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1. Introduction and preliminaries

The classical definition of Gamma function Γ(=) is defined as follows:

Γ(=) =


∫ ∞

0
e−uu=−1du (<(=) > 0)

Γ(=+K)
(=)K

(= ∈ C \ Z−0 ; K ∈ N0),
(1.1)

where (=)K denotes the Pochhammer symbol defined (for =, K ∈ C) by

(=)K :=
Γ(= + K)

Γ(=)
=

1 (K = 0; = ∈ C \ {0})
=(= + 1) · · · (= + s − 1) (K = s ∈ N; = ∈ C),

(1.2)
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provided that the Gamma quotient exists.
The well known incomplete Gamma functions (IGFs) γ(=, x) and Γ(=, x) are defined as follows

γ(=, x) =

∫ x

0
u=−1e−udu (<(=) > 0; x ≥ 0), (1.3)

and

Γ(=, x) =

∫ ∞

x
u=−1e−udu (x ≥ 0; <(=) > 0 when x = 0), (1.4)

respectively, holds the subsequent result:

γ(=, x) + Γ(=, x) = Γ(=), (<(=) > 0). (1.5)

The gamma function Γ(=) and IGFs γ(=, x) and Γ(=, x), which is defined in (1.1), (1.3) and (1.4),
respectively, are play main role in the field of science and engineering (see, for example, [2–5]; see
also the recent papers [6–21]). Incomplete special functions thus obtained consisting of probability
theory has many potential applications which are also presented. We obtained the solution of non-
homogeneous heat conduction equation in terms of Incomplete I−function.

We now introduce the incomplete I−functions (Γ)Im,n
pi,qi,r(z) and (γ)Im,n

pi,qi,r(z) containing the IGFs γ(=, x)
and Γ(=, x) as follows:

(Γ)Im,n
p`,q`,r(z) = (Γ)Im,n

p`,q`,r

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 =
1

2πi

∫
L

K(ξ, x)z−ξdξ (1.6)

where

K(ξ, x) =

Γ(1 − a1 − A1ξ, x)
m∏

j=1
Γ(g j + G jξ)

n∏
j=2

Γ(1 − a j − A jξ)

r∑̀
=1

[
q∏̀

j=m+1
Γ(1 − g j` − G j`ξ)

p∏̀
j=n+1

Γ(a j` + A j`ξ)
] . (1.7)

and

(γ)Im,n
p`,q`,r(z) = (γ)Im,n

p`,q`,r

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 =
1

2πi

∫
L

L(ξ, x)z−ξdξ (1.8)

where

L(ξ, x) =

γ(1 − a1 − A1ξ, x)
m∏

j=1
Γ(g j + G jξ)

n∏
j=2

Γ(1 − a j − A jξ)

r∑̀
=1

[
q∏̀

j=m+1
Γ(1 − g j` − G j`ξ)

p∏̀
j=n+1

Γ(a j` + A j`ξ)
] . (1.9)

The incomplete I−functions (Γ)Im,n
p`,q`,r(z) and (γ)Im,n

p`,q`,r(z) in (1.6) and (1.8) exist for x ≥ 0 under the
following set of conditions stated.
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The Mellin Barnes contour integral L is extend from γ − i∞ to γ + i∞, γ ∈ R, and poles of the
gamma functions Γ(1 − a j − A jξ), j = 1, n do not exactly match with the poles of the gamma functions
Γ(g j + G jξ), j = 1,m. The parameters m, n, p`, q` are non negative integers satisfying 0 ≤ n ≤ p`,
0 ≤ m ≤ q` for i = 1, r. The parameters A j,G j, A j`,G j` are positive numbers and a j, g j, a j`, g j` are
complex. All poles of K(ξ, x) and L(ξ, x) are supposed to be simple, and the empty product is treated
as unity.

Hi > 0, | arg(z)| <
π

2
Hi i = 1, r (1.10)

Hi ≥ 0, | arg(z)| <
π

2
Hi and R(ζi) + 1 < 0 (1.11)

where

Hi =

n∑
j=1

A j +

m∑
j=1

G j −

pi∑
j=n+1

A ji −

qi∑
j=m+1

G ji, (1.12)

ζi =

m∑
j=1

g j −

n∑
j=1

a j +

qi∑
j=m+1

A ji −

pi∑
j=n+1

G ji +
1
2

(pi − qi) i = 1, r (1.13)

We are require the following results in the section 4:
(a) The orthogonal property of the Jacobi Polynomials [22, p.806, Eq (7.391.1)]∫ 1

−1
(1 − u)α(1 − u)βP(α,β)

w (u)P(α,β)
k (u)du = hwδwk, (R(α) > −1,R(β) > −1) (1.14)

where

hw =
2α+β+1Γ(α + w + 1)Γ(β + w + 1)

w!(α + β + 1 + 2w)Γ(α + β + 1 + w)
, (w = k).

and δwk is a Kronecker delta.
(b) The definite integral

∫ 1

−1
(1 − u)ρ(1 + u)βP(α,β)

w (u) (Γ)Im,n
p`,q`,r

z
(
1 − u

2

)σ ∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 du

= 2ρ+β+1 Γ(β + w + 1)
w!

