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contain Mittag-Leffler functions in the kernels. By using (s, m)-convex functions bounds of these
operators are evaluated which lead to obtain their boundedness and continuity. Moreover the presented
results can be used to get various results for known fractional integrals and functions deducible from
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via generalized fractional integrals.
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1. Introduction
Convex functions are useful in various aspects in diverse fields of mathematical sciences. They
produce an elegant theory of convex analysis, see [22,24,27].

Definition 1. [27] A function f : I — R is said to be convex function, if the following inequality holds:
fta+ A -0b) <tf(a) + (1 -0)f(D),
foralla,belandt € [0,1].

Convex functions have been extended and generalized from their analytical interpretations. A
generalization of convex function defined on right half of real line is called s-convex function given as
follows:
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Definition 2. [16] Let s € [0,1]. A function f : [0,00) — R is said to be s-convex function in the
second sense if

fta+ (1 -0b) <t fla)+ (1 -1 f(D),
holds for all a,b € [0,0) and t € [0, 1].

Another generalization of convex function defined on right half of real line is called m-convex
function given as follows:

Definition 3. /2] A function f : [0,b] — R is said to be m-convex function, where m € [0, 1] and
b > 0, if for every x,y € [0,b] and t € [0, 1] we have

fGa+m(l —1)b) <tf(a)+m(l —1)f(b).
Aforementioned functions can be generalized by (s, m)-convex functions defined as follows:

Definition 4. [2] A function f : [0,b] — R is said to be (s, m)-convex function, where (s, m) € [0, 17?
and b > 0, if for every x,y € [0,b] and t € [0, 1] we have

f(ta+m(1 = Db) < £ fa) + m(1 — ') f(b).

For some recent citations and utilizations of (s, m)-convex functions one can see [5,10,18,19,23,31]
and references therein. Convex functions and related definitions have been widely used to develop the
theory of inequalities and their applications. A huge amount of work by many authors had/has been
dedicated to theory and applications of mathematical inequalities, see [22,24,27]. The aim of this
paper is the study of boundedness, continuity of fractional integral operators containing Mittag-Leffler
functions via (s, m)-convex functions.

The Mittag-Leffler function denoted by E,(.) was introduced by Gosta Mittag-Leffler in 1903 [21]

(&9

lJ’l
E. (1) = Z m,

n=0

where 7, € C, R(a) > 0 and I'() is the gamma function.

In the solution of fractional integral equations and fractional differential equations the
Mittag-Lefller function arises naturally. The Mittag-Leffler function is a direct generalization of some
special functions. It was consequently explored by Wiman, Pollard, Humbert, Agarwal and Feller,
see [15]. It is further generalized and extended by various authors, for details see [4, 15, 26, 28, 29].
Andri€ et al. introduced the following extended Mittag-Lefller function:

Definition 5. [3] Let u,a,1,y,c € C, R(u), R(a), R() > 0, R(c) > R(y) > 0withp >0, 5 > 0 and
0 < k <6 + R(u). Then the extended generalized Mittag-Leffler function Efo’f’c(t; p) is defined by:

(o)

Erokep. ) By +nk,c—y) (w1 ’
ot (5) Z; By,c—y)  Tun+a) Dy

(1.1)

where B, is defined by
1
Bp(x,y) = f rI (1 =y leT o dr
0

I'(c+nk)
')

and (C)nx =
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A derivative formula of the extended generalized Mittag-Lefller function is given in the following
lemma.

Lemmal. [3]Ifme N, w,u,a,ly,ceC, Ru), R(@),R() > 0,R(c)>R(y)>0withp >0,6§ >0
and 0 < k < 6 + R(u), then

w,a,l wa—m,

d m
(Zt) [ BN (wt's p)] = (" EXSR (it ) R(@) > m. (1.2)
Remark 1. The extended Mittag-Leffler function (1.1) produces the related functions defined in [25,
26,28-30], see [32, Remark 1.3].

