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1. Introduction 

The vibration of membranes plays a significant role in analysis of wave mechanics in two 
dimensions and wave propagation, bio-engineering etc. Membranes create main components in 
acoustics and music such as components of microphones, speakers and related devices [1]. To 
investigate design of hearing aids, the knowledge of large membrane vibration [2] is vital. In 
bio-engineering, several human tissues are anticipated as membranes. The vibrational features of 
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eardrum is valuable to understand hearing. The equation of vibration is used to designate vibration of 
membranes [3]. The integer order vibration equation [4] is, 

ଵୡమ డమன(୰,୲)డ௧మ = 	 డమன(୰,୲)డ௥మ + ଵ୰ డ௪(௥,௧)డ௥ ; 		r ≥ 0, t	 ≥ 	0,	                   (1) 

where ߱(ݎ,  signifies probability density function of particle [5] at time t at a position r while c (ݐ
is the wave velocity of vibrations. 

Fractional order derivatives offer a superb mechanism for describing hereditary and memory 
related properties of various real-life processes and materials [6]. The analysis of fractional 
differential equations (FDE) [7–10] in Mathematical Physics, vibration, oscillation, signal processing 
[11], visco-elasticity [12], chemical engineering [13], seismic wave propagation [14], modelling of 
diseases [15] etc. is a growing field of interest for researchers. In literature, there exist operational 
matrix method [3], decomposition method [4], homotopy perturbation scheme [5], variational 
iteration technique [16] etc. to solve vibration equation. 

Homotopy analysis method (HAM) offers an easier way to confirm convergence of solution. 
HAM was introduced by Liao [17] for solving differential equations. El-Tavil and Huseen [18,19] 
proposed q-homotopy analysis technique (q-HAM) by generalization of HAM. But these methods 
have limitations like massive computation with more time consumption. So, they necessitate to be 
linked with a transform operator. Hybrid methods using integral transforms [20,21] are useful to 
treasure some solution of nonlinear FDE. Homotopy analysis Laplace transform method (HATM) is 
a united form of HAM and the transform of Laplace. In [1], Srivastava et al. used HATM and 
Laplace decomposition technique to solve vibration equation of arbitrary order. The reliability of 
solution procedure of a nonlinear equation is an important characteristic than modeling dimensions 
of equations [22–24]. 

Sumudu transform has an interesting advantage of the ‘unity’ feature over Laplace transform. It 
leads combinations into permutations hence it is useful in discrete systems. The function along with its 
Sumudu transform possess identical Taylor coefficients other than factor n. Sumudu transform is used 
due to its strong properties to get solution of many problems [25,26]. Watugala [27,28] proposed 
Sumudu transform and Asiru [29] proved its properties. Weerakoon [30,31] discussed its applications 
in finding solution to wave equation with variable coefficients. 

Homotopy analysis Sumudu transform method (HASTM) is a graceful merger of HAM and 
Sumudu transform. The benefit is its power of embracing two robust computational schemes for 
tackling FDE. The projected approaches can reduce time and computation work as compared to 
existing schemes simultaneously preserving result efficiency. Singh et al. [32] used HASTM to solve 
fractional Drinfeld-Sokolov-Wilson equation. The q-homotopy analysis Sumudu transform method 

(q-HASTM) is an improvement of ݍ ∈ [0, 1] in HASTM to parameter ݍ ∈ ቂ0, ଵ௡ቃ , ݊ ≥ 1. The 

existence of ቀଵ௡ቁ௠ in solution helps in converging quickly. 

Our aim is to investigate the fractional model of vibration Equation (1) and get its numerical 
solution by q-HASTM. The paper is presented as follows. Section 1 is introductory. In section 2, 
basic results of derivative in Caputo sense, Sumudu transform and its properties are provided. In 
section 3, mathematical model of time dependent vibration equation of fractional order is discussed 
along with its necessity and our motivation in finding its solution. In section 4, basic idea of 
q-HASTM is provided. In section 5, its implementation on fractional vibration equation is shown 
with convergence analysis. In section 6, we conduct numerical experiments by taking various 
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initial conditions. In section 7, numerical results are discussed using figures and tables while in 
section 8, we summarize conclusion. 

