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1. Introduction

In this current paper, the probabilistic outcomes of Ciric contraction of @-min are considered.
Probabilistic metric space are probabilistic generalization of metric spaces which was introduced by
K. Menger in 1942 [20]. Distribution function plays the role of metric on these spaces. Menger
spaces are the specific probabilistic metric spaces where the triangle inequality is postulated with the
help of r-norm. Sehgal and Bharucha-Reid were the pesons who established Banach contraction
mapping principle to probabilistic metric spaces in 1972. This result was done in their research
works [27]. Schweizer and Sklar have described many aspect on these spaces in their book [26].

Being a control function, “altering distance function”, alters the distance between two points in a
metric space and Khan, Swaleh and Sessa in 1984 showed us the property in their paper [17]. Some
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generalized works in this line may be referred as [16, 18,19,21,22,24,25,28].

In recent time, the concept of altering distance function is extended to the context of Menger spaces
in [6]. This control function is known as ¢-function and very useful for proving fixed point results in
Menger spaces. This concept is also applied to many other problem such as coincidence point problems
in this line. Some recent works using ¢-function are mentioned in [1-3,7,12,13].

Main features of this paper are following:

(1) A new probabilistic a-min special Ciric type contraction result.
(2) For such contraction, unique fixed point is obtained.

(3) The use of control function to prove the theorems.

(4) A corollary.

(5) Two illustrative examples validating our theorems.

(6) An application of our results on integral calculus.

(7) An important conclusion which may incur new problems.

2. Definitions and mathematical requisits
Some important definitions and mathematical preliminaries are discussed before we want to prove

our main results.

Definition 2.1. /15, 26] A distribution function is a mapping F : R — R* if it is non-decreasing and

left continuous with inlg F(t) = 0 and sup F(t) = 1, where R is the set of reals and R is the set of
1e teR
non-negative reals respectively.

Definition 2.2. r-norm [15,26] A function A : [0, 1] X [0, 1] — [0, 1] is called a t-norm, if it satisfies
the following conditions for all a, b, c,d € [0, 1]

(i) A(l,a)=aq,

(ii)  Ala,b) = A(b,a),

(iii)  A(c,d) > A(a,b) whenever ¢ > a and d > b,
(iv)  A(A(a,b),c) = Ala, A(b, ©)).

The examples of #-norm are as follows:
(i) A = T,,, which is the minimum #-norm and is defined by 7,,(a, b) = min{a, b}.
(i1) A = T, which is the product r-norm and is defined by T,(a, b) = a.b.

Definition 2.3. Menger space [15,26] A triplet (X, F,A) is called a Menger space where X # ¢, F
is a function on X X X to the set of distribution functions and A is a t-norm, such that it satisfies the
following conditions:

(i) F.,(0)=0forall x,y € X,

(ii) Fy,(s)=1foralls>0and x,y € X ifand only if x =y,

(iii)  Fyy(s) = F,.(s) forall x,y € X,s > 0 and

(iv) Fo,(u+v)> AF (), F,,v) forallu,v>0and x,y,z € X.
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Definition 2.4. [15, 26] A sequence {x,} C X is said to converge to some point x € X if given
€>0,0 <A< 1, we can find a positive integer N, such that for all n > N,
Foxe)>1-A (2.2)

Definition 2.5. [15,26] A sequence {x,} is said to be a Cauchy sequence in X if given € > 0,0 < 1 <
1, there exists a positive integer N, such that
Fy ., (€ >1-=2 forall m,n> N,,. (2.3)

The equivalent of Definition 2.4 and 2.5 is to replace > with > in (2.2) and (2.3) respectively. They
are not written in this conventional way. We have presently given them the evidence from our theorems
for our convenience.

Definition 2.6. [15,26] A Menger space (X, F, A) is said to be complete if every Cauchy sequence is
convergent in X.

We use the following control function ¢ which Choudhury and Das presented [6].

Definition 2.7. ®-function [6] A function ¢ : R — R is said to be a ®-function if it satisfies the
following conditions:

(i) ¢(t) =0 ifand only if t = 0,

(ii) ¢(t) is strictly monotone increasing and ¢(t) — oo as t — oo,
(iii) ¢ is left continuous in (0, o),

(iv) ¢ is continuous at 0.