Next we give the definition of the fractional integral operator containing the extended generalized
Mittag-Leffler function (1.1).

Definition 6. [3] Let w,u,a,1,y,c € C, R(u), R(a), R() > 0, R(c) > R(y) >0withp >0,6 >0
and 0 < k < 6 + R(u). Let f € Li[a,b] and x € [a,b]. Then the generalized fractional integral
operators containing Mittag-Leffler function are defined by:

(o) G p) = f (x = " BT (w(x — 0 p)f()dt, (1.3)

and

(Zi'?j,,, f)(xp) = f(t X) T EN (wlt — x)s p) f(nydt. (1.4)

Remark 2. The operators (1.3) and (1.4) produce in particular several kinds of known fractional
integral operators, see [32, Remark 1.4]

The classical Riemann-Liouville fractional integral operator is defined as follows:

Definition 7. [30] Let f € Li[a,b]. Then Riemann-Liouville fractional integral operators of order
a € C (R(a) > 0) are defined as follows:

1 b
L0 = s f (x =0 f()dt, x > a, (1.5)

1 X
I f(x) = @ f (t — x)* ' f(dt, x < b. (1.6)

It can be noted that ( 7ok f) (x;0) = 1% f(x) and ( 70k f) (x;0) = I f(x). From fractional

,u a,l,0,a* /1 a,1,0,b~
integral operators (1.3) and (1.4), we have (see [13]):

Joar(x;p) = (€205 1) (x5 p) = (x = @)"ELoyT (w(x = a)'s p), (1.7)

(6 p) = (€570 1) (53 p) = (b = XPELGES (w(b = x)'; p). (1.8)

Now a days integral operators have been proved very useful in the advancement of mathematical
inequalities. Recently, several authors have established fractional integral inequalities by utilizing
different types of integral operators, see [1,6-9,11-14,17,20, 32] and references therein.
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In the upcoming section upper bounds of generalized fractional integral operators are derived by
using (s, m)-convexity, and some particular results are produced. By using these bounds continuity of
these operators is established. Furthermore a modulus inequality is established for differentiable
function f such that |f’| is (s,m)-convex. By imposing an additional condition Hadamard type
inequality is obtained for (s, m)-convex functions. Also the results of this paper are connected with

already known results.

2. Main results

Theorem 1. Let f : [a,b] — R be a real valued function. If f is positive and (s, m)-convex, then for

a,fB > 1, the following inequality holds for generalized fractional integral operators:

(€05 o f) () + (€155, ) (x: p)

< (f(")+—’”sf(x)) (x = @) Jo-1.4+(x; P)
s+1
4 (W) (b = x)Jp-15-(x; p), x € [a, b].

Proof. Let x € [a, b]. Then for t € [a, x) and @ > 1, one can has the following inequality:

(x—0)"" 1E761 (w(x —ty;p) < (x—a)*” IEZZl;c(w(x—a)”QP)-

The function f is (s, m)-convex, therefore one can obtain

1 s - (22 co

By multiplying (2.2) and (2.3) and then integrating over [a, x], we get

[ < (

f x(x D™ EXO (w(x — oy p) f(t)dt

< (- EI (w(x - a); )( /(@) f( — 1y'dt

oo [ (1= (£22) )ar)

that is, the left integral operator satisfies the following inequality:

s+ 1

(€705 oo f) (3 p) < (x = @)1 (x: p) (
Now on the other hand for 7 € (x, b] and 8 > 1, one can has the following inequality:
(t = BN (@l = x5 p) < (b= xf T ELg (@b — 2" p).

Again from (s, m)-convexity of f, we have

SEC +m(1 —(ff) )f(x)

f(@® <(

(2.1

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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By multiplying (2.5) and (2.6) and then integrating over [x, b], we have
f (1 = 0 74 (wlt - 2 p) o)
< (b—xyEVS (b - x); p)( f@ f (t — x)°dt

s -2

that is, the right integral operator satisfies the following inequality:

v,0,k,c
(#ﬁlwa)(x p) < (b—x)Jp1-(x; P)( T 1
By Adding (2.4) and (2.7), the required inequality (2.1) is established.
Some particular results are stated in the following corollaries.

