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1. Introduction

In this paper, Euler numbers E, are defined by the generating function

1 1
cosh ¢ :ZE"E (1.

One of the different definitions is

(seee.g. [1]). Here, E;, are sometimes called the zig numbers or secant numbers. There have been many
generalizations of Euler numbers from the different view points. For example, one kind of poly-Euler
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numbers is a typical generalization, in the aspect of L-functions ( [2—4]). Other generalizations can be
found in [5, 6] and the reference therein.

Bernoulli numbers and Cauchy numbers also have many generalizations. Universal Bernoulli
numbers were studied in [7, 8], and particularly, some universal Kummer congruences were
established in [7, 8]. In this paper, we focus on the generalizations based upon hypergeometric
functions. For N > 1, define hypergeometric Bernoulli numbers By, (see [9—11]) by

1 tN/N! -
- ZBNn
IF(GN+ 10 ot = SN /!

n=0

where

o N @
1Fi(a;b;2) = nZ:(; B nl

is the confluent hypergeometric function with (x)” = x(x + 1)---(x +n—1) (n > 1) and (x)© = 1.
When N =1, B, = By, are classical Bernoulli numbers defined by

(59

eft—l :ZBH%'

n=0

In addition, define hypergeometric Cauchy numbers cy, (see [12]) by

1 (-DV'V/N i
= CNn

2FI(LNSN + 150 log(1+ 1) — SN (= 1y-1m/n - &

where

m (p)m "
2Fi(a,bic;2) = Z (a)(c)((n)) n

is the Gauss hypergeometric function. When N = 1, ¢, = ¢, are classical Cauchy numbers defined by

t t"
log(1+1) Z:;CE

Some of the similar generalizations can be found in [13] (see also references therein), but their
generating functions are not related to hypergeometric functions. There are several advantages for
these so-called hypergeometric numbers. For example, as shown in Section 2, a naturally generalized
expression is possible for hypergeometric numbers, but not for poly numbers like poly-Bernoulli or
poly-Cauchy numbers, which are differently directed generalized Bernoulli or Cauchy numbers.
Recently, poly-Euler numbers [4] are proposed and studied as one kind of poly-numbers. On the
contrary, in this paper, we consider a generalization for Euler numbers by using hypergeometric
functions. Then we study their characteristic or combinatorial properties.

For N > 0 define hypergeometric Euler numbers Ey, (n =0,1,2,...) by

1 - "
=Y Expg—, 1.2
F2(1;N + 1,2N + 1)/2;2/4) ZO M) 12)
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where | F;(a; b, c; ) s the hypergeometric function defined by

(a)(n) Zn
1Fa(a: b, c;2) = Z (bYW(c)® !

It is seen that

S A S el (@Y

— 2n)! ~ (2N)! 4 (2n+2N)! n!
N 2N +1 7
= F>(1; N + 1, =), 1.3
am! 2 7 4) (1.3)

When N = 0, then E, = E,, are classical Euler numbers defined in (1.1). In [14], the truncated
Euler polynomial E,, ,(x) is introduced as a generalization of the classical Euler polynomial E,(x). The
concept is similar but without hypergeometric functions.

We list the numbers Ey,, for 0 < N < 6 and 0 < n < 12 in Table 1 in Appendix. From (1.3) we see
that Ey, = 0 if n 1s odd. Similarly to poly-Euler numbers ( [2—4]), hypergeometric Euler numbers are
rational numbers, though the classical Euler numbers are integers.

From (1.2) and (1.3), we have

cosht —

tZN t2n

- S
QN)! (; (2n)!](; ENE]
00 1+(-1)" n 00 n
_ v T2 L
- (Z (n+ 2N)!)(Z EN’”n!]
1+(=D" l)"’ EN'
(Z AN+ =Dl 7 Jt

S+ (=) o
QN +n—plit ™ T

Mx

Hence, for n > 1, we have

Thus, we have the following proposition. Note that Ey, = O when #n is odd.