2. Preliminaries 

Definition 2.1. [33] A real function ℎ(߯), ߯ > 0 is said to be in spaces 

a. ܥ఍, ߞ ∈ ℝ if there exists a real number q (>	ߞ), s.t. ℎ(߯) = ߯௤ℎଵ(߯), ℎଵ(߯) ∈ 	఍ܥ ,Clearly .(∞,0]ܥ ⊂ ߛ if	ఊܥ ≤   .ߞ

b. ܥ఍௠,݉ ∈ ℕ ∪ {0}	if ℎ(௠) ∈  .఍ܥ
Definition 2.2. [33] Fractional derivative in Caputo sense [34] of ℎ(ݐ), ℎ(ݐ) ∈ ଵ௠ିܥ ,݉ ∈ ℕ ∪ {0} is: ܦ௧ఉℎ(ݐ) = ቐܫ௠ିఉℎ(௠)(ݐ),݉ − 1 < ߚ < ݉,݉ ∈ ℕ,݀௠݀ݐ௠ ℎ(ݐ), ߚ = ݉,  

a. [35]		ܫ௧఍ℎ(ݔ, (ݐ = ଵ௰఍ ׬ ݐ) − ,ݔ)఍ିଵℎ(ݏ ;ݏ݀(ݏ ,ߞ	 ݐ > 0.௧଴  

b. [35]	ܦఛ஝ܸ(ݔ, ߬) = ఛ௠ି஝ܫ డ೘௏(௫,ఛ)డఛ೘ ,݉ − 1 < ν ≤ ݉ 

c. [35]	ܦ௧఍ܫ௧఍ℎ(ݐ) = ℎ(ݐ), ݉− 1 < ζ ≤ ݉,݉ ∈ ℕ. 
d. [35]		ܫ௧఍ܦ௧఍ℎ(ݐ) = ℎ(ݐ) −	∑ ℎ(௞)(0ା) ௧ೖ௞!௠ିଵ௞ୀଵ , ݉ − 1 < ζ ≤ ݉,݉ ∈ ℕ. 
e. [35]	ܫఉݐఈ = 	 ௰(ఈାଵ)௰(ఉାఈାଵ)  .ఉାఈݐ
Definition 2.3. [36] Sumudu transform on domain of functions: 

Q = {h(p)|∃N, sଵ,sଶ > 0, |h(p)| < ܰ݁ ௣௦ೕ	if	p ∈ (−1)୨ × [0,∞),	 
is in the form of S[h(p)] = ׬ h(wp)eି୮dp,w ∈ (−sଵ, sଶ).∞଴  

Definition 2.4. [36] Sumudu transform for arbitrary order derivative in Caputo sense is: 

		S ቂDxnβω(x, t)ቃ = 	 s−nβS[ω(x, t)] −	෍ s(−nβ+k)ω(k)(0, t),			n − 1 < ݊β ≤ n.n−1
k=0  

3. Mathematical model of time dependent vibration equation of fractional order 

Many physical quantities are concerned with the past so to understand their physical models 
better by inducing the effects of memory, fractional models of such systems get more importance [3]. 
The FDE accomplish the systems with memory effect. The non-local property is the main benefit of 
working with FDE in physical models. It signifies that future system state is dependent on former 
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states also. Thus, the models having fractional order derivatives adhere to reality. The integer order 
model suggested in [4] was found unable to possess memory effect in vibrational motion, so to 
include these effects, the integer order model is generalized to model of arbitrary order by converting 
derivative of integer order to fractional order in Caputo sense. The differential equation of arbitrary 
order [1,5,6,16] for vibration model is given as, 

ଵୡమ డഀன(୰,୲)డ௧ഀ = 	 డమன(୰,୲)డ௥మ + ଵ୰ డ௪(௥,௧)డ௥ , 1 < 	α	 ≤ 2,                 (2) 

with initial settings: w(r, 0) = φ(r), డ௪(௥,଴)డ௧ = cξ(r), 0 ≤ r ≤ 1, 0 ≤ 	t ≤ 1	.              (3) 

Caputo’s derivative is suitable for differentiable functions [34] and permits conditions to comprise in 
modelling a problem. The general response expression contains a parameter that states the arbitrary 
order of the derivative. It can be varied to get different responses [6]. In case	α = 2, Eq. (2) reduces 
to integer order Eq. (1). 

It is also observed that the total hierarchy of moments ܯ௞ =  possess similar time 〈(ݐ)௞ݎ〉
dependence as arbitrary Brownian motion in spite of little difference in their statistical features. In 
[6], power law decay of solution is found with	α in disparity to exponential decay perceived in 
arbitrary Brownian motion. The time fractional equations depict the particle motion with memory in 
time. Time fractional derivative proposes inflection of memory. It is obvious that vibrational motion 
is affected by memory in time. It scripts suitability of fractional modeling for this system. So, the 
comprehensive study of Eq. (2) to find the numerical solution of this mathematical model is very 
important. It motivated us to solve Eq. (2) by an efficient and novel numerical scheme q-HASTM.  