(Γ)Im+1,n+1
p`+2,q`+2,r

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (−ρ, σ), (a j, A j)2,n, (a j`, A j`)n+1,p` , (α − ρ, σ)

(α − ρ + w, σ), (g j,G j)1,m, (g j`,G j`)m+1,q` , (−1 − β − ρ − w, σ)


(1.15)

above definite integral is valid under the following set of conditions:
(i) R

(
ρ + σ

g j

G j

)
> −1, j = 1, · · · ,m.

(ii) R(ρ) > −1,R(β) > −1.
(iii) Eqs (1.10) to (1.13) are exist.
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2. Some properties of the incomplete I−Functions

In this part, we present some basic properties and derivative formula for the incomplete I−functions:

Theorem 2.1. The following reduction formulas holds for the incomplete I−function:

(Γ)Im,n
p`,q`,r

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`−1, (a2, A2)

 = (Γ)Im,n−1
p`−1,q`−1,r

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)3,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`−1

 ,
(2.1)

and

(Γ)Im,n
p`,q`,r

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`−1, (a2, A2)

 = σ (Γ)Im,n
p`,q`,r

zσ
∣∣∣∣∣∣∣∣∣

(a1, σA1, x), (a j, σA j)2,n, (a j`, σA j`)n+1,p`

(g j, σG j)1,m, (g j`, σG j`)m+1,q`

 .
(2.2)

provided that each member in (2.1) and (2.2) exists with σ > 0.

Theorem 2.2. The following derivative formula holds for the incomplete I−function:

(
d
dz

)κ zλ−1(Γ)Im,n
p`,q`,r

czµ

∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`




= zλ−κ−1(Γ)Im,n+1
p`+1,q`+1,r

czµ

∣∣∣∣∣∣∣∣∣
(a1, A1, x), (1 − λ, µ), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (1 − λ + κ, µ), (g j`,G j`)m+1,q`

 (2.3)

provided that each member in (2.3) exists.

Proof. By differentiating the left hand side of (2.3) κ times with respect to z, we get

(
d
dz

)κ zλ−1(Γ)Im,n
p`,q`,r

czµ

∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`


 =

1
2πi

∫
L

K(ξ, x)c−ξ
(

d
dz

)κ (
zλ−µξ−1

)
dξ

=
zλ−κ−1

2πi

∫
L

K(ξ, x)c−ξ
Γ(λ − µξ)

Γ(λ − κ − µξ)
z−µξdξ

with the help of (1.6) and (1.7), we obtain the desired result after a little simplification. �

3. Well known integral transforms of (Γ)Im,n
p`,q`,r(z)

In this section, we find the several well known integral transform like as Mellin, Laplace, Hankel
and Euler Beta Transform, of the our introduce function in (1.6).
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3.1. Mellin transform

The well known Mellin transform of a function f (z) is defined by [23, p.340, Eq (8.2.5)]

M { f (z); p} =

∫ ∞

0
zp−1 f (z)dz, (R(p) > 0) (3.1)

provided that the improper integral exists.

Theorem 3.1. If

Hi > 0, µ > 0, | arg(z)| <
π

2
Hi, R(ζi) + 1 < 0 i = 1, r

− µ min
15 j5m

R

(
g j

G j

)
< R(p) < µ min

15 j5n
R

(
1 − a j

A j

)
, c > 0 and x = 0

Then the Mellin transform of incomplete I−function defined as follows:

M

(Γ)Im,n
p`,q`,r

czµ

∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 ; p

 =
c−p

µ
K

(
p

µ
, x

)
(3.2)

provided that each member of the assertions (3.2) exists and K(ξ, x) is given in (1.7).

Proof. The Mellin transform of (1.6) is based upon the Mellin Inversion Theorem as well as the Mellin-
Barnes type contour integral in (1.7) which defines the incomplete I−function (Γ)Im,n

p`,q`,r(z). �

3.2. Laplace transform

The Classical Laplace transform of a function f (z) is defined by [23, p.134, Eq (3.2.5)]

L { f (z); p} =

∫ ∞

0
e−pz f (z)dz, (R(p) > 0) (3.3)

provided that the improper integral exists.