Corollary 1. Ifwe set @« = B in (2.1), then the following inequality is obtained:

(Gratoaf) (p) + (€t o f) (i)

(M) (x — a)Jy_1.4+(x; p)

s+ 1

+ (M) (b = X)Jo-15-(x; p), x € [a, b].
s+ 1

2.7)

(2.8)

Corollary 2. Along with assumptions of Theorem 1, if f € Ly|a, b], then the following inequality is

obtained.:

(050 f) i p) + (€515, ) ()
< Wls(1 + ms)

s+ 1

Corollary 3. For a = B in (2.9), we get the following result:
(€hore e f) e p) + (€ 1 f) (s p)

Ll’fHOO [( - )Da 1a+(-x P)+(b X)Da 1,6 (.X p)]

Corollary 4. For s = 1 in (2.9), we get the following result:

(€705 oo f) ) + (€151, ) (x: p)
< WAllo(1 +m)
2

| = @)amr.0 (55 p) + (b = )1 (x5 )|

|Gx = @) arar (6 p) + (0 = X)Jp14- (x5 )|

(2.9)

(2.10)

(2.11)
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Theorem 2. With the assumptions of Theorem 1 if f € Lyla,b], then operator defined in (1.3) and
(1.4) are bounded and continuous.

Proof. 1f f € L.[a, b], then from (2.4) we have

2/ flleo(X + ms)lx — alJo—1.a+(x; p)
v,0,k,c . a-1l,a
‘( tioar)( ,p)| < o (2.12)

2||f”oo(b a)Jo-1,4+(b; p)(1 +MS)

s+1
that is
(€025 0o f) (5 )| < Ml o,

where M = z(b_a)J"“gib;p M) Therefore ( Zi];z)mf ) (x; p) is bounded also it is easy to see that it is

linear, hence this is continuous operator. Also on the other hand from (2.7) we can obtain:

(55, 7) (xs p)| < Kl

2(b—a)Jg_; p-(a;p)(1 . .. .
where K = 2@ @I - pperefore (ey’é’k’c f ) (x; p) is bounded also it is linear, hence
s+1 wB.1Lw,b

continuous. O

Theorem 3. Let f : [a,b] — R be a real valued function. If f is differentiable and |f’| is (s, m)-convex,

then for a, B > 1, the following fractional integral inequality for generalized integral operators (1.3)
and (1.4) holds:

‘(f,fﬁ’f’ﬁz,w,mf) (6 p) + (€501 0 f) (x:P) (2.13)
- (Ja—l (5 p)fa) + Jpo1-(x; P)f(b))‘
(|f’(a)| + ms|f’ (%)

s+ 1

) (x - a)J(x—l,a+(x; P)

X (If’(b)l :fls'fml) s (2 o € LB
Proof. As x € [a,b] and £ € [a, x), by using (s, m)-convexity of |f’|, we have
7o < (Z=2) 1@+ m (1= (S22 )i ol (2.14)
From (2.14), one can has
Fo < (Z2) 1@l m(n- (2] )i, (2.15)
The product of (2.2) and (2.15), gives the following inequality:
(x = 0 BN (w(x = 0 p) £ (t)dt (2.16)

w,a,l

< (- B - ot p) (3 ) 1@l +m(1 - (=

) )iri).
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After integrating above inequality over [a, x], we get
f (x — t)“‘lEy‘skC(cu(x -t p)f(t)dt (2.17)
< (x— ) EX (w(x - ays p f'ta) f (x - 0)°dt
(X - a)s a

mlf () f(l— _Z) dt)

