
" (hy—h)(1+p)r 5+ Del T (5 + Do .

R BRY
+(h2 l) ((S+ l)eal + (S+ 1)e0‘h2) :|9

v(l) -

foreachl € [hy, hy].
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Proof. Let p > 1. From Lemma 2.1 and using Holder’s inequality, we obtain

1 2
v(l) - f v (t)dt
hy —hy Jy,
1—h 2 1 hy — 1 2 1
(= h) j‘ﬂv%ﬁ+(b—ﬂmmh+(2 ) j‘ﬂv%ﬂ+ﬂ—1mgur
hy —hy Jo hy —hy Jo 26)
1 1 .
(I=h)*( " r, ‘
< ™"dr | V' (tl+ (1 — )ly)|%dT
hy —hy \Jo 0
1 1
hy =12 ( (! (! ’
y b (f TpdT) (f |V (el + (1 - T)h2)|da) :
hy —hy \Uo 0
Since | v’ |7 is exponentially s-convex in the second sense and | v’ (I)] < M, then we have
1 1
’ l q ’ h q
[1vara-onmar= [ o222 +U—TYDL%QL}h
0 0 er e
2.7)
M4 M1
< + ,
(s+ De (s + 1)ev
and
1 1
’ l q ’ h q
f |V (7] + (1 = T)hy)|%dT = f TS—| M (l)l +(1- 7')5—| ! (h2)| ]d‘[’
0 0 @ evn (2 8)
M1 M1 '
< + .
(s+ De (s + 1)ev
Hence using (2.7) and (2.8) in (2.6), we get (2.5) O
Remark 2.3. In Theorem 2.2, by letting a = 0, we get inequality 2.2 of Theorem 3 in [1].
Corollary 2.2. Under the assumptions of Theorem 2.2, by taking s = 1, we get
1 T
V() - — v (1)dt
hy —hy Jy, 29)
Y .

1
1 | Y 1 | Y
< )2 _ 2 ‘
(= h)(1 + p)7 (= (2ea’+26“’“) b (Ze“l+2e‘”'2) ]

Remark 2.4. In Corollary 2.2, by letting a = 0, we get result for convex function.

Theorem 2.3. Let v : H — R be a differentiable mapping on H° such that Y’ € [hy, h,y] for hy, h, € H
with hy < hy. If | Y' |7 is exponentially s-convex in second sense on [hy, h,] for some s € (0,1], g > 1
and | Y' ()| £ M, | € [hy, hy], then the following inequality holds:

1 o
v(l) — f Y (1)dt
0 A )

M 2 1 1 i
< m[(l— hy) ((s + 2)e?! + GG+ 2)6(””) (2.10)

ﬂ@d% : ! )W

G5+ 2)e7 (s D)(s £ 2)e
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for each l € [hy, hy)].

Proof. Let p > 1. From Lemma 2.1 and using power mean inequality, we obtain

1 o
v(l) — f V(t)dt
hy — hy Jy,
I-h)* (! hy =1 (!
< ( 1) f 7|V (rl+ (1 — 7)hy)|dT + (ha =) f 7| V' (tl+ (1 — 1)hy)ldt
hy —hy Jy hy —hy Jy 2.11)
_1 1 )
=m0 (N "
< Tdt 7|V (]l + (1 = )hy)|%dT
hy —hy \Jo 0
hy — 1 2 1 1_5 1 é
y P h (f TdT) (f | v (el + (1 - T)h2)|qd‘l’) :
hy —hy \Uo 0
Since | v’ |7 is exponentially s-convex in the second sense and | v’ ([)] < M, then we have
1 1
v (D V' (hy)|?
f 7V (rl+ (1 = v)hy)|%dT = f T Ts—l (51)| +(1 —7')S—| ((lhll)l ]dr
0 0 ¢ (2.12)
M1 M1
< + ,
(s+2)e  (s+ 1)(s +2)e*™
and
! ! v’ (D)4 v’ ()|
f 7|V (1l + (1 = T)hy)|%dT = f T Tsl (1)| +(1- T)S—l (h2)| ]dT
0 0 et e (2.13)
M1 M1 '
< + .
(s +2)e*  (s+ 1)(s+2)e*
Hence using (2.12) and (2.13) in (2.11), we get (2.10) |
Remark 2.5. In Theorem 2.3, by letting a = 0, we get inequality (2.3) of Theorem 4 in [1].
Corollary 2.3. Under the assumptions of Theorem 2.3, by taking s = 1, we get
1 2
v(l) - f v (t)dt
hy = hy Jy,
(2.14)

1 1

M 1 1 \¢ 1 1 \¢
<— 7 Ni-m——) + -1 — '
} (hz—m)(z)l-;[( ) (3e“’+6e“hl) w=h (3e“’+6eah2) ]

Remark 2.6. In Corollary 2.3, by letting a = 0, we get result for convex function.

