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1. Preliminaries

In this paper, a new class of functions, which is a special state of n-polynomial convexity, has been
defined and some algebraic properties of this class of function have been investigated. In addition,
some Hermite-Hadamard type inequalities were obtained.

A function f : I → R is said to be convex if the inequality

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y)

is valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then f is said to be concave on interval
I , ∅.

Convexity theory provides powerful principles and techniques to study a wide class of problems in
both pure and applied mathematics. See articles [1–5] and the references therein.

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020089


1305

Let f : I → R be a convex function. Then the following inequalities hold

f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x)dx ≤

f (a) + f (b)
2

(1.1)

for all a, b ∈ I with a < b. Both inequalities hold in the reversed direction if the function f is concave.
This double inequality is well known as the Hermite-Hadamard inequality [6]. Some refinements of
the Hermite-Hadamard inequality for convex functions have been obtained [7, 8]. Note that some of
the classical inequalities for means can be derived from Hermite-Hadamard integral inequalities for
appropriate particular selections of the mapping f .

Definition 1. [9] Let h : J → R be a non-negative function, h , 0. We say that f : I → R is an
h-convex function, or that f belongs to the class S X (h, I), if f is non-negative and for all x, y ∈ I,
α ∈ (0, 1) we have

f (αx + (1 − α)y) ≤ h(α) f (x) + h(1 − α) f (y) .

If this inequality is reversed, then f is said to be h-concave, i.e. f ∈ S V (h, I). It is clear that, if we
choose h(α) = α and h(α) = 1, then the h-convexity reduces to convexity and definition of P-function,
respectively.

Readers can look at [10, 11] for studies on h-convexity.
In [12], İşcan gave a refinement of the Hölder integral inequality as follows:

Theorem 1 (Hölder-İşcan integral inequality [12]). Let p > 1 and 1
p + 1

q = 1. If f and g are real
functions defined on interval [a, b] and if | f |p, |g|q are integrable functions on [a, b] then∫ b

a
| f (x)g(x)| dx ≤

1
b − a


(∫ b

a
(b − x) | f (x)|p dx

) 1
p
(∫ b

a
(b − x) |g(x)|q dx

) 1
q

+

(∫ b

a
(x − a) | f (x)|p dx

) 1
p
(∫ b

a
(x − a) |g(x)|q dx

) 1
q

 (1.2)

An refinement of power-mean integral inequality as a different version of the Hölder-İşcan integral
inequality can be given as follows:

Theorem 2 (Improved power-mean integral inequality [13]). Let q ≥ 1. If f and g are real functions
defined on interval [a, b] and if | f |, | f | |g|q are integrable functions on [a, b] then∫ b

a
| f (x)g(x)| dx ≤

1
b − a


(∫ b

a
(b − x) | f (x)| dx

)1− 1
q
(∫ b

a
(b − x) | f (x)| |g(x)|q dx

) 1
q

+

(∫ b

a
(x − a) | f (x)| dx

)1− 1
q
(∫ b

a
(x − a) | f (x)| |g(x)|q dx

) 1
q


The main purpose of this paper is to introduce the concept of n-polynomial convex functions and

establish some results connected with the right-hand side of new inequalities similar to the Hermite-
hadamard inequality for these classes of functions. Some applications to special means of positive real
numbers are also given.
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2. The definition of n-polynomial convex functions

In this section, we introduce a new concept, which is called n-polynomial convexity and we give by
setting some algebraic properties for the n-polynomial convex functions, as follows:

Definition 2. Let n ∈ N. A non-negative function f : I ⊂ R → R is called n-polynomial convex
function if for every x, y ∈ I and t ∈ [0, 1],

f (tx + (1 − t)y) ≤
1
n

n∑
s=1

[1 − (1 − t)s] f (x) +
1
n

n∑
s=1

[1 − ts] f (y). (2.1)