Proposition 1.
n/2

1
——FEN2i =0 (n>2iseven)
; (2N + n - 2i)!(20)!

and EN,() =1

By using the identity in Proposition 1 or the identity

n/2—1
Enoi

Ena = —ni(2N)! ; ON + 1201201 (14

we can obtain the values of Ey,, (n = 0,2,4,...). We record the first few values of Ey ,:

2

o —
NTTON+T DN +2)°
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2-41(4N +5)
Eyns = 5 5 ,
(2N + 1)2(2N + 2)2(2N + 3)2N + 4)
o 4-6!(8N3 - 2N? — 65N — 61)
N6 T ON + 132N + 232N + 3)(2N + (2N + 5)2N + 6)
16 - 8!
Eng

T (2N + 1*(2N + 2)*2N + 32(2N + 422N + 6)2N + T)2N + 8)
X (16N® — 44N3 — 516N* — 667N> + 1283N? + 3126N + 1662).

We have an explicit expression of Ey, for each even n:
Theorem 1. For N > 0 and n > 1 we have

i no (N
Eyan = Q@n)! ) (=1) (2N +2i)! - (2N + 2i)!

r=1 iy +etip=n
i} yenir=1

Proof. The proof is done by induction for n. If n = 1, then

QN)! 2
2N+2)! Q2N+ 1D2N+2)

Eyy =21(=1)

Assume that the result is valid up to n — 1. Then by Proposition 1

n—1
_ Enp;
Enan = ~EmiEN)! ; (2N + 21— 20)!(2i)!
n—1 1 i . ((ZN)')r
=~ Z‘ (2N + 2n - 2i)! ;(_1) A N +2ip)! - 2N +2i,)!
n—1 . . n—1 1 1
= —2n)!2N)! ;(—1) (@N)) Z N T30 Z N TGN T
Cemem :
(2N + 2n)!
n n—1 1
_ 1yl r—1
= —(2n)!(2N)! ;( 1Y~1(2N)!) i; N T
1
: Z (N +2i))! -~ (2N + 2i,)!
en'eN)!
(2N + 2n)!
n ) . 1
- (2n)! ;(—1) (@N)) Z N TGN T

i iy 21
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_ @n)!2N)!
(2N + 2n)!

=@t ) -1y
r=1

n—i=i,)

Z @eaNnyy
(2N +2i)!--- (2N +2i)! "

i|+t+ip=n

2. Determinant expressions of hypergeometric numbers

These hypergeometric numbers have one of the advantages that yield the natural extensions of
determinant expressions of the numbers, though many kinds of generalizations of the Euler numbers
have been considered by many authors.

By using Proposition 1 or the relation (1.4), we have a determinant expression of hypergeometric
Euler numbers ( [15]).

Proposition 2. The hypergeometric Euler numbers Ey,, (N > 0, n > 1) can be expressed as

(2N)!
(2N+2)! 1 0
(2N)!
Enpy = (=1)"(2n)!| @GN+
: . 1
eny! . _eN) (2N)!
(2N+2n)! 2N+4)!  (2N+2)!

In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli,
Cauchy and Euler numbers. When N = 0, the determinant in Proposition (2) is reduced to a famous
determinant expression of Euler numbers (cf. [16, p.52]):

1
L 1 0
1 1
pj 3 1
Ey), =(=-1)"Cnm)!| : ) i
1 1 L
(2n-2)! (2n-4)! 2!
I T U |
2n)! 2n-2)! 4! 2!

In [17], the hypergeometric Bernoulli numbers By, (N > 1, n > 1) can be expressed as

N!

N! N!
(N+2)! (N+D)!

N! N! N! 1
N+n=1)!  (N+n-2)! N+D)!