4. Basic idea of the proposed method q-HASTM 

Consider a general fractional order non-linear partial differential equation of the form: 

ఈܲݔ)ݑ, (ݐ = ℎ	(ݔ,  (4)               ,(ݐ

where ఈܲ signifies the general fractional linear and nonlinear partial differential operator, ݔ)ݑ,  is (ݐ
an unknown function of independent variables ݔ	and	ݐ. Linear terms of ఈܲ are decomposed to ܦఈ + ܴ where ܦఈ is linear operator of the highest order. (ܦఈݑ)(ݐ) is Caputo fractional derivative 
of ݔ)ݑ, (ݐ)(ݑఈܦ) ,is remains of the linear operator. Eq. (4) may be written as ܴ .(ݐ + ,ݔ)ݑܴ (ݐ + ,ݔ)ݑܰ (ݐ = ℎ(ݔ, ,(ݐ ൫ߙ > 0, ݊ − 1 < ߙ ≤ ݊	(݊ ∈ ℕ)൯,    (5) 

where ܰݑ shows non-linear terms. 
Applying Sumudu transform [37] in Eq. (5), we get, ܵ[(ܦఈݑ)(ݐ)] + ,ݔ)ݑܴ]ܵ [(ݐ + ,ݔ)ݑܰ]ܵ [(ݐ = ܵ[ℎ(ݔ,  (6)       ,[(ݐ

Here, ܵ is Sumudu transform operator. 
Using property [37] of Sumudu transform, we find, 
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,ݔ)ݑ]ܵ [(ݐ − ఈ݌ ∑ ௨(ೖ)(௫,଴)௣ഀషೖ௡ିଵ௞ୀ଴ + ,ݔ)ݑܴ]ܵ)ఈ݌ [(ݐ + ,ݔ)ݑܰ]ܵ [(ݐ − ܵ[ℎ(ݔ, ([(ݐ = 0,    (7) 

We state nonlinear operator as, ܰ[ݔ)ߦ, ;ݐ [(ݍ = ,ݔ)ߦ]ܵ ;ݐ [(ݍ − ఈ݌ ∑ క(ೝ)(௫,௧;௤)(଴)௣(ഀషೝ)௡ିଵ௞ୀ଴ + ,ݔ)ߦܴ]ܵ)ఈ݌ ;ݐ [(ݍ + ,ݔ)ߦܰ]ܵ ;ݐ [(ݍ −ܵ[ℎ(ݔ,  (8)                         ,([(ݐ

Here, ݍ ∈ ቂ0, ଵ୬ቃ ; 		݊ ≥ 1	 is an embedding parameter. ݔ)ߦ, ;ݐ (ݍ  is a real valued function of ݔ,  .ݐ	and	ݍ
Homotopy is constructed as: (1 − ,ݔ)ߦ]ܵ(ݍ ;ݐ (ݍ − ,ݔ)଴ݑ [(ݐ = ℏݔ)ܪݍ, (ݐ ఈܲ[ݔ)ݑ,  (9)           ,[(ݐ

Here, ܪ ≠ 0, ħ ≠ .parameter	auxiliary	is	ħ	and	function	auxiliary	is	ܪ.0 ,ݔ)଴ݑ (ݐ  is an initial 
guess of ݔ)ݑ, ,ݔ)ߦ and (ݐ ;ݐ  .is unknown function (ݍ

By choosing ݍ = 0 and 
ଵ୬ ; ݊ ≥ 1 in Eq. (9), we get, 

,ݔ)ߦ ;ݐ 0) = ,ݔ)଴ݑ ߦ   and  (ݐ ቀݔ, ;ݐ ଵ୬ቁ = ,ݔ)ݑ  (10)         .(ݐ

As ݍ surges from 0 to 
ଵ୬ , ݊ ≥ ,ݔ)ߦ ,1 ;ݐ ,ݔ)଴ݑ varies from (ݍ ,ݔ)ݑ to (ݐ  .(ݐ

Expanding ݔ)ߦ, ;ݐ ,ݔ)ߦ ,we get ,ݍ in Taylor’s series about (ݍ ;ݐ (ݍ = ,ݔ)଴ݑ (ݐ + ∑ ,ݔ)௠ݑ ௠ஶ௠ୀଵݍ(ݐ ,            (11) 

where,        ݑ௠(ݔ, (ݐ = ଵ௠! [డ೘క(௫,௧;௤)డ௤೘ ]௤ୀ଴.        (12) 

If ݑ଴(ݔ, ,ݔ)ܪ auxiliary linear operator, ℏ and ,(ݐ ݍ are suitably selected, series (11) converge at (ݐ = ଵ୬. Then, we find, 

,ݔ)ݑ (ݐ = ,ݔ)଴ݑ (ݐ + ∑ ,ݔ)௠ݑ ௠ஶ௠ୀଵ(ଵ୬)(ݐ               (13) 