We will denote by POLC (I) the class of all n-polynomial convex functions on interval I.
We note that, every n-polynomial convex function is an h-convex function with the function h(t) =

1
n

∑n
s=1 [1 − (1 − t)s]. Therefore, if f , g ∈ POLC (I), then

i.) f + g ∈ POLC (I) and for c ∈ R (c ≥ 0) c f ∈ POLC (I) (see [9], Proposition 9).
ii.) if f and g be a similarly ordered functions on I , then f g ∈ POLC (I) .(see [9], Proposition 10).
Also, if f : I → J is a convex and g ∈ POLC (J) and nondecreasing, then g◦ f ∈ POLC (I) (see [9],

Theorem 15).

Remark 1. We especially note that; if we take n = 1 in the inequality (2.1), then the 1-polynomial
convexity reduces to the clasical convexity.

Remark 2. Let the function f : I ⊂ R→ [0,∞) be a 2-polynomial convex function if for every x, y ∈ I
and t ∈ [0, 1],

f (tx + (1 − t)y) ≤
3t − t2

2
f (x) +

2 − t − t2

2
f (y).

It is easily seen that

t ≤
3t − t2

2
and 1 − t ≤

2 − t − t2

2
for all t ∈ [0, 1] . This shows that every nonnegative convex function is also a 2-polynomial convex
function.

More generally, we can give the following remark together with proof:

Remark 3. Every nonnegative convex function is also an n-polynomial convex function. Indeed, this
case is clear from the following inequalities

t ≤
1
n

n∑
s=1

[1 − (1 − t)s] and 1 − t ≤
1
n

n∑
s=1

[1 − ts]

for all t ∈ [0, 1] and n ∈ N. Now, we will prove that the inequality

t ≤
1
n

n∑
s=1

[1 − (1 − t)s]

holds for all t ∈ [0, 1] and n ∈ N: The following inequality is well known as Bernoulli’s inequality in
mathematical analysis (1 − t)n

≥ 1 − nt for all t ∈ [0, 1] and n ∈ N. From the above inequality, we get

1
n

n∑
s=1

(1 − t)s−1 =
1 − (1 − t)s

nt
≤ 1
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and thus

n(1 − t)

−1 +
1
n

n∑
s=1

(1 − t)s−1

 = −n(1 − t) +

n∑
s=1

(1 − t)s ≤ 0

then we have

t ≤
1
n

n∑
s=1

[1 − (1 − t)s] .

The cases of t = 0 and t = 1 are clear.

Example 1. In case of n = 2, the function f : [0,∞)→ R, f (x) = x is a 2-polynomial convex.

Theorem 3. Let b > 0 and fα : [a, b] → R be an arbitrary family of n-polynomial convex functions
and let f (x) = supα fα(x). If J = {u ∈ [a, b] : f (u) < ∞} is nonempty, then J is an interval and f is an
n-polynomial convex function on J.

Proof. Let t ∈ [0, 1] and x, y ∈ J be arbitrary. Then

f (tx + (1 − t)y) = sup
α

fα (tx + (1 − t)y)

≤ sup
α

1
n

n∑
s=1

[1 − (1 − t)s] fα(x) +
1
n

n∑
s=1

[1 − ts] fα(y)


≤

1
n

n∑
s=1

[1 − (1 − t)s] sup
α

fα (x) +
1
n

n∑
s=1

[1 − ts] sup
α

fα (y)

=
1
n

n∑
s=1

[1 − (1 − t)s] f (x) +
1
n

n∑
s=1

[1 − ts] f (y)

< ∞.

This shows simultaneously that J is an interval, since it contains every point between any two of its
points, and that f is an n-polynomial convex function on J. This completes the proof of theorem. �

3. Hermite-Hadamard inequality for n-polynomial convex functions

The goal of this paper is to establish some inequalities of Hermite-Hadamard type for
n-polynomial convex functions. In this section, we will denote by L [a, b] the space of (Lebesgue)
integrable functions on [a, b] .

