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1. Introduction

The Motzkin numbers M, enumerate various combinatorial objects. In 1977, Donaghey and
Shapiro [3] gave fourteen different manifestations of the Motzkin numbers M,. In particular, the
Motzkin numbers M,, give the numbers of paths from (0, 0) to (n,0) which never dip below the x-axis
y = 0 and are made up only of the steps (1,0), (1, 1), and (1, —1).

The first seven Motzkin numbers M, forO <n <6are 1,1,2,4,9,21,51. All the Motzkin numbers
M, can be generated by

M(x) = =

l-x—V1-2x-3x2 1 -
X _ X X _ :Zkak‘
2x 1—x+ V1—2X—3x2 k=0

In 2007, Mansour et al [12] introduced the (u,l,d)-Motzkin numbers mﬁ,”’l’d) and
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obtained [12, Theorem 2.1] that m“"? = 14D
L=l = A =D —4ud® O
Musax) = 2 = > m Oy, (1.1)
2udx HZ:;A
and i
125\ n\(udy/
o-r§
. ;Hl(j)(%) P 12
From (1.1) and (1.2), it is easy to see that m{"*" = m{""

In 2014, Sun [42] generalized the Motzkin numbers M,, to

Ln/2]

_ n n=2k p k
My(a,b)= )’ (2 k)Cka b (1.3)
k=0
for a, b € N in terms of the Catalan numbers
1 (2n
C, = 1.4
n+ 1( n ) 14
and established the generating function
1 —ax— (1 —ax? —4bx* _ 1

- Z M, b)x*,  (1.5)

Ma,b(-x) = -
2bx* 1—ax+ (1 —ax?-4bx>

where | 1] denotes the floor function defined by the largest integer less than or equal to 4 € R. Wang
and Zhang pointed out in [43] that

Mn(l’ 1) = Mn9 Mn(z’ 1) = Cn+l9 and Mn(3a 1) = Hn9 (16)

where H, denote the restricted hexagonal numbers described by Harary and Read [4].

For more information on many results, applications, and generalizations of the Motzkin numbers
M, please refer to the papers [3,9, 10, 42, 43] and closely related references therein. For more
information on many results, applications, and generalizations of the Catalan numbers C,, please refer
to the monograph [5], the newly published papers [11, 17,19, 26,27, 31, 36-38, 40, 41], the survey
articles [25,29], and closely related references therein.

Comparing (1.1) with (1.5) reveals that My(a, b) and m{“""

are equivalent to each other and satisfy
Mi(a,b) = m? = m"*D and  m""" = My(l, ud). (1.7)

Therefore, it suffices to consider generalized Motzkin numbers M;(a,b), rather than the

(u, 1, d)-Motzkin numbers m“*?", in this paper.

By the second relation in (1.7), one can reformulated the formula (1.2) as
Ln/2] . ;
1 (2j\(n\( b
Myab)=d' > —— (—) 1.8
(@b =a ;J‘H(j)(zj) & 49
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Substituting (1.4) into (1.3) recovers (1.8) once again.
In 2015, Wang and Zhang [43, Theorem 1] combinatorially obtained, among other things, the
recursive formula

M,.2(a,b) = aM,..\(a,b) + b Z M(a,b)M,—(a,b), n=>0. (1.9)
=0

It is not difficult to see that the function (1 — ax)* — 4bx?> = (a®> — 4b)x> — 2ax + 1 is nonnegative if
and only if

either b = 0 and x € R,
0ra2—4b:0,a¢0,andei,
ora’>—4b>0,b<0,and x € R,

2 1 1
- > <
ora 4b>0,b>0,andx_a_2\/5orx_(”z\/[;.

Consequently, the generating function M, ,(x) defined by (1.5) in [42] is defined for either b < 0 or
a>2vVb > 0.

In this paper, we will find two explicit formulas, which are different from (1.8), and recover the
recursive formula (1.9) for generalized Motzkin numbers M, (a, b). Consequently, we will derive two
explicit formula and a recursive formula for the Motzkin numbers M,, the Catalan numbers C,, and
the restricted hexagonal numbers H,, respectively.

We can state our main results as the following three theorems.

Ll

Theorem 1. For n > 0, we can compute generalized Motzkin numbers M, (a, b) by

M,(a,b) =

1(4b_a2)n+2n+2( 22 )5(25_3)!!( t ) (1.10)

2b\  2a ~ 4b — a? L! n—-€+2)

where (Z ) = 0 for g > p > 0 and the double factorial of negative odd integers —(2n + 1) is

(=1)" 2"n!