Theorem 3.2. If

Hi > 0, µ > 0, | arg(z)| <
π

2
Hi, R(ζi) + 1 < 0 i = 1, r

− µ min
15 j5m

R

(
g j

G j

)
< R(λ), R(p) > 0, c > 0 and x = 0

Then the Laplace transform of incomplete I−function defined as follows:

L

zλ−1(Γ)Im,n
p`,q`,r

czµ

∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 ; p


= p−λ (Γ)Im,n+1

p`+1,q`,r

cp−µ
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (1 − λ, µ), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 (3.4)

provided that each member in (3.4) exist.
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Proof. To prove the left hand side of (3.4), by taking the Laplace transform given in (3.3) of (1.6), we
get

L

zλ−1(Γ)Im,n
p`,q`,r

czµ

∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 ; p

 = L

{
zλ−1

∫
L

K(ξ, x)(czµ)−ξ; p
}

where K(ξ, x) is given in (1.7).
Further, on interchanging the order of integral and contour integral (which is admissible under the
conditions presented), it yields

L

{
zλ−1

∫
L

K(ξ, x)(czµ)−ξ; p
}

=

∫
L

K(ξ, x)c−ξL
{
zλ−µξ−1; p

}
dξ

=

∫
L

K(ξ, x)c−ξ
Γ(λ − µξ)
pλ−µξ

dξ

Finally, with help of (1.6) and (1.7), we get the right hand side of (3.4) after a little simplification. �

3.3. Hankel transform

The Hankel transform of a function f (z) is defined by [23, p.317, Eq (7.2.8)]

Hα { f (z); p} =

∫ ∞

0
zJα(pz) f (z)dz, (R(p) > 0) (3.5)

provided that the integral in (3.5) exists, Jα is the Bessel function of order α. Now, we establish an
integral which involving the Bessel function Jα(z) and our introduce incomplete I−function, which can
easily be reduces to Hankel transform of function (Γ)Im,n

p`,q`,r(z).

Theorem 3.3. If

Hi > 0, µ > 0, | arg(z)| <
π

2
Hi, R(ζi) + 1 < 0 i = 1, r

− 1 < R(λ + α) + µ min
15 j5m

R

(
g j

G j

)
< R(λ + α) + µ min

15 j5n
R

(
1 − a j

A j

)
,

c > 0, R(p) > 0 and x = 0

Then the Hankel type transform of incomplete I−function defined as follows:

∫ ∞

0
zλ−1Jα(pz)(Γ)Im,n

p`,q`,r

czµ

∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 dz

=
2λ−1

pλ
(Γ)Im,n+1

p`+2,q`,r

c
(
2
p

)µ ∣∣∣∣∣∣∣∣∣
(a1, A1, x), (1 − λ−α

2 , µ2 ), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q` , (1 + α−λ
2 , µ2 )

 (3.6)

provided that both sides member in (3.6) exist.
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Proof. To prove the assertion (3.6), incomplete I−function, which is define in (1.6) and (1.7), express
in terms of Mellin-Barnes type contour integral, we get (say Ω)

Ω =
1

2πi

∫ ∞

0
zλ−1Jα(pz)

∫
L

K(ξ, x)(czµ)−ξdξdz

where K(ξ, x) is given in (1.7).
Further, interchanging the order of integrals, which can be valid under the given conditions, to find

Ω =
1

2πi

∫
L

K(ξ, x)c−ξ
{∫ ∞

0
zλ−µξ−1Jα(pz)dξ

}
dz

Next, using the known formula [24, Vol. II, p.49, Eq 7.3.3(19)], we get

Ω =
2λ−1p−λ

2πi

∫
L

K(ξ, x)c−ξ
2−µξ

p−µξ

Γ
(
λ+α−µξ

2

)
Γ
(
1 +

α−λ+µξ

2

)dξ

Finally, with help of (1.6) and (1.7), we get the desired result after interpreting the last identites. �

3.4. Euler’s Beta transform

The Euler’s Beta transform of a function f (z) is defined by [25]

B { f (z) : α, β} =

∫ 1

0
zα−1(1 − z)β−1 f (z)dz, (R(α) > 0,R(β) > 0) (3.7)

Now, we give the following Euler’s Beta transform of the incomplete I−function.

Theorem 3.4. If

Hi > 0, µ > 0, | arg(z)| <
π

2
Hi, R(ζi) + 1 < 0 i = 1, r

R(α) + µ min
15 j5m

R

(
g j

G j

)
> 0, R(β) > 0, c > 0.