Theorem 4. Let f : [a, b] → R be an n-polynomial convex function. If a < b and f ∈ L [a, b], then
the following Hermite-Hadaamrd type inequalities hold:

1
2

( n
n + 2−n − 1

)
f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x)dx ≤

(
f (a) + f (b)

n

) n∑
s=1

s
s + 1

. (3.1)

Proof. From the propery of the n-polynomial convex function of f , we get

f
(
a + b

2

)
= f

(
[ta + (1 − t)b] + [(1 − t)a + tb]

2

)
AIMS Mathematics Volume 5, Issue 2, 1304–1318.
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= f
(
1
2

[ta + (1 − t)b] +
1
2

[(1 − t)a + tb]
)

≤
1
n

n∑
s=1

[
1 −

(
1 −

1
2

)s]
f (ta + (1 − t)b) +

1
n

n∑
s=1

[
1 −

(
1
2

)s]
f ((1 − t)a + tb)

=
1
n

n∑
s=1

[
1 −

(
1
2

)s] [
f (ta + (1 − t)b) + f ((1 − t)a + tb)

]
.

By taking integral in the last inequality with respect to t ∈ [0, 1], we deduce that

f
(
a + b

2

)
≤

1
n

n∑
s=1

[
1 −

(
1
2

)s] [∫ 1

0
f (ta + (1 − t)b) dt +

∫ 1

0
f ((1 − t)a + tb) dt

]
=

2
b − a

(
n + 2−n − 1

n

) ∫ b

a
f (x)dx.

By using the property of the n-polynomial convex function f , if the variable is changed as x = ta +

(1 − t)b, then

1
b − a

∫ b

a
f (x)du =

∫ 1

0
f (ta + (1 − t)b) dt

≤

∫ 1

0

1
n

n∑
s=1

[1 − (1 − t)s] f (a) +
1
n

n∑
s=1

[1 − ts] f (b)

 dt

=
f (a)

n

∫ 1

0

n∑
s=1

[1 − (1 − t)s] dt +
f (b)

n

∫ 1

0

n∑
s=1

[1 − ts] dt

=
f (a)
n + 1

n∑
s=1

∫ 1

0
[1 − (1 − t)s] dt +

f (b)
n

n∑
s=1

∫ 1

0
[1 − ts] dt

=
f (a)

n

n∑
s=1

s
s + 1

+
f (b)

n

n∑
s=1

s
s + 1

=

[
f (a) + f (b)

n

] n∑
s=1

s
s + 1

,

where ∫ 1

0
[1 − (1 − t)s] dt =

∫ 1

0
[1 − ts] =

s
s + 1

.

This completes the proof of theorem. �

Remark 4. In case of n = 1, the inequality (3.1) coincides with the the inequality (1.1)

4. New inequalities for n-polynomial convex functions

The main purpose of this section is to establish new estimates that refine Hermite-Hadamard
inequality for functions whose first derivative in absolute value, raised to a certain power which is
greater than one, respectively at least one, is n-polynomial convex function. Dragomir and
Agarwal [14] used the following lemma:

AIMS Mathematics Volume 5, Issue 2, 1304–1318.
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Lemma 1 ( [14]). Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
f ′ ∈ L [a, b], then the following identity holds:

f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx =

b − a
2

∫ 1

0
(1 − 2t) f ′ (ta + (1 − t)b) dt.