Express vectors as, uሬԦ୫ = {u଴(ݔ, ,(ݐ uଵ(ݔ, ,(ݐ …… . . u୫(ݔ,  (14)                     .{(ݐ

Differentiating with regard to q	, Eq. (9) m times then dividing by ݉! and taking	q = 0, we find 
deformation equation of m	order:  S[u୫(x, t) − k୫w୫ିଵ	(ݔ, [(ݐ = 	ħH(x, t)	ᴂ୫(wሬሬሬԦ୫ିଵ).		                 (15) 

Taking inverse Sumudu transform in Eq. (15), u୫(x, t) = 	 k୫u୫ିଵ	(x, t) + ħ	Sିଵ[H(x, t)	ᴂ୫(uሬԦ୫ିଵ)].                 (16) 

Here,       ᴂ୫(uሬԦ୫ିଵ) = ଵ௠ିଵ! [డ೘షభே{క(௫,௧;௤)}డ௤೘షభ ]௤ୀ଴,        (17) 
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and k୰ = ቄ0,			r	 ≤ 1,n,			r > 1.                               (18) 

Hence, the q-HASTM solution is offered as, u(r, t) = ∑ u୫(ݔ, (ݐ ቀଵ௡ቁ୫ .ஶ୫ୀଵ                (19) 

5. Implementation of q-HASTM on vibration equation of fractional order 

We take the fractional order vibration model discussed in section 3 as, 

ଵୡమ డഀன(୰,୲)డ௧ഀ = 	 డమன(୰,୲)డ௥మ + ଵ୰ డ௪(௥,௧)డ௥ , 1 < α	 ≤ 2,       (2) 

with initial settings, w(r, 0) = φ(r), డ௪(௥,଴)డ௧ = cξ(r), 0 ≤ r ≤ 1, 0 ≤ t ≤ 1	.        (3) 

Applying Sumudu transform, we attain, S[w(r, t)] − p஑ ∑ ୵(ౡ)(଴)୮(ಉషౡ)୬ିଵ୩ୀ଴ − p஑ ቂS ቄcଶ ቀడమன(୰,୲)డ௥మ +	ଵ୰ డ௪(௥,௧)డ௥ ቁቅቃ = 0.         (20) 

Nonlinear operator is N[ξ(r, t; q)] = S[ξ(r, t; q)] − p஑ ∑ ஞ(ౡ)(୰,୲;୯)(଴)୮(ಉషౡ)୬ିଵ୩ୀ଴ − p஑ ቈS ൤cଶ ൬߲2ஞ(୰,୲;୯)߲2ݎ + ଵ୰ ߲ஞ(୰,୲;୯)߲ݎ ൰൨቉.      (21) 

The homotopy is, (1 − nq)S[ξ(r, t; q) − w଴(ݎ, [(ݐ = ħqH(ݎ, ,N[ξ(r	(ݐ t; q)],               (22) 

For 	ݍ = 0, ξ(r, t; 0) = w଴(ݎ,  ,(ݐ
and, 	ݍ = ଵ௡, 	ξ ቀr, t; ଵ௡ቁ = w(r, t). 

As discussed in Section 4, the q-HASTM solution will be obtained as, 

w(r, t) = ෍ w୫(ݎ, (ݐ ൬1݊൰୫ .ஶ
୫ୀଵ  

Theorem [25]. If there exists χ (a constant) as 0 < χ < 1 such that, 	ቚหζ୮ାଵ(r, t)หቚ ≤ χ	||	ζ୮(r, t)|| for all	p and 

if truncated series ∑ ζ	୮(r, t)୩୮ୀ଴  is taken as estimated solution	ζ(ݎ,  maximum absolute truncation ,(ݐ

error is 
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||	ζ(r, t) −෍ζ୮(r, t)୩
୮ୀ଴ || ≤ 	 χ୩ାଵ1 − χ ||ζ	଴(r, t)||. 

Proof. We have, 

||	ζ(r, t) −෍ζ୮(r, t)୩
୮ୀ଴ || = ||	 ෍ ζ୮(r, t)ஶ

୮ୀ୩ାଵ || ≤ ෍ ||ζ	୮(r, t)ஶ
୮ୀ୩ାଵ || ≤ ෍ χ௠||ζ	଴(r, t)ஶ

୮ୀ୩ାଵ ||
≤ 	 χ௣ାଵ[1 + (χ)ଵ + (χ)ଶ + ⋯ ]||	ζ	଴(r, t)|| ≤ χ୩ାଵ1 − χ ||ζ	଴(r, t)||, 

that proves the theorem. 