=(x-— a)“EZ:Z’f’C(w(x —a);p (

s+ 1

lf"(a)| + mSIf’(X)I)

The left hand side of (2.17) is calculated as follows:

f e ! EV%(w(x — 1y p)f (0, (2.18)

put x — ¢ = z thatis t = x — z, also using the derivative property (1.2) of Mittag-Lefller function, we
have

f - IEZ ZIEC(‘UZNQ S (x—2)dz
0
S (L e @ _f PTEN (w2 p)f(x - 2)dz,
0

now put x — z = t in second term of the right hand side of the above equation and then using (1.3), we
get

fo_ “HEN (W p)f (x - 2)dz
= (x—a)" ' ElST (w(x = aY'; p)f(@) = (€05t e f) (5 ).

Therefore (2.17) takes the following form:

(Jamrar(x: ) fl@) = (€555, o f) (x: D) (2.19)
su—muﬂwmpwww”“mwuﬂ.
s+ 1
Also from (2.14), one can has
roz-((3= )vnm+m@—@¢—ﬂvmm) (2.20)

Following the same procedure as we did for (2.15), one can obtain:
(€045 1arf) (4 P) = Jamrar (33 P) (@) (221
|f" (@)l + ms|f'(x)|
su—awam«np%f() f())

s+1
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From (2.19) and (2.21), we get

'(Ez:j’f’lc,l,w,wf) (X; p) - Ja—l,a+ (X; p)f(a)‘ (222)
< (x = a)gmr 0+ (x: ) ('f @) S++mlslf’(x>|) |

Now we let x € [a, b] and ¢ € (x, b]. Then by using (s, m)-convexity of |f’| we have

=) e+ m(l - (b%fc) )If’(x)l. (223)

ol (- S

on the same lines as we have done for (2.2), (2.15) and (2.20) one can get from (2.5) and (1.7), the
following inequality:

(€55, ) G 2) = Jpr (5 D)D) (2.24)
I (B)| + ms|f’(x)]
< (b= x)Jp1-(x; P)( / i1 / ) .
From inequalities (2.22) and (2.24) via triangular inequality (2.13) is obtained. |

Corollary 5. If we put @ = B in (2.13), then the following inequality is obtained:

(€045 e f) ) + (€255 £) G55 ) (2.25)
= (Jamt.a* (%3 ) (@) + Jam1 - (x: ) f(D))]
(lf'(a)l + mslf'(x)l) (= @) or e (25 )

s+ 1

N (If’(b)l + ms|f7(x)]

11 )(b = X)Jo-15-(x; p), X € [a,b].

It is easy to prove the next lemma which will be helpful to produce Hadamard type estimations for
the generalized fractional integral operators.

Lemma 2. Let f : [a,b] — R be (s,m)-convex function. If f is f(%c) = f(x) and (s,m) € [0, 1%,
then the following inequality holds:

f(a+mb)§(l+m)f(x)' (2.26)
2 2s
Proof. Fort € [0, 1] we have
atmb (1-tHa+mb ta+m(l-10b
5= > + > . (2.27)
As fis (s, m)-convex function, we have
f(a +2mb) LJa —t;csl+mtb) N mf(‘;’"TH). 2.28)
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Let x = a(1 — t) + mtb. Then we have a + mb — x = ta + m(1 — t)b.

a+mb\  flx)  f(EE)
< . 2.2
f( 2 )‘ 2 T (229)
Hence by using f (%) = f(x), the inequality (2.26) can be obtained. O

Theorem 4. Let f : [a,b] — R, a > b, be a real valued function. If f is positive, (s, m)-convex
and f(a + mb — x) = f(x), then for a,B > 0, the following inequality holds for generalized fractional
integral operators:

28 a+ mb
Tt mf( ) )[Jﬂ+1,b-(a§l?) + Ja+1,a+(b;p)] (2.30)

< (€hgiinan ) @) + (€000 f) B2 P)