Theorem 5. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b and assume that
f ′ ∈ L [a, b]. If | f ′| is an n-polynomial convex function on interval [a, b], then the following inequality
holds for t ∈ [0, 1].∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
n

n∑
s=1


(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1

 A
(
| f ′ (a)| , | f ′ (b)|

)
. (4.1)

Proof. Using Lemma 1 and the inequality

| f ′ (ta + (1 − t)b)| ≤
1
n

n∑
s=1

[1 − (1 − t)s] | f ′(a)| +
1
n

n∑
s=1

[1 − ts] | f ′(b)| ,

we get ∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣b − a
2

∫ 1

0
(1 − 2t) f ′ (ta + (1 − t)b) dt

∣∣∣∣∣∣
≤

b − a
2

∫ 1

0
|1 − 2t|

1
n

n∑
s=1

[1 − (1 − t)s] | f ′(a)| +
1
n

n∑
s=1

[1 − ts] | f ′(b)|

 dt

≤
b − a

2n

| f ′ (a)|
∫ 1

0
|1 − 2t|

n∑
s=1

[1 − (1 − t)s] dt + | f ′ (b)|
∫ 1

0
|1 − 2t|

n∑
s=1

[1 − ts] dt


=

b − a
2n

| f ′ (a)|
n∑

s=1

∫ 1

0
|1 − 2t| [1 − (1 − t)s] dt + | f ′ (b)|

n∑
s=1

∫ 1

0
|1 − 2t| [1 − ts] dt


=

b − a
2n

| f ′ (a)|
n∑

s=1


(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1

 + | f ′ (b)|
n∑

s=1


(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1




=
b − a

n

n∑
s=1


(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1

 ( | f ′ (a)| + | f ′ (b)|
2

)

=
b − a

n

n∑
s=1


(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1

 A
(
| f ′ (a)| , | f ′ (b)|

)
where ∫ 1

0
|1 − 2t| [1 − (1 − t)s] dt =

∫ 1

0
|1 − 2t| [1 − ts] dt =

(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1

and A is the arithmetic mean. This completes the proof of theorem. �
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Corollary 1. If we take n = 1 in the inequality (4.1), we get the following inequality:∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
4

A
(
| f ′ (a)| , | f ′ (b)|

)
.

This inequality coincides with the inequality in [14].

Theorem 6. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b, q > 1, 1
p + 1

q = 1
and assume that f ′ ∈ L [a, b]. If | f ′|q is an n-polynomial convex function on interval [a, b], then the
following inequality holds for t ∈ [0, 1].∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
2

(
1

p + 1

) 1
p
2

n

n∑
s=1

s
s + 1


1
q

A
1
q
(
| f ′(a)|q , | f ′(b)|q

)
(4.2)

Proof. Using Lemma 1, Hölder’s integral inequality and the following inequality

| f ′ (ta + (1 − t)b)|q ≤
1
n

n∑
s=1

[1 − (1 − t)s] | f ′(a)|q +
1
n

n∑
s=1

[1 − ts] | f ′(b)|q

which is the n-polynomial convex function of | f ′|q, we get∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

b − a
2

∫ 1

0
|1 − 2t| | f ′ (ta + (1 − t)b)| dt

≤
b − a

2

(∫ 1

0
|1 − 2t|p dt

) 1
p
(∫ 1

0
| f ′ (ta + (1 − t)b)|q dt

) 1
q

≤
b − a

2

(
1

p + 1

) 1
p
 | f ′(a)|q

n

n∑
s=1

∫ 1

0
[1 − (1 − t)s] dt +

| f ′(b)|q

n

n∑
s=1

∫ 1

0
[1 − ts] dt


1
q

=
b − a

2

(
1

p + 1

) 1
p
| f ′(a)|q

1
n

n∑
s=1

s
s + 1

+ | f ′(b)|q
1
n

n∑
s=1

s
s + 1


1
q

=
b − a

2

(
1

p + 1

) 1
p
2
n

n∑
s=1

s
s + 1


1
q

A
1
q
(
| f ′(a)|q , | f ′(b)|q

)
where ∫ 1

0
|1 − 2t|p dt =

1
p + 1∫ 1

0
[1 − (1 − t)s] dt =

∫ 1

0
[1 − ts] dt =

s
s + 1

and A is the arithmetic mean. This completes the proof of theorem. �
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Corollary 2. If we take n = 1 in the inequality (4.2), we get the following inequality:∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
2

(
1

p + 1

) 1
p

A
1
q
(
| f ′(a)|q , | f ′(b)|q

)
.

