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contain Mittag-Leffler functions in the kernels. By using (s, m)-convex functions bounds of these
operators are evaluated which lead to obtain their boundedness and continuity. Moreover the presented
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via generalized fractional integrals.
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1. Introduction
Convex functions are useful in various aspects in diverse fields of mathematical sciences. They
produce an elegant theory of convex analysis, see [22,24,27].

Definition 1. [27] A function f : I — R is said to be convex function, if the following inequality holds:
fta+ A -0b) <tf(a) + (1 -0)f(D),
foralla,belandt € [0,1].

Convex functions have been extended and generalized from their analytical interpretations. A
generalization of convex function defined on right half of real line is called s-convex function given as
follows:
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Definition 2. [16] Let s € [0,1]. A function f : [0,00) — R is said to be s-convex function in the
second sense if

fta+ (1 -0b) <t fla)+ (1 -1 f(D),
holds for all a,b € [0,0) and t € [0, 1].

Another generalization of convex function defined on right half of real line is called m-convex
function given as follows:

Definition 3. /2] A function f : [0,b] — R is said to be m-convex function, where m € [0, 1] and
b > 0, if for every x,y € [0,b] and t € [0, 1] we have

fGa+m(l —1)b) <tf(a)+m(l —1)f(b).
Aforementioned functions can be generalized by (s, m)-convex functions defined as follows:

Definition 4. [2] A function f : [0,b] — R is said to be (s, m)-convex function, where (s, m) € [0, 17?
and b > 0, if for every x,y € [0,b] and t € [0, 1] we have

f(ta+m(1 = Db) < £ fa) + m(1 — ') f(b).

For some recent citations and utilizations of (s, m)-convex functions one can see [5,10,18,19,23,31]
and references therein. Convex functions and related definitions have been widely used to develop the
theory of inequalities and their applications. A huge amount of work by many authors had/has been
dedicated to theory and applications of mathematical inequalities, see [22,24,27]. The aim of this
paper is the study of boundedness, continuity of fractional integral operators containing Mittag-Leffler
functions via (s, m)-convex functions.

The Mittag-Leffler function denoted by E,(.) was introduced by Gosta Mittag-Leffler in 1903 [21]

(&9

lJ’l
E. (1) = Z m,

n=0

where 7, € C, R(a) > 0 and I'() is the gamma function.

In the solution of fractional integral equations and fractional differential equations the
Mittag-Lefller function arises naturally. The Mittag-Leffler function is a direct generalization of some
special functions. It was consequently explored by Wiman, Pollard, Humbert, Agarwal and Feller,
see [15]. It is further generalized and extended by various authors, for details see [4, 15, 26, 28, 29].
Andri€ et al. introduced the following extended Mittag-Lefller function:

Definition 5. [3] Let u,a,1,y,c € C, R(u), R(a), R() > 0, R(c) > R(y) > 0withp >0, 5 > 0 and
0 < k <6 + R(u). Then the extended generalized Mittag-Leffler function Efo’f’c(t; p) is defined by:

(o)

Erokep. ) By +nk,c—y) (w1 ’
ot (5) Z; By,c—y)  Tun+a) Dy

(1.1)

where B, is defined by
1
Bp(x,y) = f rI (1 =y leT o dr
0

I'(c+nk)
')

and (C)nx =
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A derivative formula of the extended generalized Mittag-Lefller function is given in the following
lemma.

Lemmal. [3]Ifme N, w,u,a,ly,ceC, Ru), R(@),R() > 0,R(c)>R(y)>0withp >0,6§ >0
and 0 < k < 6 + R(u), then

w,a,l wa—m,

d m
(Zt) [ BN (wt's p)] = (" EXSR (it ) R(@) > m. (1.2)
Remark 1. The extended Mittag-Leffler function (1.1) produces the related functions defined in [25,
26,28-30], see [32, Remark 1.3].

Next we give the definition of the fractional integral operator containing the extended generalized
Mittag-Leffler function (1.1).

Definition 6. [3] Let w,u,a,1,y,c € C, R(u), R(a), R() > 0, R(c) > R(y) >0withp >0,6 >0
and 0 < k < 6 + R(u). Let f € Li[a,b] and x € [a,b]. Then the generalized fractional integral
operators containing Mittag-Leffler function are defined by:

(o) G p) = f (x = " BT (w(x — 0 p)f()dt, (1.3)

and

(Zi'?j,,, f)(xp) = f(t X) T EN (wlt — x)s p) f(nydt. (1.4)

Remark 2. The operators (1.3) and (1.4) produce in particular several kinds of known fractional
integral operators, see [32, Remark 1.4]

The classical Riemann-Liouville fractional integral operator is defined as follows:

Definition 7. [30] Let f € Li[a,b]. Then Riemann-Liouville fractional integral operators of order
a € C (R(a) > 0) are defined as follows:

1 b
L0 = s f (x =0 f()dt, x > a, (1.5)

1 X
I f(x) = @ f (t — x)* ' f(dt, x < b. (1.6)

It can be noted that ( 7ok f) (x;0) = 1% f(x) and ( 70k f) (x;0) = I f(x). From fractional

,u a,l,0,a* /1 a,1,0,b~
integral operators (1.3) and (1.4), we have (see [13]):

Joar(x;p) = (€205 1) (x5 p) = (x = @)"ELoyT (w(x = a)'s p), (1.7)

(6 p) = (€570 1) (53 p) = (b = XPELGES (w(b = x)'; p). (1.8)

Now a days integral operators have been proved very useful in the advancement of mathematical
inequalities. Recently, several authors have established fractional integral inequalities by utilizing
different types of integral operators, see [1,6-9,11-14,17,20, 32] and references therein.
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In the upcoming section upper bounds of generalized fractional integral operators are derived by
using (s, m)-convexity, and some particular results are produced. By using these bounds continuity of
these operators is established. Furthermore a modulus inequality is established for differentiable
function f such that |f’| is (s,m)-convex. By imposing an additional condition Hadamard type
inequality is obtained for (s, m)-convex functions. Also the results of this paper are connected with

already known results.

2. Main results

Theorem 1. Let f : [a,b] — R be a real valued function. If f is positive and (s, m)-convex, then for

a,fB > 1, the following inequality holds for generalized fractional integral operators:

(€05 o f) () + (€155, ) (x: p)

< (f(")+—’”sf(x)) (x = @) Jo-1.4+(x; P)
s+1
4 (W) (b = x)Jp-15-(x; p), x € [a, b].

Proof. Let x € [a, b]. Then for t € [a, x) and @ > 1, one can has the following inequality:

(x—0)"" 1E761 (w(x —ty;p) < (x—a)*” IEZZl;c(w(x—a)”QP)-

The function f is (s, m)-convex, therefore one can obtain

1 s - (22 co

By multiplying (2.2) and (2.3) and then integrating over [a, x], we get

[ < (

f x(x D™ EXO (w(x — oy p) f(t)dt

< (- EI (w(x - a); )( /(@) f( — 1y'dt

oo [ (1= (£22) )ar)

that is, the left integral operator satisfies the following inequality:

s+ 1

(€705 oo f) (3 p) < (x = @)1 (x: p) (
Now on the other hand for 7 € (x, b] and 8 > 1, one can has the following inequality:
(t = BN (@l = x5 p) < (b= xf T ELg (@b — 2" p).

Again from (s, m)-convexity of f, we have

SEC +m(1 —(ff) )f(x)

f(@® <(

(2.1

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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By multiplying (2.5) and (2.6) and then integrating over [x, b], we have
f (1 = 0 74 (wlt - 2 p) o)
< (b—xyEVS (b - x); p)( f@ f (t — x)°dt

s -2

that is, the right integral operator satisfies the following inequality:

v,0,k,c
(#ﬁlwa)(x p) < (b—x)Jp1-(x; P)( T 1
By Adding (2.4) and (2.7), the required inequality (2.1) is established.
Some particular results are stated in the following corollaries.

Corollary 1. Ifwe set @« = B in (2.1), then the following inequality is obtained:

(Gratoaf) (p) + (€t o f) (i)

(M) (x — a)Jy_1.4+(x; p)

s+ 1

+ (M) (b = X)Jo-15-(x; p), x € [a, b].
s+ 1

2.7)

(2.8)

Corollary 2. Along with assumptions of Theorem 1, if f € Ly|a, b], then the following inequality is

obtained.:

(050 f) i p) + (€515, ) ()
< Wls(1 + ms)

s+ 1

Corollary 3. For a = B in (2.9), we get the following result:
(€hore e f) e p) + (€ 1 f) (s p)

Ll’fHOO [( - )Da 1a+(-x P)+(b X)Da 1,6 (.X p)]

Corollary 4. For s = 1 in (2.9), we get the following result:

(€705 oo f) ) + (€151, ) (x: p)
< WAllo(1 +m)
2

| = @)amr.0 (55 p) + (b = )1 (x5 )|

|Gx = @) arar (6 p) + (0 = X)Jp14- (x5 )|

(2.9)

(2.10)

(2.11)
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Theorem 2. With the assumptions of Theorem 1 if f € Lyla,b], then operator defined in (1.3) and
(1.4) are bounded and continuous.