N! N! N! N!
N ! N+a=D! T N2 (N+D!
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When N = 1, we have a determinant expression of Bernoulli numbers ( [16, p.53]):

1
3 1 0
1 1
3! 2!
B, =(-D'n!| : : 1 (2.1)
L1 1
nl o =D)! 2!
1 1 1 1
D!l 3102
In [18], the hypergeometric Cauchy numbers cy,, (N > 1, n > 1) can be expressed as
N
N N
N+2 N+1
Cnp = n! : : 1
N N N
N+n-1  N+n-2 N+1
N N N N
N+n N+n-1 N+2 N+l
When N = 1, we have a determinant expression of Cauchy numbers ( [16, p.50]):
1
5 1 0
1 1
3 2
c,=n!| : : 1 (2.2)
1 1 1
i 7 1
A 1 L1
n+1 n 3 2

In [15], the complementary Euler numbers E, and their hypergeometric generalizations (defined
below) have also determinant expressions.

3. Hasse-Teichmiiller derivative

We define the Hasse-Teichmiiller derivative H™ of order n by
H(n) [ o Zm] _ Cm(m)Zm_n

for 3.0 r cwZ™ € F((2)), where R is an integer and ¢,, € FF for any m > R.
The Hasse-Teichmiiller derivatives satisfy the product rule [19], the quotient rule [20] and the chain
rule [21]. One of the product rules can be described as follows.

Lemma 1. For f; € F[[z]] (i=1,...,k) with k > 2 and for n > 1, we have

HO(fifo = > HO(f) - HO(f).

il 20
i +etig=n

The quotient rules can be described as follows.

AIMS Mathematics Volume 5, Issue 2, 1284—1303.
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Lemma 2. For f € F[[z]]\{0} and n > 1, we have

1 S (-1 . ,
H(n) (?) — (fk+)l Z H(ll)(f) . H(lk)(f) (3.1)
= N
- 1\ (-1 . _
) (Z: 1)(fk+)1 D, HOW---HYG). (3.2)
= e,

By using the Hasse-Teichmiiller derivative of order n, we shall obtain some explicit expressions of
the hypergeometric Euler numbers.

Another proof of Theorem 1. Put

IN+1 £
F:=F(1;N+1, ;—
1Fa( + > 4)
o @V an
oy 2N+2n)'

for simplicity. Note that

. o N 24\ 50
@ = AN LA v
HO(F)| _, = ; (2N + 2j)!( i )t J

Hence, by using Lemma 2 (3.1), we have

% = H® l
n! F

_J@N)Y/@2N +0)! ifiis even;
. o if i is odd.
-~

t=0
(1) l. i
| D, HOW) e BB,
k=1 =0 ipig>1
i +tig=n
n k
= et (2N +2i)!--- (2N +2ip)!

2(iy +-ig)=n

O

We can express the hypergeometric Euler numbers also in terms of the binomial coefficients. In

fact, by using Lemma 2 (3.2) instead of Lemma 2 (3.1) in the above proof, we obtain a little different
expression from one in Theorem 1.

Proposition 3. For N > 0 and evenn > 2,

& (@n)*
B = ;( K (k+ 1) i1;20 (2N +2ip)! -+ (2N +2i)!

iy +etip=n/2
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For example, when n = 4, we get
S5\ 1 S5\(2 1
g= (Ll ()5 + 2
5\(3 3 5\(4 6
- —+ — |+ — + —
4/\4! 212! 5/\4! 212!
=5,

S5\ 1 (S\,(2 1
=4!|- — 2= 4
Ea 4‘( (2)26! +(3)2 (6!2! +4!4!)

S\aaf 3 3 S5\.4 4 6
-{. 12 + +|_|2 +
4 612121 414121 5 61212121 41412121

1
10°

5\ 1 (5 ,(2 1

5 3 3 3 > 4 4 6
_(4)(4!) (8!4!4! ’ 6!6!4!)+(5)(4!) (8!4!4!4! ' 6!6!4!4!))

13
~ 1050

S\ 1[5\, (2 1
Baa =4 (_(2)6!1_0! ¥ (3)(6!) (10!6! " W)

5 3 3 5 4 6
- % N4

(4)(6') (10!6!6! " 8!8!6!)+(5)(6') (10!6!6!6! " 8!8!6!6!))
17

= 5880

4. Some hypergeometric Euler numbers
If N = 1, we have the following relation between hypergeometric Euler numbers and Bernoulli
numbers.