This inequality coincides with the inequality in [14].

Theorem 7. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b, q ≥ 1, and assume
that f ′ ∈ L [a, b]. If | f ′|q is an n-polynomial convex function on the interval [a, b], then the following
inequality holds for t ∈ [0, 1].∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ (4.3)

≤
b − a

2

(
1
2

)1− 2
q
1
n

n∑
s=1

(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1


1
q

A
1
q
(
| f ′ (a)|q , | f ′ (b)|q

)
.

Proof. Assume first that q > 1. From Lemma 1, Hölder integral inequality and the property of the
n-polynomial convex function of | f ′|q, we obtain∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
2

∫ 1

0
|1 − 2t| | f ′ (ta + (1 − t)b)| dt

≤
b − a

2

(∫ 1

0
|1 − 2t| dt

)1− 1
q
(∫ 1

0
|1 − 2t| | f ′ (ta + (1 − t)b)|q dt

) 1
q

≤
b − a

2

(
1
2

)1− 1
q
∫ 1

0
|1 − 2t|

1
n

n∑
s=1

[1 − (1 − t)s] | f ′(a)|q

+
1
n

n∑
s=1

[1 − ts] | f ′(b)|q dt


1
q

=
b − a

2

(
1
2

)1− 1
q
 | f ′ (a)|q

n

n∑
s=1

∫ 1

0
|1 − 2t| [1 − (1 − t)s] dt

+
| f ′ (b)|q

n

n∑
s=1

∫ 1

0
|1 − 2t| [1 − ts] dt


1
q

=
b − a

2

(
1
2

)1− 1
q
 | f ′ (a)|q

n

n∑
s=1

(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1

+
| f ′ (b)|q

n

n∑
s=1

(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1


1
q

=
b − a

2

(
1
2

)1− 2
q
1

n

n∑
s=1

(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1


1
q

A
1
q
(
| f ′ (a)|q , | f ′ (b)|q

)
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1312

where ∫ 1

0
|1 − 2t|dt =

1
2∫ 1

0
|1 − 2t| [1 − (1 − t)s] dt =

∫ 1

0
|1 − 2t| [1 − (1 − t)s] dt =

(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1 .

For q = 1 we use the estimates from the proof of Theorem 5, which also follow step by step the
above estimates. This completes the proof of theorem. �

Corollary 3. Under the assumption of Theorem 7 with q = 1, we get the conclusion of Theorem 5.

Corollary 4. If we take n = 1 in the inequality (4.3), we get the following inequality:∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
4

A
1
q
(
| f ′ (a)|q , | f ′ (b)|q

)
.

If we take q = 1 in the above inequality, then obtained inequality coincides with the inequality in [14].

Now, we will prove the Theorem 6 by using Hölder-İşcan integral inequality. Then we will show that
the result we have obtained in this theorem gives a better approach than that obtained in the Theorem
6.

Theorem 8. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b, q > 1, 1
p + 1

q = 1
and assume that f ′ ∈ L [a, b]. If | f ′|q is an n-polynomial convex function on interval [a, b], then the
following inequality holds for t ∈ [0, 1].∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ (4.4)

≤
b − a

2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

s
2(s + 2)

+
| f ′(b)|q

n

n∑
s=1

s(s + 3)
2(s + 1)(s + 2)


1
q

+
b − a

2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

s(s + 3)
2(s + 1)(s + 2)

+
| f ′(b)|q

n

n∑
s=1

s
2(s + 2)


1
q

.