6. Numerical experiments 

In this section, applicability of q-HASTM is illustrated via some test examples. 
Test Example 1. Taking initial condition w(r, 0) = rଶ + ctr in Eq. (2) and using Sumudu transform, 
we get, S[w(r, t)] − (୰మ୳ାୡ୰୳మ)୳ − u஑ ቂS	 ቄcଶ ቀడమன(୰,୲)డ௥మ +	ଵ୰ డ௪(௥,௧)డ௥ ቁቅቃ = 0.              (23) 

Nonlinear operator is, 

N[φ(r, t; q)] = S[φ(r, t; q)] − ൬1 − k୫n ൰ (rଶu + cruଶ)u − u஑ ቈS ቊcଶ ቆ߲ଶφ(r, t; q)߲ݎଶ +	1r 	߲φ(r, t; q)߲ݎ ቇቋ቉. 
Deformation equation for ݎ)ܪ, (ݐ = 1	is, S[w୫(r, t) − k୫w୫ିଵ	(ݎ, [(ݐ = ħᴂ୫(wሬሬሬԦ୫ିଵ),                     (24) 

where, ᴂ୫(wሬሬሬԦ୫ିଵ) = S[w୫ିଵ	] − ቀ1 − ୩୬ౣ ቁ (୰మ୳ାୡ୰୳మ)୳ − u஑ ቂS	 ቄcଶ ቀడమ୵ౣషభ	డ௥మ + ଵ୰ 	డ୵ౣషభ	డ௥ ቁቅቃ. 
Taking inverse Sumudu transform in Eq. (24), we get, w୫(r, t) = 	 k୫w୫ିଵ	(r, t) + ħ	Sିଵ[Hᴂ୫(wሬሬሬԦ୫ିଵ)].                   (25) 

Simplification gives,  w଴(r, t) = rଶ + c	t	r, wଵ(r, t) = −4	cଶħ	t஑	Γ(1 + α) − 	cଷħ	t஑ାଵ	r	Γ(2 + α), wଶ(r, t) = −4	cଶħ	n	t஑	Γ(1 + α) − 	cଷħ	n	t஑ାଵ	r	Γ(2 + α) − 4	cଶħଶ	t஑	Γ(1 + α) − 	cଷħଶ	t஑ାଵ	r	Γ(2 + α) − 	cହħଶ	tଶ஑ାଵ	rଷ	Γ(2 + 2α) + ⋯, 
and so on. 
Hence, subsequent iterations w୫	(ݎ, ݉,(ݐ ≥ 3 can be computed using Maple software package. 
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The solution is, 
w(r, t) = w଴	(r, t) + ෍ w୫(ݎ, (ݐ ൬1݊൰୫ஶ

୫ୀଵ . 
Test Example 2. Taking w(r, 0) = r + c	t	r in Eq. (2) and using Sumudu transform, we get, 

S[w(r, t)] − (୰୳ାୡ୰୳మ)୳ − u஑ ቈS	 ቂcଶ ቀడమன(୰,୲)డ௥మ +	ଵ୰ డ௪(௥,௧)డ௥ ቁቃ቉ = 0.            (26) 

Also, N[φ(r, t; q)] = S[φ(r, t; q)] − ቀ1 − ୩୬ౣ ቁ (୰୳ାୡ୰୳మ)୳ − u஑ ቂS ቄcଶ ቀడమ஦(r,t;q)డ௥మ +	ଵ୰ డ஦(r,t;q)డ௥ ቁቅቃ. 
Deformation equation for ݎ)ܪ, (ݐ = 1 is, S	[w୫(r, t) 	− 	k୫w୫ିଵ(ݎ, [(ݐ = 	ħᴂ୫(wሬሬሬԦ୫ିଵ),               (27) 

where, ᴂ୫(wሬሬሬԦ୫ିଵ) = S[w୫ିଵ	] − ቀ1 − ୩୬ౣ ቁ ݎ) + (ݎܿݑ − u஑ ቂS	 ቄcଶ ቀడమ୵ౣషభ	డ௥మ + ଵ୰ డ୵ౣషభ	డ௥ ቁቅቃ.	 
Taking inverse Sumudu transform in Eq. (27), we get, w୫(r, t) = k୫w୫ିଵ	(r, t) + 	ħ	Sିଵ[ᴂ୫(wሬሬሬԦ୫ିଵ)].                 (28) 

Simplification yields,  w଴(r, t) = r + c	t	r, wଵ(r, t) = −	cଶħ		t஑r	Γ(1 + α) − 	cଷħ		t஑ାଵ	r	Γ(2 + α), 
wଶ(r, t) = 	cଶħ		t஑	rଷ ቈ−(ħ + n)ݎଶ(1 + ݐ	ܿ + Γ(2(ߙ + α) − 	cଶħ		t஑(1 + ݐ	ܿ + Γ(2(ߙ2 + 2α) ቉ + ⋯, 

and so on. 
Hence, subsequent iterations w୫	(ݎ, ݉,(ݐ ≥ 3 can be found. 
The solution is,  w(r, t) = w଴	(r, t) + ෍ w୫(ݎ, (ݐ ൬1݊൰୫ .ஶ