Theorem 2. Forn > 1 we have
Ei,=—-(n-1)B,.

Proof. The result is clear for n = 0,1 and odd numbers n. By using the following Lemma 3 and
Proposition 1, we get the result. m]

Lemma 3. Forn > 1 we have

o (@-DB |0 if n is even,
L (n—i+2)N! |=By/n! ifnisodd.
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Proof. Firstly,

)

n

(i—1)B; B - X - . x_’
(n—z+2)mxn_(Z(mz)z)[z(l DB’i!)

n=0 i=0 k=0 i=0
1 i xk+2 © X d i xi+]
== -2 > B—+— ) B;
e R
_et—1-x 2x +2x(ex—1)—xzex
X er—1 (e —1)2
efx+1-¢e9
(e =17
On the other hand,
1 iB x2n+1 1 d iB X" 3 B
- A 27~ 1 A~ n__, - X
2 LT on+ ) 2 dx(& e 0
1 d ( X 1+ x)
2 dx\er—1 2
_efx+1-¢Y)
GRS
Comparing the coefficients of x", we get the result. O

5. Sums of products of hypergeometric Euler numbers

It is known that
= (2n
E i = 0
2
with Eg = l,and Ey;.; =0 (i > 1).
First, let us consider the sums of products of hypergeometric Euler numbers:

= (2n
YN,z(n) = Z (zl.)EN,ZiEN,Zn—Zi-

i=0

It is clear that

i=0
if n is odd.
If N =0, then N
Yoo(n) = 2" (22’” ~ DBz n>0).
n+2
Indeed,

{Yoo(n)}nso = 1,-2,16,-272,7936,-353792,22368256, -1903757312, ... ..
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The numbers taking their absolute value are called the tangent numbers or the zag numbers ( [22,

A000182]). Thus, we also have

2n+2
( 1)]+1(k 2])2n+2
Yo2(”)—ZZ() TN

k=1 j=0

In other words, they appear as numerators in the Maclaurin series of tan x:

2n+1
tanx—Z( D Y0205~
Put
2N+1 7
F::1F2(1;N+1—+ 7
e,
- LI(2N +2n)!

for simplicity again. Then by
d Fe > (2n)(2N)!

i~ & QN+2n)

we have
IN+1 £

T2 4

k+1 1 7
2 2 4

with F () = F. Then, in general, we obtain for k = 1,2,...,2N

d
2NF +'f25'}7 2N - 1172(1 N, —— ).

For further simplicity, we put fork = 1,2,...,2N

k+2
Fon-iy =1F2(1; 5

b

d
kFon-y + 1 EF oN-k) = KF on-k+1) -

Proposition 4. For k =0,1,...,2N we have

k tl l
cosht = Z F( )dt’ (QN-k) -

i=0

Proof. For k = 0, we get

Assume that the result holds for some k > 0. Then by (5.2)

k
Z ()dl’ (N-k)

i=

AIMS Mathematics
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(5.2)
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k\ d t d
F —F
. dt’( @N-k-1) T o+ 1di Nk 1))

j dz i an‘ t di+1
. ( F(2N k— 1) F(ZN k— 1) _-F(ZN—k—l)

A

Il
M» HM» FM»
o o
~

~
~

dr k+1df k + 1dfit!
o (R\k+i+ 1 d kZH: fi- p d,-F
C4ini) k+1 anlen-en G-Di\i—1)ks1ar @+
’”f‘k+1)di
= i Fon-i-1) -
pr A AN

We introduce the complementary hypergeometric Euler numbers E, N DY

AV QN + 1! o~
J@N +1) Sz

sinht — YN 2/ 2n+ 1)) &

as an analogue of (1.2). When N = 0, En = E\o,n are the complementary Euler numbers defined by

n=0

as an analogue of (1.1). In [23], they are called weighted Bernoulli numbers, but this naming means
different in other literatures. Since