Proof. 1f f € L.[a, b], then from (2.4) we have

2/ flleo(X + ms)lx — alJo—1.a+(x; p)
v,0,k,c . a-1l,a
‘( tioar)( ,p)| < o (2.12)

2||f”oo(b a)Jo-1,4+(b; p)(1 +MS)

s+1
that is
(€025 0o f) (5 )| < Ml o,

where M = z(b_a)J"“gib;p M) Therefore ( Zi];z)mf ) (x; p) is bounded also it is easy to see that it is

linear, hence this is continuous operator. Also on the other hand from (2.7) we can obtain:

(55, 7) (xs p)| < Kl

2(b—a)Jg_; p-(a;p)(1 . .. .
where K = 2@ @I - pperefore (ey’é’k’c f ) (x; p) is bounded also it is linear, hence
s+1 wB.1Lw,b

continuous. O

Theorem 3. Let f : [a,b] — R be a real valued function. If f is differentiable and |f’| is (s, m)-convex,

then for a, B > 1, the following fractional integral inequality for generalized integral operators (1.3)
and (1.4) holds:

‘(f,fﬁ’f’ﬁz,w,mf) (6 p) + (€501 0 f) (x:P) (2.13)
- (Ja—l (5 p)fa) + Jpo1-(x; P)f(b))‘
(|f’(a)| + ms|f’ (%)

s+ 1

) (x - a)J(x—l,a+(x; P)

X (If’(b)l :fls'fml) s (2 o € LB
Proof. As x € [a,b] and £ € [a, x), by using (s, m)-convexity of |f’|, we have
7o < (Z=2) 1@+ m (1= (S22 )i ol (2.14)
From (2.14), one can has
Fo < (Z2) 1@l m(n- (2] )i, (2.15)
The product of (2.2) and (2.15), gives the following inequality:
(x = 0 BN (w(x = 0 p) £ (t)dt (2.16)

w,a,l

< (- B - ot p) (3 ) 1@l +m(1 - (=

) )iri).
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After integrating above inequality over [a, x], we get
f (x — t)“‘lEy‘skC(cu(x -t p)f(t)dt (2.17)
< (x— ) EX (w(x - ays p f'ta) f (x - 0)°dt
(X - a)s a

mlf () f(l— _Z) dt)

=(x-— a)“EZ:Z’f’C(w(x —a);p (

s+ 1

lf"(a)| + mSIf’(X)I)

The left hand side of (2.17) is calculated as follows:

f e ! EV%(w(x — 1y p)f (0, (2.18)

put x — ¢ = z thatis t = x — z, also using the derivative property (1.2) of Mittag-Lefller function, we
have

f - IEZ ZIEC(‘UZNQ S (x—2)dz
0
S (L e @ _f PTEN (w2 p)f(x - 2)dz,
0

now put x — z = t in second term of the right hand side of the above equation and then using (1.3), we
get

fo_ “HEN (W p)f (x - 2)dz
= (x—a)" ' ElST (w(x = aY'; p)f(@) = (€05t e f) (5 ).

Therefore (2.17) takes the following form:

(Jamrar(x: ) fl@) = (€555, o f) (x: D) (2.19)
su—muﬂwmpwww”“mwuﬂ.
s+ 1
Also from (2.14), one can has
roz-((3= )vnm+m@—@¢—ﬂvmm) (2.20)

Following the same procedure as we did for (2.15), one can obtain:
(€045 1arf) (4 P) = Jamrar (33 P) (@) (221
|f" (@)l + ms|f'(x)|
su—awam«np%f() f())

s+1
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From (2.19) and (2.21), we get

'(Ez:j’f’lc,l,w,wf) (X; p) - Ja—l,a+ (X; p)f(a)‘ (222)
< (x = a)gmr 0+ (x: ) ('f @) S++mlslf’(x>|) |

Now we let x € [a, b] and ¢ € (x, b]. Then by using (s, m)-convexity of |f’| we have

=) e+ m(l - (b%fc) )If’(x)l. (223)

ol (- S

on the same lines as we have done for (2.2), (2.15) and (2.20) one can get from (2.5) and (1.7), the
following inequality:

(€55, ) G 2) = Jpr (5 D)D) (2.24)
I (B)| + ms|f’(x)]
< (b= x)Jp1-(x; P)( / i1 / ) .
From inequalities (2.22) and (2.24) via triangular inequality (2.13) is obtained. |

Corollary 5. If we put @ = B in (2.13), then the following inequality is obtained:

(€045 e f) ) + (€255 £) G55 ) (2.25)
= (Jamt.a* (%3 ) (@) + Jam1 - (x: ) f(D))]
(lf'(a)l + mslf'(x)l) (= @) or e (25 )

s+ 1

N (If’(b)l + ms|f7(x)]

11 )(b = X)Jo-15-(x; p), X € [a,b].

It is easy to prove the next lemma which will be helpful to produce Hadamard type estimations for
the generalized fractional integral operators.