୫ୀଵ  

Test Example 3. Taking w(r, 0) = √r + ୡ	୲√୰ in Eq. (2) and using Sumudu transform, we get, 

S[w(r, t)] − (√r +	ୡ	୳√୰) − u஑ ቈS	 ቂcଶ ቀడమன(୰,୲)డ௥మ +	ଵ୰ డ௪(௥,௧)డ௥ ቁቃ቉ = 0.             (29) 

N[φ(r, t; q)] = 	S[φ(r, t; q)] − ൬1 − k୫n ൰ (√r +	c	u√r) − u஑ ൥S	{cଶ ൭߲2φ(r, t; q)߲2ݎ +	1r 	߲φ(r, t; q)߲ݎ ൱}൩, 
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Deformation equation for ݎ)ܪ, (ݐ = 1 is, S[w୫(r, t) 	− 	k୫w୫ିଵ	(ݎ, [(ݐ = 	ħᴂ୫(wሬሬሬԦ୫ିଵ),                  (30) 

where, ᴂ୫(wሬሬሬԦ୫ିଵ) = 	S[w୫ିଵ	] − ቀ1 − ୩୬ౣ ቁ ቀ√r + ୡ୳√୰ቁ − u஑ ൤S	 ൜cଶ ൬߲2wm−1	߲2ݎ + 1r ߲wm−1	߲ݎ ൰ൠ൨. 
Taking inverse Sumudu transform in Eq. (30), we get, w୫(r, t) = 	 k୫w୫ିଵ	(r, t) + 	ħ	Sିଵ[ᴂ୫(wሬሬሬԦ୫ିଵ)].              (31) 

Simplification yields: w଴(r, t) = √r + c	t√r	, wଵ(r, t) = −	cଶħ		t஑(r + c	t + r	α)4	rହ/ଶ	Γ(2 + α) , 
wଶ(r, t) = 	cଶħ	t஑16	rଽ/ଶ ቈ−4	(ħ + n)ݎଶ(ݎ + ݐ	ܿ + Γ(2(ߙ	ݎ + α) − 	cଶħ		t஑൫25	ܿ	ݐ + 1)	ݎ	9 + ൯Γ(2(ߙ2 + 2α) ቉ + ⋯, 

and so on. 
Hence, subsequent iterations w୫	(ݎ, ݉,(ݐ ≥ 3 can be found. 

The solution is, w(r, t) = w଴	(r, t) + ∑ w୫(ݎ, (ݐ ቀଵ௡ቁ୫ஶ୫ୀଵ . 
7. Results and discussion 

Figures 1, 2 and 3 show behavior of numerical solution ݎ)ݓ,  .of time fractional vibration Eq (ݐ
(2) acquired at ߙ = 2 by using q-HASTM for examples 1, 2 and 3 respectively. They have been 
drawn for ߙ = 2 to show the nature of the unknown exact solution of the vibration model. Figure 4 
shows the plots of solution ݎ)ݓ, (ݐ  of Eq. (2) by q-HASTM at ߙ = 1.2, 1.6	and	2  taking ܿ = 5, ݎ = 5, ħ = −1, n = 1  for examples 1, 2 and 3 respectively. They reveal that ݎ)ݓ,  (ݐ
increases with increasing t but decreases as arbitrary order ߙ increases. This is in total agreement 
with the point discussed in section 3. In Figures 5, 8 and 11, behaviour of solution	ݎ)ݓ,  Vs. ħ at (ݐ
distinct ߙ is shown. In Figures 6, 9 and 12, behaviour of ݎ)ݓ,  Vs. t at diverse values of ħ are		(ݐ
carried out for n = 1, c = 5 = r, ߙ = 2 for examples 1, 2, 3 similarly. Distinct ħ are taken to make 
residual error small and guarantee solution convergence. In Figures 7, 10 and 13, plots of ݎ)ݓ,  (ݐ
Vs. n at different values of ߙ for c = 5 = r, ħ = −1, ݐ = 0.2	are shown for examples 1, 2 and 3 
respectively. We notice that by increasing n, ݎ)ݓ,  increases slowly but decreases with increasing 		(ݐ
order ߙ. The legitimacy of solution in convergence region is seen through ℏ and	݊-curves. Figure 
14 illustrates the comparison of numerical solution obtained by q-HASTM and methods in [1,5] at ߙ = 1.5 for example 2. Figure 15 depicts the absolute error between successive approximations at ߙ = 1.5 in example 2. It is clear from Figure 15 that there is a sharp decrease in the error between 
approximations in example 2 which confirms that the obtained solution in example 2 is convergent. 
Figure 16 shows the comparison of numerical solution by q-HASTM and methods in [3,4] at ߙ = 1.5 for example 3. Figure 17 illustrates the absolute error between successive approximations at 



988 

AIMS Mathematics  Volume 5, Issue 2, 979–1000. 