2N + 1 z‘2
Fr F>(I; N, ———;
> (2N - 1! _@N-D!
ey 2N +2n-1)!
and J g1
—F=-F——, 53
dt dt F (-3
by (5.1) we have
1 1 (1 t d1l
— === ———=. 5.4
F?2 F* (F 2thF) SA
Since
1 t2N—l

F* = @N- DIy, 2% 1/QN + 2n - 1)

(o)
— [n
= Z EN—l,nE
n=0 ’
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and
1 rdl « P 1
- - Eynp— — — Eyn,——
F 2NdtF Z:; N 2N; M= 1)1
i2N—n "
= Nn~ 4 »
s 2N !
we have
1 (1 t d1 oy —~ "\~ 2N -k
= —Z_|= Enim— Envi—
F*(F 2thF) [;} Nt m!)[kzo 2N N”‘k!)
= n)2N—k —~ "
= ENiEn-1pk— -
nZ:(;kzo (k 2N n!

Comparing the coefficients, we obtain a result about the sums of products.

Theorem 3. For N > 1 and n > 0,

n

n N (n\2N -k . —
Z(l.)EN,iEN,n_,- = Z(k) o EvaEn- o

i=0 k=0

Using (5.3) and (5.4) again, we have

111 r1d1
F3 F*\F2 2NFdtF

11 t d 1
C F\F2 ANdtF2)’

Since

F2  4NdrF? 2N n!

1 td1 °°4N—nz":n2N—k — "
F* 4ANdiF* 4 4N

= EniEN-1p-k— »
—\k

we have

S~ AN AN —m <K (m\2N — k — T
N Ev i~ —E S EiEN imt—
(, N=L i!)[ 4N kzo(k) N O NEEN=Lmek

m=0

& (n\(m\@AN —m)QN - k) . —~ — %
Z (m)(k) N2 EN,kEN—l,n—mEN—l,m—kH -

Comparing the coefficients, we get a result about the sums of products for trinomial coefficients.
Theorem 4. For N > 1 and n > 0,

n B < (n\(m\ (4N — m)2N — k) — —
Z ( . )EN,h EN,izEN,i3 - Z Z (m)(k) 8N2 EN,kEN—l,n—mEN—l,m—k .

i +ip+iz=n L, 12,13 m=0 k=0
i1,i9,i320
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Complementary hypergeometric Euler numbers

By using the similar methods in previous sections, the complementary hypergeometric Euler
numbers satisfy the recurrence relation for even n

or

n/2 =
Eya; B

£ (2N +n = 2i+ 1)!20)!

n/2—1 —
Enpi

En, = —-nlN + 1! :
N =N DY 2 N =20+ D)

By using the Hasse-Teichmiiller derivative or by proving by induction, we have

Theorem 5. For N > 0 and n > 1 we have

_ " (2N + DI
Ex,=n!) (-1
N =11 ;( DY (ON + 2i, + )l --- (2N + 2 + 1)

i g 21
i +tig=n/2

N, p(n ] (@N + 1))
‘”!;(_1)(k+1) 2 2N+ 20 + Dl 2N + 20 + D!

i] i 20
i) +tip=n/2

Some initial values of E, Na (n=0,2,4,...), we have

EN,Z

—_—

Eng

Eng

—_

Eng

Put

so that

Since

we have

AIMS Mathematics

2
(2N +2)(2N +3)’
~ 2-41(4N +7)
(2N +2)2(2N + 3)2(2N + 4)(2N + 5)”’
4-6!(8N> + 10N? — 61N — 93))
(2N +2)3(2N + 332N + 4)(2N + 52N + 6)2N +7)’
8- 8!