—2n+ HN = ——— = (-1)" ,

=G+ DI = 50 = OV g0

Consequently, we can compute the Motzkin numbers M, and the restricted hexagonal numbers H,
respectively by

n=0,1,....

n 2

O 5 DY G R P .1

= B0 S L)

Theorem 2. For n > 0, we can compute generalized Motzkin numbers M,(a, b) by

and

M,(a,b) = -

(a-2Vb)"? & (25—3)!![2(n—£+2)—3]!!(a+2x/5)‘ (L13)

2b L 20! Re-c+21 \a—2+p

AIMS Mathematics Volume 5, Issue 2, 1333-1345.



1336

Consequently, we can compute the Motzkin numbers M, and the restricted hexagonal numbers H,
respectively by

3 (—1)"*! w3 140 2C=3)[2(n - € +2) - 3]!!
M, = 2 ;(_1) 3 o [2(n - €+ 2)]!!
and
H - 183 55(25—3)!! 2(n—-€+2)-3]!!

2470l Ra- L+ )
Theorem 3. For n > 0, generalized Motzkin numbers M,(a, b) satisfy
MO(a9b) = 1a Ml(aab) =a, (114)

and the recursive formula (1.9). Consequently, for n > 0, the Motzkin numbers M,, the Catalan

numbers C,, and the restricted hexagonal numbers H, meet the recursive formulas

Moz = My + ) MMy, (1.15)
=0
Criz = 2C,1 + ) CiCyr, (1.16)
=0
and .
Hyio = 3Hyi + ) HoHyo (1.17)
=0
respectively.
2. Lemmas

In order to prove the explicit formula (1.10), we need the following lemmas.

Lemma 1 ( [1, p. 40, Exercise 5)], [16, Section 2.2, p. 849], [22, p. 94], [34, Lemma 3], and [44,
Lemma 2.1]). Let u(x) and v(x) # 0 be two differentiable functions. Let U 1yx1(x) be an (n + 1) X 1
matrix whose elements uy(x) = u*V(x) for 1 <k <n+1, let Visyan(X) be an (n + 1) X n matrix
whose elements -
i—
Vi,j(x) = (j -1
0, i-j<0

)v(i_j)(x), i-j20

for1 <i<n+1land]1 < j<n, and let W, 1)xn+1)(X)| denote the determinant of the (n + 1) X (n + 1)
matrix
W(n+1)><(n+l)(x) = (U(n+l)><1(x) V(n+1)><n(-x))-

Then the nth derivative of the ratio “2 can be computed by
v(x)

W(n+1)><(n+1)(x)|
vn+1 (X)

d" [@

dx Lv(x)
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Lemma 2 ( [2, p. 134, Theorem A and p. 139, Theorem C]). The Faa di Bruno formula can be
described in terms of the Bell polynomials of the second kind

n
n! Xi\Ci
Boi(X1, X2y« ooy Xyogr1) = E _r | | (_)
=1

1<i<n—k+1 H” k+1€' 1!
£;€{0)UN
Siklig=n
S b=k
forn>k>0 by
d" (k) ’ ” (n—k+1)
” —[foh®)] = Zf (h@)Bx (W' (@), " (@), ..., h 1) (2.1)

k=0

forn > 0.

Lemma 3 ( [2, p. 135]). The Bell polynomials of the second kind B, ;. satisfy
B,i(abxi, ab*xy, . ..,ab" " x, 1) = d*B"B,x(x1, X2y - -y Xpgr1) (2.2)

forn>k>0.

Lemma 4. Forn > k > 0, we have

B,i(x,1,0,...,0) = ("2n il ( k)(n k) ko, (2.3)

More generally, forn > k > 0 and A, a € C, we have

n—k 1
Bnk( — A, (1= )1 =22),. ]—[(1—0)) - )Z( 1)()]_[(5 g (2.4)

or, equivalently,

(DF
B, ()1, (@ - .o (@) pgie1) = (- 1)()<af>n. (2.5)

Tk e
Proof. The formula (2.3) can be found in [24, Theorem 5.1], [35, p. 7, (19)], [39, Section 3], and [44,
Lemma 2.5]. The explicit formula (2.4) was first established in [30, Remark 1] and then was applied
in [18, Section 2], [20, First proof of Theorem 2], [21, Lemma 2.2], [24, Remark 6.1], [28, Lemma 4],

and [32, Lemma 2.6]. The formula (2.5) and the equivalence were presented in [33, Theorems 2.1
and 4.1]. O