ߙ = 1.5 in example 3. It is clear from Figure 17 that there is a sharp decrease in the error between 
approximations in example 2 which again confirms that the obtained solution in example 3 is 
convergent. Figure 18 shows the comparison of solution by q-HASTM and methods in [1, 3–6, 16] at ߙ = 1.5	for example 1. Figure 19 depicts the absolute error between successive approximations at ߙ = 1.5 in example 1 which clearly indicates that the obtained solution in example 1 is convergent. 
Also, the tabular comparison of results with published work are performed in Tables 1, 3 and 5 at 
distinct values of order ߙ. Tables 2, 4 and 6 show that error between successive approximations is 
negligible and becomes zero as iterations increase. Hence, it is concluded that the q-HASTM work 
also for those physical models which have derivatives of arbitrary order and have no exact solution. 

 

Figure 1. Behaviour of solution w(r, t) of Eq. (2) by q-HASTM at ߙ = 2 for Example 1. 

 

Figure 2. Behaviour of solution w(r, t) of Eq. (2) by q-HASTM at ߙ = 2 for Example 2. 
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Figure 3. Behaviour of solution w(r, t) of Eq. (2) by q-HASTM at ߙ = 2 for Example 3. 

 

Figure 4. (a) Behaviour of approximate solutions for distinct values of ߙ by q-HASTM 
at ܿ = 5 = ,ݎ ħ = −1, n = 1	for Example 1. (b) Behaviour of approximate solutions for 
distinct ߙ by q-HASTM at ܿ = 5 = ,ݎ ħ = −1, n = 1	for Example 2. (c) Behaviour of 
approximate solutions for distinct ߙ  by q-HASTM at ܿ = 5 = ,ݎ ħ = −1, n = 1	for 
Example 3. 
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Figure 5. α-curves for n = 1, r = 5 = c, t = 0.2 for Example 1. 

 

Figure 6. ħ-curves for n = 1, r = 5 = c, α = 2 for Example 1. 

 

Figure 7. n-curves for	c = 5 = r, ħ = −1, ݐ = 0.2	for Example 1. 
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Figure 8. α-curves for n = 1, r = 5 = c, t = 0.2 for Example 2. 

 

Figure 9. ħ-curves for n = 1, r = 5 = c, ߙ = 2 for Example 2. 

 

Figure 10. n-curves for	c = 5 = r, ħ = −1, t = 0.2 for Example 2. 
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Figure 11. α-curves for n = 1, r = 5 = c, t = 0.2 for Example 3. 

 

Figure 12. ħ-curves for n = 1, r = 5 = c, ߙ = 2 for Example 3. 

 

Figure 13. n-curves for	c = 5, r = 5, ħ = −1, t = 0.2 for Example 3. 
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Figure 14. Comparison of solution by q-HASTM and methods [1,5] at ߙ = 1.5 for Example 2. 

 

Figure 15. Error between successive approximations at ߙ = 1.5 for Example 2. 
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Figure 16. Comparison of solution by q-HASTM and methods in [3,4] at ߙ = 1.5 for Example 3. 

 

Figure 17. Error between successive approximations at ߙ = 1.5 for Example 3. 
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Figure 18. Comparison of solution by q-HASTM and methods in [1,3–6,16] at ߙ =1.5	for Example 1. 

 

Figure 19. Error between successive approximations at ߙ = 1.5 for Example 1. 
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Table 1. Comparison of results at ܿ = .1, ħ = −1, n = 1 at ߙ = 1.5	and	2 for Example 1. ߙ ݐ ݎ Solution by 
q-HASTM 

Solution by operational 
Matrix method [3] 

Solution by Methods in 
[1, 4–6, 16] 

0.2 
 

1.5 0.0467182 0.0469 0.0467 

2 0.0448067 0.0448 0.0448 

0.4 1.5 0.183688 0.1838 0.1837 

2 0.179227 0.1792 0.1792 

0.6 1.5 0.410124 0.4100 0.4101 

2 0.40326 0.4032 0.4032 

0.8 
 

1.5 0.725746 0.7256 0.7257 

2 0.716907 0.7169 0.7169 

1 
 

1.5 1.13039 1.1310 1.1303 

2 1.12017 1.1203 1.1202 

Table 2. Absolute error among successive iterations when exact solution is unknown at ܿ = 0.1, ħ = −1, n = 1 at different α for Example 1. 