~ (2N 1 2)*(2N + 3)*(2N + 422N + 522N + T)(2N + 8)(2N + 9)

X (32N® + 8N° — 1132N* — 3538N° — 1063N? + 7280N + 6858).

o0

— QN+,
F=) """ 4
L4 (2N +2n+ 1))

S
(2N+1)F+IEF:(2N+1)F,

1 11 t d1
7 F\F 2N+1dtf
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a IN—k+1—~ ¢
Enm— A
[Z N )[ko IN+1 Mg

m=0

= 2N —k+1—~ "
Z ( ) 1 ENkENn-t7 -
n=0 k=0 n:

Hence, as an analogue of Theorem 3, we have the following.

Theorem 6. For N > 1 andn > 0,

(=~ — N (n\2N —k+ 1~
Z (l.)EN,iEN,n—i = Z ( k)WEN,kEN,n—k .

i=0 k=0

We then have
1 11 t d 1
7 F\F2 22N+ Ddtg2)’
Since
1 t AN —n+2 2N—k+1A "
i3 2(2N+1)dt e 422N +1) ¢ P T

we have the following result as an analogue of Theorem 4.
Theorem 7. For N > 1 andn > 0,

> |

i) +ip+iz=n
i14ip.i320

)ENzlEN leth =
l, l29 l3

- m(n)( )(4N m+2)2N —-k+1)~

m=0 k=0

2(2N+ 1)2 ENkENn mENm k -

One can continue to obtain the sum of four or more products, though the results seem to become

more complicated.

6. Applications by Trudi’s formula

We shall use Trudi’s formula to obtain different explicit expressions for the hypergeometric Euler

numbers Ey,.

Lemma 4 (Trudi’s formula [24,25]). For a positive integer m, we have

tr+- +tm) — (ttty)!

where ( PR

are the multinomial coefficients.

al a2 .« .. am
ap ap
t+---+1, P P
0 0 a a 1 +2t 4 +mty=m Ieeesim
0 0 apg ay
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This relation is known as Trudi’s formula [26, Vol.3, p.214], [25] and the case ay = 1 of this formula
is known as Brioschi’s formula [27], [26, Vol.3, pp.208-209].

In addition, there exists the following inversion formula (see, e.g. [24]), which is based upon the
relation:

D= abn -k =0 (n=1).

k=0
Lemma 5. If {a,},>0 is a sequence defined by ay = 1 and
R(1) 1 0 a; 1 0
= R(.Z) , then R(n) = afz
R(n) --- R(2) R(1) ¥ @
Moreover, if
1 0 1 0
a; 1 R(1) 1
A= _1 ) ] , then A = ( )
a, - a 1 R(n) --- R(1) 1

From Trudi’s formula, it is possible to give the combinatorial expression
fo++t
w= ) ( | n)(‘l)"_“_"'_I"R(l)’]R(Z)’Z .- R(n)".
H,..., I,
1 +2t++nt,=n

By applying these lemmata to Proposition 2, we obtain an explicit expression for the hypergeometric
Euler numbers Ey,,.

Theorem 8. For N > 0andn > 1,

Exai=(Qm)! ) (“+"'+fn)(_1)zl+-..+tn( (2N)! )1( 2N)! )Z(ﬂ)

! ! !
11+20+-+nt,=n UERERRY (2N +2)! 2N +4)! (2N +2m)!
Moreover,
E
B 0
E
(-D"@2N)! % . .
(2N + 2n)! : 1 ’
Evan . Ena Ena
@2n)! 41 2!
and |
1 0 1 0
_Ee onL
21 (2N+2)!
Eng _Ew (2N)! (2N)! 1
41 2! =| 2N+ (2N+2)!
CD'Enon Ena  _Enz (21.\/)! . (2N)! ent
@2n)! 4! 2! (2N+2n)! (2N+4)!  (2N+2)!
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When N = 0 in Theorem 8, we have a different expression for the classical Euler numbers E,,.
Corollary 1. Forn > 1

f++ 1, — 1\ 1)\" 1\
Exn=0Cm! ) (tl,...,t,, )(_1) (5) (4_!) "'((2;1)!) ‘

126+ +nt,=n

Moreover,
E
2—? 1 0
E
(-1n" 3 4—‘!‘ . .
@n)! 4 2

Similarly, by the results in [15], after applying Lemmata 4 and 5, we have a new expression of the
complementary hypergeometric Euler numbers Ey,.