In numerous research works, many authors [4,8—11] use this function.
3. Main results

We begin this section by introducing the concept of a-min Ciric type contraction and @-admissible
mappings in Menger PM spaces.
Recent documents, such as [13, 14] motivated us.

Definition 3.1. Let (X, F, A) be a PM-space and f : X — X be a mapping. We say that f is an a-min
Ciric type mapping if there exists function a : X X X X (0, 00) — R* satisfying the following inequality

1 1 1 1
—_— - _— 1, -1, -
Frvry(@(2) Foy(#(%)) For@(2) Fy p(9(1))
forall x,ye X, t>0, where0 <c< 1, ¢ € D.

a(x,y, 1)( 1) < min( 1) 3.1

Definition 3.2. ( [I4]) Let (X,F,A) be a PM-space, f : X — X be a given mapping and
a: XXX X(0,0) = R* be a function, we say that f is a-admissible if
x,ye€ X, forallt >0,

a(x,y,t) > 1 = a(fx, fy,t) > 1
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Theorem 3.1. Let (X, F, A) be a complete Menger space, A is a continuous t-norm and f : X — X be
an a-min Ciric type mapping satisfying the following conditions.

(i) f is a-admissible,

(ii)there exists xy € X such that a(xy, fxo,t) > 1, forall t > 0,

(iii) if {x,} is a sequence in X such that a(x,, x,+1,t) > 1 for all n € N and for all t > 0.

Then f has a fixed point , that is, there exists a point u € X such that fu = u.

Proof. Let xy € X be such that a(xy, fxo,t) > 1 for all # > 0. Define a sequence {x,} in X so that
Xpi1 = fX,, for all n € N, where N is the set of natural numbers. Clearly, we suppose x,,; # x, for all
n € N, otherwise f has trivially a fixed point.
Then by using the fact f is @-admissible, we write
a(xg, fxo,1) = a(xg, x1,1) > 1 = a(fxo, fx1,1) = a(x], x2,8) > 1,
and, by induction, we get
a(x,, Xpe1,1) = 1, forall n € N and for all ¢ > O.
From the properties of function ¢, we can find ¢ > O such that F, , (¢(2)) > 0.
Now, we have from (3.1) for ¢t > 0 and c € (0, 1),

1 1
_— -1 = — -1
Fiyi (@(D) Frr, fr, (@(D)
1
= G nen D)
) 1 1 1
< min( — -1, — — 1, — -1
Fx,,,xn_l(‘p(Z)) Fxn,fxn(¢(2)) Fx,,_l,fx,,_1(¢(2))
= min( ! — — 1, ! — — 1, ! ——1)
Fx,,,xn_l(‘p(Z)) Fxn,xn+|(¢(z)) Fx,,_|,x,1(¢(z))
1 1
= i -1, -1). 3.2
B 73 R R PTe5 R G2
We now claim that forallt > 0,n>1,c € (0, 1),
min( ! — -1, ! - —1):;,—1 (3.3)
Fxn+1,xn(¢(z)) Fx”,xn,l(qs(Z)) Fxn,xn,1(¢(;))
If possible, let for some s > 0,
min( ! — -1, ! - —1):;3—1,
Fxn+1,xn(¢(z)) Fxn,x,rl(qs(Z)) Fxn+1,x,,(¢(z))
then we have from (3.2),
S S
Frpii o, (9(5)) T Foaxn (@)
that is,
Fapo @) 2 Fiyy 1 (9 (3.4)
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which is impossible as for ¢ € (0,1) (since ¢(3) > ¢(s), that is, F,,, ., (#(3)) = Fy,,, ., (¢(s)), by the
monotone property of F and for ¢ € (0, 1)).