 ݎ 
ߙ Solution by q-HASTM ݐ  = ߙ 1.5 = 1.75 

|w2-w1|  |w3-w2|  |w2-w1|  |w3-w2| 

0.2 8.59 × 10ିହ 8.77 × 10ିଽ 2.66 × 10ିହ 5.46 × 10ିଵ଴ 

0.4 2.43 × 10ିସ 1.72 × 10ି଼ 8.97 × 10ିହ 1.54 × 10ିଽ 

0.6 4.46 × 10ିସ 2.57 × 10ି଼ 1.82 × 10ିସ 2.83 × 10ିଽ 

0.8 6.87 × 10ିସ 3.42 × 10ି଼ 3.02 × 10ିସ 4.35 × 10ିଽ 

1 9.61 × 10ିସ 4.26 × 10ି଼ 4.46 × 10ିସ 6.08 × 10ିଽ 
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Table 3. Comparison of results at ܿ = 5, ݎ = 6, ħ = −1, n = 1 at α = 1.5 and 2 for Example 2. ߙ ݐ Solution by q-HASTM Solution by methods in [1, 5] 

0.2 1.5 12.397642 12.393637 

2 12.111344 12.111344 

0.4 1.5 19.483525 19.444664 

2 18.560015 18.560015 

0.6 1.5 27.469770 27.306178 

2 25.526848 25.526871 

0.8 1.5 36.723342 36.253258 

2 33.212233 33.212664 

1 1.5 47.895372 46.896428 

2 41.851853 41.856135 

Table 4. Absolute error among successive iterations when exact solution is unknown at ܿ = 0.1, ħ = −1, n = 1 at different values of α for Example 2. 

 ݎ 
ߙ Solution by q-HASTM ݐ  = ߙ 1.5 = 1.75 

|w2-w1|  |w3-w2|  |w2-w1|  |w3-w2| 

0.2 1.08 × 10ିଷ 1.78 × 10ିହ 3.32 × 10ିସ 1.23 × 10ି଺ 

0.4 1.52 × 10ିଷ 1.75 × 10ିହ 5.58 × 10ିସ 1.74 × 10ି଺ 

0.6 1.86 × 10ିଷ 1.73 × 10ିହ 7.57 × 10ିସ 2.13 × 10ି଺ 

0.8 2.15 × 10ିଷ 1.74 × 10ିହ 9.40 × 10ିସ 2.46 × 10ି଺ 

1 2.40 × 10ିଷ 1.72 × 10ିହ 1.11 × 10ିଷ 2.75 × 10ି଺ 

Table 5. Comparison of results at ܿ = 0.1, ħ = −1, n = 1, α = 2 for Example 3. ݐ ݎ Solution by  
q-HASTM 

Solution by operational 
Matrix method [3] 

Solution by method  
in [4] 

0.2 0.49301 0.4900 0.4925 

0.4 0.69733 0.6910 0.6965 

0.6 0.85405 0.8318 0.8531 

0.8 0.98618 0.9727 0.9850 

1 1.10259 1.1763 1.1013 
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Table 6. Absolute error among successive iterations when exact solution is unknown at ܿ = 0.1, ħ = −1, n = 1 at different α for Example 3. 

 ݎ 
Solution by q-HASTM α ݐ  = 1.5 α = 1.75 

|w2-w1|  |w3-w2|  |w2-w1|  |w3-w2| 

0.2 2.02 × 10ିଷ 7.80 × 10ିହ 6.10 × 10ିସ 5.24 × 10ି଺ 

0.4 2 × 10ିଷ 5.36 × 10ିହ 7.25 × 10ିସ 5.22 × 10ି଺ 

0.6 1.99 × 10ିଷ 4.33 × 10ିହ 8.02 × 10ିସ 5.21 × 10ି଺ 

0.8 1.99 × 10ିଷ 3.72 × 10ିହ 8.61 × 10ିସ 5.20 × 10ି଺ 

1 1.98 × 10ିଷ 3.31 × 10ିହ 9.11 × 10ିଷ 5.21 × 10ି଺ 

8. Conclusion 

In this investigation, q-HASTM is effectively applied to solve the time fractional vibration 
equation. The outcomes show that the derived results are trustworthy. The simulations shown 
confirm great accuracy of gained results. It is found that this scheme is capable of diminishing the 
calculation size. The q-HASTM has parameters ݊, ħ	that manage solution convergence. It is 
exciting to observe that the q-HAM works efficiently when coupled with Sumudu transform due to 
its ‘unity’ feature. Also, the nonlinear term can easily be handled via Sumudu transform. Hence, it is 
concluded that this scheme is accurate, systematic, logical, easy to use and attractive. It can be 
applied to study a wide variety of arbitrary order models of physical, biological, medical and social 
importance. 
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