Proof. Using Lemma 1, Hölder-İşcan integral inequality and the following inequality

| f ′ (ta + (1 − t)b)|q ≤
1
n

n∑
s=1

[1 − (1 − t)s] | f ′(a)|q +
1
n

n∑
s=1

[1 − ts] | f ′(b)|q

which is the n-polynomial convex function of | f ′|q, we get∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

b − a
2

∫ 1

0
|1 − 2t| | f ′ (ta + (1 − t)b)| dt
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≤
b − a

2

(∫ 1

0
(1 − t) |1 − 2t|p dt

) 1
p
(∫ 1

0
(1 − t) | f ′ (ta + (1 − t)b)|q dt

) 1
q

+
b − a

2

(∫ 1

0
t |1 − 2t|p dt

) 1
p
(∫ 1

0
t | f ′ (ta + (1 − t)b)|q dt

) 1
q

≤
b − a

2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

∫ 1

0
(1 − t) [1 − (1 − t)s] dt

+
| f ′(b)|q

n

n∑
s=1

∫ 1

0
(1 − t) [1 − ts] dt


1
q

+
b − a

2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

∫ 1

0
t [1 − (1 − t)s] dt

+
| f ′(b)|q

n

n∑
s=1

∫ 1

0
t [1 − ts] dt


1
q

=
b − a

2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

s
2(s + 2)

+
| f ′(b)|q

n

n∑
s=1

s(s + 3)
2(s + 1)(s + 2)


1
q

+
b − a

2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

s(s + 3)
2(s + 1)(s + 2)

+
| f ′(b)|q

n

n∑
s=1

s
2(s + 2)


1
q

where ∫ 1

0
(1 − t) |1 − 2t|p dt =

∫ 1

0
t |1 − 2t|p dt =

1
2 (p + 1)

,∫ 1

0
(1 − t) [1 − (1 − t)s] dt =

∫ 1

0
t [1 − ts] dt =

s
2(s + 2)

,∫ 1

0
(1 − t) [1 − ts] dt =

∫ 1

0
t [1 − (1 − t)s] dt =

s(s + 3)
2(s + 1)(s + 2)

This completes the proof of theorem. �

Corollary 5. If we take n = 1 in the inequality (4.4), we get the following inequality:∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

b − a
4

(
1

p + 1

) 1
p
( | f ′(a)|q + 2 | f ′(b)|q

3

) 1
q

+

(
2 | f ′(a)|q + | f ′(b)|q

3

) 1
q
 .

This inequality coincides with the inequality of Theorem 3.2 in [12].

Remark 5. The inequality (4.4) gives better results than the inequality (4.2). Let us show that

b − a
2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

s
2(s + 2)

+
| f ′(b)|q

n

n∑
s=1

s(s + 3)
2(s + 1)(s + 2)


1
q
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+
b − a

2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

s(s + 3)
2(s + 1)(s + 2)

+
| f ′(b)|q

n

n∑
s=1

s
2(s + 2)


1
q

≤
b − a

2

(
1

p + 1

) 1
p
2
n

n∑
s=1

s
s + 1


1
q

A
1
q
(
| f ′(a)|q , | f ′(b)|q

)
Using concavity of the function h : [0,∞)→ R, h(x) = xλ, 0 < λ ≤ 1 by sample calculation we get

b − a
2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

s
2(s + 2)

+
| f ′(b)|q

n

n∑
s=1

s(s + 3)
2(s + 1)(s + 2)


1
q

+
b − a

2

(
1

2 (p + 1)

) 1
p
 | f ′(a)|q

n

n∑
s=1

s(s + 3)
2(s + 1)(s + 2)

+
| f ′(b)|q

n

n∑
s=1

s
2(s + 2)


1
q

≤
b − a

2

(
1

2 (p + 1)

) 1
p

2

1
2
| f ′(a)|q

n

n∑
s=1

s
s + 1

+
1
2
| f ′(b)|q

n

n∑
s=1

s
s + 1


1
q

=
b − a

2
2

1
q

(
1

p + 1

) 1
p
1
n

n∑
s=1

s
s + 1


1
q

A
1
q
(
| f ′ (a)|q , | f ′ (a)|q

)
which is the required.