Theorem 9. For N > 0andn > 1,

=)
EN,Zn
_ o) Z o+ +1, v Q2N+ D!\" (2N + 1)! fzm QN+ D! \"
i o\ het Q2N +3)!] 2N +5)! QN +2n+ 1))
Moreover, R
E
521 0
(-D)'QN+ D! B
CN+2n+D! | = . . 1|’
EN,Zn @ @
2n)! 4! 2!
and 1
1 0 1 0
_@ 1 (2N+1)! 1
2! 2N+3)!
Ena Ena 1 §2N+1§z @N+D)! 1
T T =1 (@N+5)! (2N+3)!
(_Dn'gmn Ena Ena @N+1)! (2N+'1)! @N+D!
! e g0 5 @N+2n+1)! N+5)  (N+3)!

When N = 0 in Theorem 9, we have a different expression for the original complementary Euler
numbers E,,.

Corollary 2. Forn > 1
= Ht- 41y v (LY 1) 1"
En: n)! —1)et [ — I )
w=Onl ) ) ( Hoeeosly )( ) (3!) 51 Qn+ 1)
H+20++nt,=n
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Moreover; R
E

2—!2 1 0
E.
AR

2n+1)! : 1

E2n é i

@2n)! 41 2!

7. Conclusions

There are more advantages and applications for so-called hypergeometric numbers. For example,
we can show the following continued fraction expansion of the generating function of hypergeometric

Euler numbers.
00 t" t2
> Eyat=1-
Tl (2N + D(2N +2)¢
2N+ 1DH(2N +2) + 1> —
(2N + 3)(2N + &)1

QN +5)2N +6) + 12 — .

2N +3)2N+4)+r -

When N = 0, we get a continued fraction expansion of the classical Euler numbers.

(o)

-
"n! " cosht

n=0

1=
127

3-472
5-6+t2—,‘

1-24¢ -
R

Similarly, one of the continued fraction expansions of the generating function of complementary
hypergeometric Euler numbers is given by
=) - ln t2
S Bl =i
el (2N +2)(2N + 3)¢?
2N +2)2N +3) + 1> —
(2N + 4)(2N + 5)7

2N +6)2N+T)+12 - .

2N +4)(2N +5) +* -

When N = 0, we get a continued fraction expansion of the complementary Euler numbers.
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However, so-called poly-numbers do not have such natural generalizations in continued fractions.
The more detailed and more general results including other hypergeometric numbers will be discussed
in other papers.

In addition, hypergeometric numbers can be discussed on the rational function fields. They will be
naturally generalized from Bernoullli-Carlitz, Cauchy-Carlitz or Euler-Carlitz numbers. Their details
and structures will be also studied in other papers (e.g., see [28,29]).
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Appendix
Table 1. The numbers Ey,, for0 <N <6and 0 <n < 14.
n 0 2 4 6 8 10
Eon 1 -1 5 -61 1385 -50521
E, 1 -1/6 1/10 -5/42 7/30 -15/22
E,, 1 -1/15 13/1050 —1/350 -31/173250 1343/750750
Ey, 1 —1/28  17/5880 -29/362208 —863/6420960 6499/131843712
Esp 1 —1/45 7/7425 53/2027025 —443/22052250 —10157/4873547250
Es, 1 -1/66 25/66066 47/2906904 —16945/5300012718 —475767/492312292472
Egp 1 -1/91 29/165620 1205/153728484 —2279/4467168888 —-6430761/25339270989032
12 14
2702765 —199360981
7601/2730 -91/6
—6137/2388750 3499/6693750
6997213/156894017280 —68936107/917226562560
558599021/126395447928750 39045649/62503243481250
71844089/268802511689712 1162911301/4483980359834976
—17675104079/4917799642149532320 837165624457/24588998210747661600
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