1 1
P < — =
Then’ forall 7 > 0’ Fyp 1o (6(D) 1 - FXn,Xn—l((ﬁ(%)) 1’

that is,
Frns®@0) 2 Fon (02
> Fop ()
DN
t

> Fxl,xo((p(g))’

Therefore,
t
Fx,,+1,x,l(¢(t)) > Fxl,xo((p(g))- (35)

Now, taking limit as n — oco on both sides of (3.5), for all # > 0, we obtain

lim F . (4(0) = 1. (3.6)

Now, we prove that {x,} is a Cauchy sequence.
On the contrary, there exist € > 0 and 0 < 4 < 1 for which we can find subsequences {x,,} and
{Xa0} Of {x,} with m(k) > n(k) > k such that

F om0 (€) < 1= 4. (3.7)
We take m(k) corresponding to n(k) to be the smallest integer satisfying (3.7), so that

F

Xim(k)—1>Xn(k)

(e)>1-A. (3.8)
If €, < € then we have

F xm(k),xmk)(el) <F xm(k)’xn(k)(e)'

So, it is feasible to construct {x,} and {x,x} with m(k) > n(k) > k and satisfying (3.7), (3.8)
whenever € is replaced by a smaller positive value. By the continuity of ¢ at 0 and strictly monotone
increasing property with ¢(0) = 0, it is possible to find € > 0 such that ¢(e,) < €.

Then, by the above logic, it is possible to get an increasing sequence of integers {m(k)} and {n(k)}
with m(k) > n(k) > k such that

Fxm(k),xn<k>(¢(62)) <1- /la (39)

and
Fxm(k)fl »Xn(k) (¢(62)) Z 1 - /l' (3 . 1 0)

Now, from (3.9), we get
1 - /l > Fxm(k),x,,(k) (¢(62))’

AIMS Mathematics Volume 5, Issue 2, 1186-1198.



1191

that is,

1 1
1 - /1 Fxm(k)axn(k) (¢(62)) ’

that is,

1 1
< ———F— -
-2 F oy (9(€2))

2

which implies,

A 1
1 - /1 Fxm(k),xn(k)(¢(€2))

b

1

- D),
fom(k)—l S Xn(i-1 (D(e2))
1 1 1

€ -1, = -1, - —
FXm(/«)—l,xn(k)—] (¢(?2)) Fxm(k)_l,xm(k) (¢(?2)) Fxn(k)—hxn(k) (¢(?2))

IA

A (X(k)—15 Xn(i)—1, 1)(

1y

< min(

(using the inequality (3.1))
Now, using the property of (iv) of the Menger space, we have

\%

AWMMMMMQ»FWMWAﬂ%D—ﬂQD
> A(l — 4,1 - A)(using (3.6) and (3.10))
1-24,

€
Fxm(k)— 1>Xn(k)-1 (¢( ? ))

that is,
ey l<— .
E iyt (B(2)) 1-21 1-2

Now, using (3.6), for sufficiently large k, we have

€
Fxm(k)—lyxm(k) (¢(?)) Z 1 - /1,

1 1 A

<—-1=-"_.

Fxm(k)—l»xm(k)(¢(é?2)) 1 -A 1 —A

€
Fxn(k)—l,xn(k)(¢(?)) > 1- /1,

that is,
1 1 Pl

<——1=—"—

Fowrmg@(2) T 1-2 -1

(3.11)

(3.12)

(3.13)

(3.14)
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Now using (3.12), (3.13) and (3.14) in (3.11), we have
1 1 1

—— < min( == — 1, o= — L s~ D
-4 Fxm(k)—l»xn(k)—l(¢(?)) Fxm(k)—l»xm(k)((p(?)) Fxn(k)—laxn(k) (¢(?))
< min( S
min , ,
- 1-41-421-A4
B A
1=
that 1s,
A A
< )
1-4 1-2

which is a contradiction.

Hence {x,} is a Cauchy sequence.