Theorem 9. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b, q ≥ 1, and assume
that f ′ ∈ L [a, b]. If | f ′|q is an n-polynomial convex function on the interval [a, b], then the following
inequality holds for t ∈ [0, 1].∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
2

(
1
2

)2− 2
q
 | f ′(a)|q

n

n∑
s=1

K1(s) +
| f ′(b)|q

n

n∑
s=1

K2(s)


1
q

+
b − a

2

(
1
2

)2− 2
q
 | f ′(a)|q

n

n∑
s=1

K2(s) +
| f ′(b)|q

n

n∑
s=1

K1(s)


1
q

.(4.5)

where

K1(s) : =

∫ 1

0
(1 − t) |1 − 2t| [1 − (1 − t)s] dt =

∫ 1

0
t |1 − 2t| [1 − ts] dt

=

(
s2 + s + 2

)
2s − 2

2s+2(s + 2)(s + 3)
,

K2(s) : =

∫ 1

0
t |1 − 2t| [1 − (1 − t)s] dt =

∫ 1

0
(1 − t) |1 − 2t| [1 − ts] dt

=
(s + 5)

[(
s2 + s + 2

)
2s − 2

]
2s+2(s + 1)(s + 2)(s + 3)

.

Proof. Assume first that q > 1. From Lemma 1, improved power-mean integral inequality and the
property of the n-polynomial convex function of | f ′|q, we obtain∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
2

∫ 1

0
|1 − 2t| | f ′ (ta + (1 − t)b)| dt
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≤
b − a

2

(∫ 1

0
(1 − t) |1 − 2t| dt

)1− 1
q
(∫ 1

0
(1 − t) |1 − 2t| | f ′ (ta + (1 − t)b)|q dt

) 1
q

+
b − a

2

(∫ 1

0
t |1 − 2t| dt

)1− 1
q
(∫ 1

0
t |1 − 2t| | f ′ (ta + (1 − t)b)|q dt

) 1
q

≤
b − a

2

(
1
4

)1− 1
q
 | f ′(a)|q

n

n∑
s=1

∫ 1

0
(1 − t) |1 − 2t| [1 − (1 − t)s] dt

+
| f ′(b)|q

n

n∑
s=1

∫ 1

0
(1 − t) |1 − 2t| [1 − ts] dt


1
q

+
b − a

2

(
1
4

)1− 1
q
 | f ′(a)|q

n

n∑
s=1

∫ 1

0
t |1 − 2t| [1 − (1 − t)s] dt

+
| f ′(b)|q

n

n∑
s=1

∫ 1

0
t |1 − 2t| [1 − ts] dt


1
q

=
b − a

2

(
1
2

)2− 2
q
 | f ′(a)|q

n

n∑
s=1

K1(s) +
| f ′(b)|q

n

n∑
s=1

K2(s)


1
q

+
b − a

2

(
1
2

)2− 2
q
 | f ′(a)|q

n

n∑
s=1

K2(s) +
| f ′(b)|q

n

n∑
s=1

K1(s)


1
q

where ∫ 1

0
(1 − t) |1 − 2t| dt =

∫ 1

0
t |1 − 2t| dt =

1
4
.

For q = 1 we use the estimates from the proof of Theorem 5, which also follow step by step the above
estimates. This completes the proof of theorem. �

Corollary 6. If we take n = 1 in the inequality (4.5), we get the following inequality:∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ b − a
8

( | f ′(a)|q

4
+

3 | f ′(b)|q

4

) 1
q

+

(
3 | f ′(a)|q

4
+
| f ′(b)|q

4

) 1
q
 .