Then the following Beta transform holds for x = 0:

B

(Γ)Im,n
p`,q`,r

czµ

∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 : α, β


= Γ(β) (Γ)Im,n+1

p`+1,q`+1,r

c
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (1 − α, µ), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q` , (1 − α − β, µ)

 (3.8)

Proof. First, we write the Mellin-Barnes contour integral of the incomplete I−function in (1.6) and
(1.7), interchange the order of integrals and then apply the well known definition of Beta function. We
get the right hand side of (3.8). �

Remark 1. It may be remarked that the above integral transforms of the incomplete I−function reduces
incomplete H−function, Fox’s H−function and many other special function.
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4. Applications of the incomplete I-Functions

The incomplete I-functions (Γ)Im,n
p`,q`,r(z) and (γ)Im,n

p`,q`,r(z) defined in (1.6) and (1.8) reduce to the
several familiar special function (for example: Fox’s H-function, Incomplete H-function, I-function,
etc.) as follows:

If we set x = 0, then (1.6) and (1.8) reduces to the I−function introduced by Saxena [1]:

(Γ)Im,n
p`,q`,r

z
∣∣∣∣∣∣∣∣∣

(a1, A1, 0), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 = Im,n
p`,q`,r

z
∣∣∣∣∣∣∣∣∣

(a j, A j)1,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 . (4.1)

Again setting r = 1 in (1.6) and (1.8), then it’s reduces to the Incomplete H−functions introduced by
Srivastva [26](see also, [27]):

(Γ)Im,n
p`,q`,1

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 = Γm,n
p,q

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)2,p

(g j,G j)1,q

 , (4.2)

and

(γ)Im,n
p`,q`,1

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 = γm,n
p,q

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (a j, A j)2,p

(g j,G j)1,q

 . (4.3)

A complete description of Incomplete H−functions can be found in the article [26].
Further, we take x = 0 and r = 1 in (1.6), the Incomplete I−function reduces to the familiar Fox’s

H−function which were defined and represented in the following manner (see, for example, [28, p.
10]):

(Γ)Im,n
p`,q`,1

z
∣∣∣∣∣∣∣∣∣

(a1, A1, 0), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 = Hm,n
p,q

z
∣∣∣∣∣∣∣∣∣

(a1, A1), · · · , (ap, Ap)

(g1,G1), · · · , (gq,Gq)

 (4.4)

:=
1

2πi

∫
L

Θ(s)zs ds,

where i =
√
−1, z ∈ C \ {0}, C being the set of complex numbers,

Θ(s) =

m∏
j=1

Γ(g j − G js)
n∏

j=1
Γ(1 − a j + A js)

q∏
j=m+1

Γ(1 − g j + G js)
p∏

j=n+1
Γ(a j − A js)

,

and

1 5 m 5 q and 0 5 n 5 p (m, q ∈ N = {1, 2, 3, · · · }; n, p ∈ N0 = N ∪ {0}),

an empty product being treated to be unity. A complete details can be found in the text book (see, for
details, [28, 29]).
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4.1. Application of the incomplete I-Functions in probability theory

Several applications of extended Gauss hypergeometric function, incomplete gamma function,
fox’s H-function, etc. in communication theory, statistical distribution theory, groundwater pumping
modeling, quantum physics, Velocity distribution in an ideal gas and solution of fractional advection
dispersion equation in terms of Fox’s H-function.It is believed that the incomplete I-Functions
(Γ)Im,n

p`,q`,r(z) and (γ)Im,n
p`,q`,r(z), which we have studied here, have the potential for applications in the

extended forms of similar and other situations. For example, in probability theory, the incomplete
I-functions finds uses in the analytic investigation of the survival and cumulative probability density
functions along the lines given by Chaudhry and Qadir [30] who made use of the incomplete
exponential functions presented by

e((u, v); ρ) =

∞∑
s=0

γ(ρ + s, u)
Γ(ρ + s)

vs

s!
= 1γ1

[
(ρ, u);
ρ;

v
]

(4.5)

E((u, v); ρ) =

∞∑
s=0

γ(ρ + s, u)
Γ(ρ + s)

vs

s!
= 1Γ1

[
(ρ, u);
ρ;

v
]

(4.6)

In fact, the incomplete I-function representations of the above-defined incomplete exponential
e((u, v); ρ) and E((u, v); ρ) functions are given by

e((u, v); ρ) = (γ)I1,1
1,2,1

−v

∣∣∣∣∣∣∣∣∣
(1 − ρ, u, 1)

(0, 1), (1 − ρ, 1)

 (4.7)