Since (X, F, A) be a complete Menger space, therefore x,, — u as n — oo, for some u € X. Moreover,
we get

€ €
Ffu,u(f) > A(Ffu,x,ﬁl(i)’Fxml,u(i))- (315)
Next, using the properties of function ¢, we can find , > 0 such that ¢(r,) < 5. Again x, — u as
n — oo and hence there exists ny € N such that, for all n > n, (sufficiently large), we have
1 1
Fx,m,fu(i) fo,,,fu(‘p(tZ))
1
< alxu,)(————=-1)
fo,l,fu((p(tZ))
) 1 1 1
< min(———— -1, — -1, — -1
Fy,u(9(3)) Fy rx,(@(3)) Furu($(3))
1 1 1
= min(———— -1, — -1, — —1).
Fxnu(¢(?2)) Fx,,xn+|(¢(?2)) Fufu(¢(?2))
Taking limit n — oo on both sides, we have
1 ) 1
———— -1 <min(0,0, —————-1)=0
Fu,fu(‘p(lZ)) Fu,fu((ﬁ(%.))

Fomtay < 1
= Fu,fu(¢(t2)) > 1.
Thus, fu=u.
The uniqueness of the fixed point is established next. Let x and y be two fixed point of f, that is,
fx = xand fy = y. By the virtue of ¢ there exists s > 0 such that F,(¢(s)) > 0. Then, by an
application of (3.1), we have

1

S —— 1
fo,fy((p(s)) )

b= ooy ™

AIMS Mathematics Volume 5, Issue 2, 1186-1198.



1193

< min( 15 -1, ! — — 1, ! — 1)
Fy(@(2)) Frp(@(2)) Fy 1(6(2))
1 1 1
= i -1, — — 1, — —1
B IS R S PTE R N PTE R
1
= in(———-1,0,0
R wpTESy )
= 0,
which implies,
; - 1 S 09
fo,fy(¢(s))
= Frop(d(s) 2 1,
that is,
Foy(@(s)) = 1.
Hence x = y, that is, the fixed point is unique. O

If we replace ¢(r) by ¢ in Theorem 3.1, we get the following Corollary.

Corollary 3.1. Let (X, F, A) be a complete Menger space and f : X — X be a mapping satisfying the
following inequality for all x,y € X,

1 1 1 1
— 1 < min( — = — = — =
fo,fy(t) Fx,y(z) Fx,fx(;) Fy,fy(;)

wheret >0, 0 < ¢ < 1. Then f has a unique fixed point in X.

1) (3.16)

b b

4. Example

Example 4.1. Let X = [0, 1], the t-norm A is a continuous t-norm and F be defined as
Fo,(D = 7
Then (X, F,A) is a complete Menger space. If we define f : X — X as follows:
fx=zforall x €[0,1],
then the mapping f satisfies all the conditions of Theorem 3.1, for ¢ = %, where 0 is the unique fixed
point of f.

Example 4.2. Let X = {a, B, v}, the t-norm A is a minimum t-norm and F be defined as

0, if t<0,
Fp, (1) = F, () =4 0.75, if 0<t<2,
1, if t>2,
10, if t<0,
and Fop(t) = { 1. if >0,

Then (X, F, A) is a complete Menger space. If we define f : X — X as follows: fa =a, fB=a,fy=p
then the mapping f satisfies all the conditions of Theorem 3.1 where ¢(t) = t, ¢ € (0,1) and « is the
unique fixed point of f in X.

AIMS Mathematics Volume 5, Issue 2, 1186-1198.
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4.1. Application

Some recent references [5, 14,23] help us to establish the following application.
We consider the following boundary value problem of second order differential equation :
d*x

—gp = 8 x(@), 1€[0,1]

x(0) = x(1) = 0,

where g : [0, 1] X R — R is a continuous function.

X'=0=>Dx=0 4.1)

and boundary values are x(0) = 0, x(1) = 0.
The auxiliary equation is
D* = 0.

Therefore, the general solution is
x(t) = Ar+ B.