< g1 (@3 ) + Jumrao (03 )| (B - (M)
+1
Proof. For x € [a, b], we have
(x = afEV5)“(w(x — ay'; p) < (b - af’El5)“(w(b — a); p), B > 0. (2.31)
As fis (s, m)-convex so for x € [a, b], we have:
b _ N
fo < (322 sy + m( ( ’ x) )f(a). (2.32)
—da

By multiplying (2.31) and (2.32) and then integrating over [a, b], we get
b
f (x - a)ﬁEZg]; “(w(x —aY; p)f(x)dx
< (b—-afEl5 (w(b - ay"; p)( ) f (x —a)’dx + mf(a)f (1 - (b x) )dx)

From which we have

(55, 1)@ p) < (b — aP BV (b — ays (M) (2.33)
that is
(€0 s f) (@ p) < (b= a) Jp1-(a: p) (W) . (2.34)
Now on the other hand for x € [a, b], we have
(b= 0)"EN (b - x)'; p) < (b — a)"EXS  (w(b — ay's p), a > 0. (2.35)

By multiplying (2.32) and (2.35) and then integrating over [a, b], we get
b
[ b= o B o - 2y prsod
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< (b-a)"El (b - a)’ p)( /() f(x a) dx+mf(a)f (1—(

From which we have

)

c a+ C b
(€205, ue ) (B p) < (b= @ X% (w(b — a}; p) (W) (2.36)
that is )
(EZ,’i’f’f,z,w,mf) (b; p) < (b= @) Jo1.4+(b5 ) (%) : (2.37)

Adding (2.34) and (2.37), we get;
(€ 1) @ P) + (€ 0o f) B3 ) (2.38)

b
< [J,B—l,b*(a;]?) + Ja—1,a+(b;p)] = (W)

Multiplying (2.26) with (x — a)ﬂENkC(w(x a)*; p) and integrating over [a, b], we get

b
f(a +2mb)f(x a)ﬁEZZ]l“(w(x a); p)dx (2.39)

1+

m ’ 76kc
2s f (x = @ Ej 5 (w(x — a)'; p) f(x)dx.

By using (1.4) and (1.7), we get

a+ mb 1+m
f( > )J,B+1,b-(a;p)§ >

<

( ygflclwb f ) (a; p). (2.40)

By multiplying (2.26) with (b — x)“Ey ok " “(w(b — x)*; p) and integrating over [a, b], also using (1.3) and
(1.7), we get

a+ mb 1+m .
f( 5 )JMW (b:p) <~ (€t f) ). (2.41)
By adding (2.40) and (2.41), we get;
2° a+ mb
Tt mf( > )[Jﬁ+1,h-(a;l?) + Ja+1,a+(b;P)] (2.42)
< (ersanf) @ P) + (€001 0 f) (3 D).
By combining (2.38) and (2.42), inequality (2.30) can be obtained. O
Corollary 6. If we put a = B in (2.30), then the following inequality is obtained:
2° a+ mb
f [Ja+l,b‘ ((l; P) + Ja+l,a+(b; P)] (243)
1+m 2

< (€0t ian f) @ p) + (0t e f) B P)

b
< Jaor-(@; p) + Joor1.a+(b; p)] (b — (W)
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3. Conclusion

This work deals with the boundedness of generalized fractional integral operators given in (1.3)
and (1.4), by using (s, m)-convex functions. The results of this paper provide the boundedness and
continuity of several known integral operators defined in [25,26,28-30]. By applying (s, m)-convexity
of functions f and |f’|, variable bounds of sum of left and right definitions of these operators are
obtained, while by imposing an additional condition a Hadamard inequality is proved. All the results
hold for convex, m-convex and s-convex functions and for integral operators given in [25, 26, 28-30].
The reader can obtain results for s-convex functions and for convex functions proved in [11]. The
method adopted in this paper can be applied to derive bounds of other kinds of well known integral
operators already exist in literature.
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