Remark 6. The inequality (4.5) gives better result than the inequality (4.3). Let us show that

b − a
2

(
1
2

)2− 2
q
 | f ′(a)|q

n

n∑
s=1

K1(s) +
| f ′(b)|q

n

n∑
s=1

K2(s)


1
q

+
b − a

2

(
1
2

)2− 2
q
 | f ′(a)|q

n

n∑
s=1

K2(s) +
| f ′(b)|q

n

n∑
s=1

K1(s)


1
q

≤
b − a

2

(
1
2

)1− 2
q
1
n

n∑
s=1

(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1


1
q

A
1
q
(
| f ′ (a)|q , | f ′ (b)|q

)
.
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If we use the concavity of the function h : [0,∞)→ R, h(x) = xλ, 0 < λ ≤ 1, we get

b − a
2

(
1
2

)2− 2
q
 | f ′(a)|q

n

n∑
s=1

K1(s) +
| f ′(b)|q

n

n∑
s=1

K2(s)


1
q

+
b − a

2

(
1
2

)2− 2
q
 | f ′(a)|q

n

n∑
s=1

K2(s) +
| f ′(b)|q

n

n∑
s=1

K1(s)


1
q

≤
b − a

2

(
1
2

)1− 2
q
1
n

n∑
s=1

[K1(s) + K2(s)]


1
q

A
1
q
(
| f ′ (a)|q , | f ′ (b)|q

)
,

where

K1(s) + K2(s) =

(
s2 + s + 2

)
2s − 2

(s + 1)(s + 2)2s+1

which completes the proof of remark.

5. Applications for special means

Throughout this section, for shortness, the following notations will be used for special means of
two nonnegative numbers a, b with b > a:

1. The arithmetic mean
A := A(a, b) =

a + b
2

, a, b ≥ 0,

2. The geometric mean
G := G(a, b) =

√
ab, a, b ≥ 0

3. The harmonic mean
H := H(a, b) =

2ab
a + b

, a, b > 0,

4. The logarithmic mean

L := L(a, b) =

{ b−a
ln b−ln a , a , b

a, a = b
; a, b > 0

5. The p-logaritmic mean

Lp := Lp(a, b) =


(

bp+1−ap+1

(p+1)(b−a)

) 1
p
, a , b, p ∈ R\ {−1, 0}

a, a = b
; a, b > 0.

6.The identric mean

I := I(a, b) =
1
e

(
bb

aa

) 1
b−a

, a, b > 0,

These means are often used in numerical approximation and in other areas. However, the following
simple relationships are known in the literature: H ≤ G ≤ L ≤ I ≤ A. It is also known that Lp is
monotonically increasing over p ∈ R, denoting L0 = I and L−1 = L.
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Proposition 1. Let a, b ∈ [0,∞) with a < b and n ∈ (−∞, 0) ∪ [1,∞) \ {−1}. Then, the following
inequalities are obtained:

1
2

( n
n + 2−n − 1

)
An(a, b) ≤ Ln

n(a, b) ≤ A(an, bn)
2
n

n∑
s=1

s
s + 1

.

Proof. The assertion follows from the inequalities (3.1) for the function f (x) = xn, x ∈ [0,∞). �

Proposition 2. Let a, b ∈ (0,∞) with a < b . Then, the following inequalities are obtained:

1
2

( n
n + 2−n − 1

)
A−1(a, b) ≤ L−1(a, b) ≤

2
n

H−1(a, b)
n∑

s=1

s
s + 1

.

Proof. The assertion follows from (3.1) for the function f (x) = x−1, x ∈ (0,∞). �

Proposition 3. Let a, b ∈ (0, 1] with a < b. Then, the following inequalities are obtained:

1
2

( n
n + 2−n − 1

)
ln G ≤ ln I ≤

ln A
n

n∑
s=1

s
s + 1

.

Proof. The assertion follows from the inequalities (3.1) for the function

f (x) = − ln x, x ∈ (0, 1] .

�

6. Conclusion

We established some refinements of the Hermite-Hadamard inequality for functions whose first
derivative in absolute value, raised to a certain power which is greater than one, respectively at least
one, is n-polynomial convexity. Similar method can be applied to the different type of convex functions.
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