Now, The Green’s function G(¢, s) exists for the associated boundary-values problem and is given
by
<
G(t.5) = {a1t+a2, 0<t<s

bit+b,, s<t<1

The Green’s function must satisfy the following three properties:
1) G(t, s) is continuous at x = §
i.e.,
bis+b, = a;s+a, = s(by—ay)+b,—a, =0 “4.2)

i1) The determination of G has a discontinuity of magnitude —[ﬁ at the point x = s, where py(t) =
co-efficient of the highest order derivative
1.e.,

oG oG
(5 )™ (G ) = 1= b —ar = =1 (43)
11i1) G(t, s) must satisfy the boundary condition

G(0.5) =0 =a, = 0 (4.4)

and
G(,s) =0= b +b, = 0. 4.5

{t(l—s), 0<t<s<l1

Therefore, G(t, s) = —st+s, 0<s<t<l1

Let C(I) (I = [0, 1]) be the space of all continuous functions defined on /. It is well known that such
a space with the metric given by

d(x,y) = [[x = ylle = max |x(2) — y(D)]

AIMS Mathematics Volume 5, Issue 2, 1186-1198.
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is a complete metric space.
We have to show that the above mentioned differential equation satisfies the following inequality,

1 1 1
ax,y, (w———=—-D <min(——= -1, -1, -1
Frr ry(9(0)) Foy(@(2) Frpd@(2) Fy (9(2))
taking a(x,y,z) = 1, ¢(t) = ¢,
we have
1 . 1 1 1
gy~ LS min(— 1 Lz — - 1).
Frpy(P(D) wy(@(2)) v f(B(2)) vy (@(2))
Taking F..,(1) = 77655
that is,
— 1 < min( n -1, 1 -1, 1 -1,
HA( %) Trd(e) Trdnf) S0
that is,
t+d(fx, Ly d(x, Lydx, fx L4 d(y,
+ (J;xfy)—lsmin(‘ ,( M (t o (tyfy)_l)’
that is,
difx.fy) . c+dey)—¢ t+dxfx) -1 t+dO.fy) -1
7 S mln( L b L b L )’
that is,
d b . d b d b d b
(fx, fy) < min(S (x y)’c (x fX)’c (y fy)),for P20
t t t t
that is,

d(fx, fy) < minc(d(x,y),d(x, fx),d(y, fy)).
We have ¢ > 0 such that for all x,y € C(I,R) and for all ¢, s € I, for all a,b € R, we get
lg(t, @) — (¢, D) < ¢ min{|x(s) — y(s)|, [x(s) — fx(s)I, [y(s) — fy(s)l}.

Now, It is well known that x € C*(I) is a solution of given differential equation is equivalent to that
x € C(I) is a solution of the integral equation

1
x(t) = f G(t, 5)g(s, x(s))ds,for all t e I. 4.6)
0
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Define the operator f : C(1) — C(I) by

1
f(x(1) = f G(t, 5)g(s, x(s))ds,for all t e .
0

To find x* € C(I) that is a fixed point of f.
So,

lf(x(@) = fFO@)] = Ifo1 G(t, 9)[g(s, x(5)) — g(s, y(s5))]ds]|
< fol G(t, 9)Ig(s, x(s5)) — g(s, y(s))ld's
< \f; G(t, s)c - min{d(x,y), d(x, fx),d(y, fy))}ds
= c-min{d(x, y),d(x, fx), d(y, fy)}fo1 G(1, s)ds

1
< ¢ - min{d(x, y), d(x, f2),d(y. [y} x o
=0.

Note that for all 7 € 1,

! 2t
t,s)ds = —— + =
j(:G(,s)s 2+2,

which implies that,

1
1

supf G(t,s)ds = —.
0 8

tel

Also,
min{d(x, y), d(x, fx),d(y, fy)} = min{d(x,y),0,0} = 0.
implies
d(fx, fy) = min{d(x,y),d(x, fx),d(y, fy)},forall x,y e C([0, 1], R).

Therefore by Theorem 3.1 with ¢(r) = ¢ forall # > 0 and a(x,y,t) = 1 forall x,y € C([0, 1], R) and
t > 0, we conclude that the uniqueness of the operator f is fx* = x* € C([0, 1], R), which also serves
the purpose of unique solution of (4.6), our proposed integral equation.

5. Conclusion

In the course of mathematical analysis and allied stream related to it, probabilistic metric spaces
has an important role. The structural theory was created primarily after 1960. Many researchers have
taken their interest in this area of research. Some authors have recently demonstrated that PM spaces
are also applicable in nuclear fusion. One of the references may be noted as [29]. This paper [29]
outlines the application to identify regimes of containment and disruption of plasma.
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