E((u, v); ρ) = (Γ)I1,1
1,2,1

−v

∣∣∣∣∣∣∣∣∣
(1 − ρ, u, 1)

(0, 1), (1 − ρ, 1)

 (4.8)

4.2. Application of the incomplete I-Function in heat conduction

We are driving a solution y(u, t) for temperature distribution in a insulated non-homogeneous bar
with thermal conductivity varies as (1 − u2) and having ends at u = ±1. The function y(u, t) satisfies
the following partial differential equation of heat conduction [31, p.197, Eq (8)]:

∂y
∂t

= λ
∂

∂u

[
(1 − u2)

∂y
∂u

]
(4.9)

where λ is a constant which is treated as thermal coefficient.
At u = ±1, both ends of a bar are insulated due to the conductivity zero there, is a boundary conditions
and the initial condition:

y(u, 0) = f (u), −1 < u < 1 (4.10)
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Now, we consider

f (u) = (1 − u)ρ · (Γ)Im,n
p`,q`,r

z
(
1 − u

2

)σ ∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 (4.11)

Let the solution of (4.9) can be represented in the following form

y(u, t) =

∞∑
k=0

Rk e−λk(k+1)tP(α,β)
k (u) (4.12)

putting t = 0 in (4.12) and using (4.11), we have obtain that

f (u) = (1 − u)ρ · (Γ)Im,n
p`,q`,r

z
(
1 − u

2

)σ ∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 =

∞∑
k=0

Rk P(α,β)
k (u) (4.13)

where P(α,β)
k (u) is a Jacobi Polynomial (see, for details, [32, p. 59, Eq (4.1.3)] and [33, p.35, Eq (34)]).

Equation (4.13) is valid because f (u) is continuous in u ∈ [−1, 1] and has a piecewise continuous
derivative there, then with α > −1, β > −1, the Jacobi series (4.13) converges uniformaly to f (u) in
u ∈ [−1+ ∈, 1+ ∈], 0 <∈< 1.
Now, Eq (4.13) multiply by (1 − u)α(1 + u)βP(α,β)

w (u) and integrate -1 to 1, we get

Aw = h−1
w

∫ 1

−1
(1 − u)ρ+α(1 + u)βP(α,β)

w (u)(Γ)Im,n
p`,q`,r

z
(
1 − u

2

)σ ∣∣∣∣∣∣∣∣∣
(a1, A1, x), (a j, A j)2,n, (a j`, A j`)n+1,p`

(g j,G j)1,m, (g j`,G j`)m+1,q`

 du

(4.14)

where hw is calculate with the help of (1.14), we get

hw =
2α+β+1Γ(α + w + 1)Γ(β + w + 1)

w!(α + β + 1 + 2w)Γ(α + β + 1 + w)

Now with the help of result (1.15), we obtain

Aw =
2ρ(2w + α + β + 1)Γ(w + α + β + 1)

Γ(w + α + 1)
(Γ)Im+1,n+1

p`+2,q`+2,r

z
∣∣∣∣∣∣∣∣∣

A∗

B∗


where

A∗ = (a1, A1, x), (−ρ − α, σ), (a j, A j)2,n, (a j`, A j`)n+1,p` , (−ρ, σ)
B∗ = (−ρ + w, σ), (g j,G j)1,m, (g j`,G j`)m+1,q` , (−1 − β − ρ − α − w, σ)

Next, substituting the value of Rk in (4.12), we arrive at the desired solution

y(u, t) = 2ρ
∞∑

k=0

f (k)e−λk(k+1)t(Γ)Im+1,n+1
p`+2,q`+2,r

z
∣∣∣∣∣∣∣∣∣

(a1, A1, x), (−ρ − α, σ), (a j, A j)2,n, (a j`, A j`)n+1,p` , (−ρ, σ)

(−ρ + k, σ), (g j,G j)1,m, (g j`,G j`)m+1,q` , (−1 − β − ρ − α − k, σ)


(4.15)
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where

f (k) =
2ρΓ(2k + α + β + 1)Γ(k + α + β + 1)

Γ(k + α + 1)

Remark 2. If incomplete I−function reduces into H−function in (4.11) then, we get the result obtained
by Chaurasia [34].

5. Conclusions

In this work, we introduce a new incomplete I−functions which . The incomplete I−function is an
extension of the I−function given by Saxena [1] which is a extension of a familiar Fox’s H−function.
Next, we find the several interesting classical integral transforms of incomplete I−function and also
find the some basic properties of incomplete I−function. Further, numerous special cases are obtained
from our main results among which some are explicitly indicated. Finally, we find the solution of
non-homogeneous heat conduction equation in terms of Incomplete I−function.
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