Remark 1. In recent years, there have been some literature such as [6-8, 13—15,23,24, 30, 35,45-48]
devoting to deep investigation and extensive applications of the Bell polynomials of the second kind
B, x(x1, X2, ..., Xpgs1)- Specially, in the papers [13, 14], the generalized Dyck paths (namely, various
type of Motzkin paths) and the Bell polynomials were connected closely.
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3. Proofs of Theorems 1 and 3

We are now in a position to prove our main results.
Proof of Theorem 1. By virtue of (2.1), (2.2), and (2.3), we obtain for k > 0 that

k+2

[V =20 [ = 3 (5) 10— an? - 4be)
=0
X Biiao(=2[a + (4b — a*)x], 2(a* — 4b), 0, ...,0)
k+2

1
5 ;<5>€Bk+2,g(—2a, 2d? - 4b),0,...,0)
k+2 1 a
- —Y[2(a* - 4b)|'B (—,1,0,...,0)
;<2>g[ (@ = 4D) Bz 35— 22

_ 1 2 ek =€+2) (k+2 ¢ a  \Ak2
. <5>{,[2<a ~ 2—( ¢ )(k-m)(m)

x(x—-1)---(x—-n+1), n>1
<X>n:{

3.1
as x — 0, where

1, n=0

denotes the falling factorial of x € R.
Letting u(x) = 1 — ax — /(1 — ax)?> — 4bx* and v(x) = x* in Lemma 1 gives

ux (P 0 0 0 0
u(x) 2 (l))x (i)x2 0 0 0
W) 2(;) 2()x 0 0 0
e 1y | @ 0 2) 00 0
d;f = 55 23D W 00 0 0 0
) 00 2" )x (12) 0
u"Dx) 0 0 2 Z:é) Z(Z:é)x (Z:i)x2
) 0 0 0o 2(") 2 )
() o o 0 0 0
2(5)x () 0 0 0 0
2(;) 20)x () 0 0 0
1 (=1 o 0 2(}) 2()x 0 0 0
= 2p 2D (=1"u™(x) 0 01) 2((23)) 0 0 0
0 00 - 2R (Z 0
o 0 0 2() 20n)x (M)A
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1 u™(x)
2b X2

-n(n—1)
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2n 1 (—l)”‘1
x 2b x™n

x2

1 1 (-1)"?
22p x2n=1)

o

~— .
— o oS O

[\S)

SN —

=

SN—"

[\®}
ST

20 202
0 0
0 0
0 0
0 0
0 0

207) 2o
0 0
0 0
0 0
0 0
0 0

C1Lu"@)  20d" Map()  n(n = 1) d" M)

d"™' Mp(x)

T 2b X2
1 u™(x)
2b

o —nn-1)

dxn—Z
d"> M, (x) ]
dxn—2 '
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Therefore, by L’Hospital’s rule, we have

b M) {1[u<"><x> 5 4" M, (%) i 1)d" 2Mub(x)}
m-——--— =lim{— - 2nx——— — -1)—
x—0  dx" —olx2l 2b dxn-1
(1 U™ D) d"M,,;(x) A" M, (x)
_}f&{ﬁ[ e Mt D ]}
1 U™ (x) d"' M, ,(x) d" M, ,(x)
2Lo[ T e ]
1 (n+2) d" Ma
- 5[}338 - 2b(X) —n(n+3)Iim d)é:(X)]
which is equivalent to
_d"Map(x) 1 Cu™I(x) 1
1 li (n+2)
I T D ) B T2 T 2bnt Dt o) .
Considering
. d Ma b(x)
v n!
iy =g =)

making use of (3.1), and simplifying lead to the explicit formula (1.10).
Letting (a,b) = (1,1) and (a,b) = (3, 1) respectively in (1.10) and considering the three relations
in (1.6) derive (1.11) and (1.12) immediately. The proof of Theorem 1 is complete. O

Proof of Theorem 2. From (1.5), it is derived that

V(I = a)? —4bx? = 1 —ax-2b ) My(a, b)x**2,
k=0

This implies that

11
Mia.b) = = Gy o im] V1 - ax? b

(k+2)
] . k>0. (3.2)

It is easy to see that

1. whena? —4b > 0and x < min{

1 1 } _ 1
= we have
a+2\/l;’ a—Z\E a+2\/1;’

oot el

k+2 ® (k—=€+2)
w2 N ) Nemw )

k+2

o S i B

AIMS Mathematics Volume 5, Issue 2, 1333-1345.
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S e v e I e

k+2
= (k+2)!(a-2Vb)**

=0

2¢ -3 [2(k—€+2)—3]!!(a+2\/5)5
20! Rk-€+D1 \g_2+b
asx — 0;