Remark 2.7. From previous inequalities, we can obtain several midpoint type inequalities by setting
[ = % However, the details are omitted for interested reader.

Theorem 2.4. Let v : H — R be a differentiable mapping on H° such that v’ € [hy, hy] for hy, hy, € H
with hy < hy. If | V' | is exponentially s-concave on [hy, h,], p, g > 1, 11—7 + é = 1, then the following
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inequality holds:

1 2

V() — f v (1)dt
hy — hy Jy,
s=1
27 [+h [+ h
< _{ (1 = hy)? v’( 2‘)+(h2—1)2 v(T2
(hy = h))(1 + p)»

for each l € [hy, hy)].

Proof. Let p > 1. From Lemma 2.1 and using Holder’s inequality, we obtain

1 h
v(l) — f Y ()dt
0 T ()

U= ) (hy = 1)
T o —h hy — hy

_ 2 1 % 1 é
< (I —hy) (f r”dr) (f [V (rl+ (1 —T)h1)|qd7')
hz - hl 0 0
12 1 % 1 é
, =D ( f Tpdf) ( f v (L + (1 —T)hz)lqdf) :
l’lz - h] 0 0

Since | v’ | is exponentially s-concave and from inequality (1.4), we have
, (l + hy )
\4
2
l+h
‘(5
2

Remark 2.8. If one takes | = % in (2.15) then one gets inequality (2.8) in [1].
Similarly, by letting s = 1 in (2.15) then one gets inequality (2.9) in [1].

1
f 7|V (1 + (1 = T)h))ldT +
0

q

b

1
f | V' (tl+ (1 = D)hy)%dr 2 27!
0

and
q

1
f |V (xl+ (1 = Dhy)|'dr > 257!
0

Using inequalities (2.18) and (2.17) in (2.16), we get (2.15).

3. Applications to special means

Consider some special means of two positive numbers hy, hy, hy < hy:

(1). The arithmetic mean
hi+h
Al h) = 2222,

(2). The Identric mean

1
, hhz Ty

I(/’ll,hz) — e (ﬁ) ) ]’ll * hz
hl, l’Ll = l’lz .

where hy, h, > 0.

1
f 7|V (1 + (1 — T)hy)|dT
0

(2.15)

(2.16)

(2.17)

(2.18)
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(3). The p-logarithmic mean

1
h127+1 _ h[1)+1 P
, peR\{-1,0}.

Foln-fo) = [(p + D0 — )

Proposition 3.1. Let 0 < h; < h, g > 1 and 0 < s < 1. Then we have

|A*(hy, hy) = Li(hy, hy)l

<L[(l— )2( L, 1 )é
= (hy = b)) V(s +2)e " (s + 1)(s + 2)en 3.1)

Lo 1 ;
t =D ((s+2)e“’ * (s + 1)(s+2)e“h2) ]

Proof. the result holds by letting [ = h1+h2 in (2.10) with exponentially s-convex function in second
sense Y : (0,00) =» R, v(/) = [* for all « S —-1. O

Proposition 3.2. Let0 < h; < h, g > 1 and 0 < s < 1. Then we have

[In A(hy, hy) — In1(hy, hy)|

M 1 1 7
< ———— |~y +
(hy — h1)(2)! [ (<S+2>e”’ (s+ 1><s+2)e‘*hl) (3.2)

Lo 1 i
* =D ((s+2)e“’ * (s + 1)(s+2)e“h2) ]

Proof. the result holds by letting [ = h‘+h2 in (2.10) with exponentially s-convex function in second
sense Y : (0,00) = R, v(I) = In(J) for all a<-—1. O

Remark 3.1. From Corollary 2.3 one can gets more applications to some special means for
exponentially convex functions.

4. Conclusion

From Corollaries 2.1, 2.2 and 2.3, we obtained new ostrowski’s type inequalities for exponentially
convex function. From Theorems 2.1, 2.2, 2.3 and 2.4, we obtained new ostrowski’s type inequalities
for exponentially s-convex function. Some applications are obtained from Propositions 3.1 and 3.2.
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