2. when a* — 4b < 0 and
1

a+?2 \/E
we have

1 1

1 1 |- 1
a+2\/1;’a—2\/[;

a+2\/3’a—2\/3 a—Z\@,

= max{ } > x> min{

(k+2) 1 1 (k+2)
et [\/(‘”’ oy )|

_ m(\/ﬁ . \/x_ j)m

e 5o )

k+2

R oy e Lo S

S 0 ST R

- Vb —a)"' Vab—a i (k+ 2)(%’— 3)!!(a +2vb )f‘l/z(_l)k_f[z(k— £+2) -3
=0

¢ ] 2 \2vb-a 2h=t92

_ VB — o) ’;Z: (k ; 2) ¢ ;[3)! ! (Z i@z 1/55, )é’(_l)k_f [2(k — §k+€22) ~ 3N
~ (a— 2B izz (k ; 2)(25 ;{)3)!! [2(k - ;:[i) _ 3]”(2 3@){
= (k+2)l(a-2Vp)"? ’;: (252;)?!)!! [2& ‘ - ?2—)]?3 I (Z - z $ )f

as x — 0.

By virtue of (3.2), we obtain the formula (1.13) readily.
Letting (a,b) = (1, 1) and (a, b) = (3, 1) respectively in (1.13) and making use of the first and third
relations in (1.6) lead to (1.11) and (1.12) immediately. The proof of Theorem 2 is complete. O

Proof of Theorem 3. From (1.5), it is derived that

V(I —axp - 4bx> =1 -ax—2b )" Mi(a, b)x".

k=0

AIMS Mathematics Volume 5, Issue 2, 1333-1345.
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Squaring on both sides of the above equation gives
oo 2
(1 —ax)> —4bx* =1 —2ax + (a* — 4b)x* = [1 —ax—2b Z M (a, b)x’”z]
k=0

=1+ a*x* + 4b*

0 2 ) 0
Z M(a, b)xk+2] — Dax —4b Z M (a, b)x*** + dabx Z Mi(a, b)x**>
k=0 k=0

k=0

00 k
=1 = 2ax + a*x* + 4b*x* Z[Z M(a, b)Mk_g]xk
k=0 L¢=0

—4b ; Mi_»(a, b)x* + 4ab kz; Mi_s(a, b)x*

=1 —2ax +a*x* — 4b Z M, _»(a,b)x* + 4ab Z M,_3(a, b)x*

k=2 k=3
oo rk—4

+4b° Z[Z M(a, b)My—i-4(a, b)]xk
k=4 L (=0

= 1 — 2ax + a’x* — 4b[My(a, b)x* + M\(a, b)x’] + 4abMy(a, b)x’

o 00 oo rk—4
—4b ; My (a, b)x* + 4ab ; My_s(a, b)x* + 4b* Z[Z M(a, b)M,_;_4(a, b)]xk

k=41 (=0
=1 — 2ax + [a® — 4bMy(a, b)|x* + 4b[aM(a, b) — M,(a, b)]x°

© k-4
—4b Z[Mk_g(a, b) - CZMk_3 (a, b) -b Z Mg(a, b)Mk_g_4(Cl, b)]xk

k=4 =0

which means that
a* — 4b = a* — 4bMy(a,b), 4blaMy(a,b) — M,(a,b)] = 0,

and
k-4

My—(a,b) — aMy_s(a,b) — b Z M(a,b)My—¢-4(a,b) =0, k=4
=0
Consequently, the identities in (1.14) and the recursive formula (1.9) follow.
Taking (a,b) = (1, 1), (a,b) = (2,1), and (a,b) = (3, 1) respectively in (1.9) and considering the
three relations in (1.6) lead to (1.15), (1.16), and (1.17) immediately. The proof of Theorem 3 is
complete. O

4. Two more remarks

Remark 2. From the proof of Theorem 1, we can conclude that

,d" M, (x) d"' M, ,(x)
X +2n

} M) u()
dxn dxn-!

> 2.
dan-2 w0 =

d
+nn-1)

AIMS Mathematics Volume 5, Issue 2, 1333—-1345.
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This implies that the generating function M, ;(x) expressed in (1.5) is an explicit solution of the linear
ordinary differential equations

X fO) + 2nx ") + n(n = 1) f"72(x) = Frap(x)

for all n > 2, where, by (2.2) and (2.3) or (2.4),

F n;a,b ()C) =

nl(4b — a®)" \J(1 —ax)? —4bx? L 20 =3)1( €\ [a+ (4b - a®)x]*
2n+1p [a + (4b — a®)x]" ; £1(4b — a®)'\n - €] [(1 — ax)? — 4bx?]¢"

Remark 3. This paper is a continuation of the article [49] and a revised version of the preprint [28].
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