Lemma 2. Let f : [a,b] — R be (s,m)-convex function. If f is f(%c) = f(x) and (s,m) € [0, 1%,
then the following inequality holds:

f(a+mb)§(l+m)f(x)' (2.26)
2 2s
Proof. Fort € [0, 1] we have
atmb (1-tHa+mb ta+m(l-10b
5= > + > . (2.27)
As fis (s, m)-convex function, we have
f(a +2mb) LJa —t;csl+mtb) N mf(‘;’"TH). 2.28)
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Let x = a(1 — t) + mtb. Then we have a + mb — x = ta + m(1 — t)b.

a+mb\  flx)  f(EE)
< . 2.2
f( 2 )‘ 2 T (229)
Hence by using f (%) = f(x), the inequality (2.26) can be obtained. O

Theorem 4. Let f : [a,b] — R, a > b, be a real valued function. If f is positive, (s, m)-convex
and f(a + mb — x) = f(x), then for a,B > 0, the following inequality holds for generalized fractional
integral operators:

28 a+ mb
Tt mf( ) )[Jﬂ+1,b-(a§l?) + Ja+1,a+(b;p)] (2.30)

< (€hgiinan ) @) + (€000 f) B2 P)

< g1 (@3 ) + Jumrao (03 )| (B - (M)
+1
Proof. For x € [a, b], we have
(x = afEV5)“(w(x — ay'; p) < (b - af’El5)“(w(b — a); p), B > 0. (2.31)
As fis (s, m)-convex so for x € [a, b], we have:
b _ N
fo < (322 sy + m( ( ’ x) )f(a). (2.32)
—da

By multiplying (2.31) and (2.32) and then integrating over [a, b], we get
b
f (x - a)ﬁEZg]; “(w(x —aY; p)f(x)dx
< (b—-afEl5 (w(b - ay"; p)( ) f (x —a)’dx + mf(a)f (1 - (b x) )dx)

From which we have

(55, 1)@ p) < (b — aP BV (b — ays (M) (2.33)
that is
(€0 s f) (@ p) < (b= a) Jp1-(a: p) (W) . (2.34)
Now on the other hand for x € [a, b], we have
(b= 0)"EN (b - x)'; p) < (b — a)"EXS  (w(b — ay's p), a > 0. (2.35)

By multiplying (2.32) and (2.35) and then integrating over [a, b], we get
b
[ b= o B o - 2y prsod
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< (b-a)"El (b - a)’ p)( /() f(x a) dx+mf(a)f (1—(

From which we have

)

c a+ C b
(€205, ue ) (B p) < (b= @ X% (w(b — a}; p) (W) (2.36)
that is )
(EZ,’i’f’f,z,w,mf) (b; p) < (b= @) Jo1.4+(b5 ) (%) : (2.37)

Adding (2.34) and (2.37), we get;
(€ 1) @ P) + (€ 0o f) B3 ) (2.38)

b
< [J,B—l,b*(a;]?) + Ja—1,a+(b;p)] = (W)

Multiplying (2.26) with (x — a)ﬂENkC(w(x a)*; p) and integrating over [a, b], we get

b
f(a +2mb)f(x a)ﬁEZZ]l“(w(x a); p)dx (2.39)

1+

m ’ 76kc
2s f (x = @ Ej 5 (w(x — a)'; p) f(x)dx.

By using (1.4) and (1.7), we get

a+ mb 1+m
f( > )J,B+1,b-(a;p)§ >

<

( ygflclwb f ) (a; p). (2.40)

By multiplying (2.26) with (b — x)“Ey ok " “(w(b — x)*; p) and integrating over [a, b], also using (1.3) and
(1.7), we get

a+ mb 1+m .
f( 5 )JMW (b:p) <~ (€t f) ). (2.41)
By adding (2.40) and (2.41), we get;
2° a+ mb
Tt mf( > )[Jﬁ+1,h-(a;l?) + Ja+1,a+(b;P)] (2.42)
< (ersanf) @ P) + (€001 0 f) (3 D).
By combining (2.38) and (2.42), inequality (2.30) can be obtained. O
Corollary 6. If we put a = B in (2.30), then the following inequality is obtained:
2° a+ mb
f [Ja+l,b‘ ((l; P) + Ja+l,a+(b; P)] (243)
1+m 2

< (€0t ian f) @ p) + (0t e f) B P)

b
< Jaor-(@; p) + Joor1.a+(b; p)] (b — (W)
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3. Conclusion

This work deals with the boundedness of generalized fractional integral operators given in (1.3)
and (1.4), by using (s, m)-convex functions. The results of this paper provide the boundedness and
continuity of several known integral operators defined in [25,26,28-30]. By applying (s, m)-convexity
of functions f and |f’|, variable bounds of sum of left and right definitions of these operators are
obtained, while by imposing an additional condition a Hadamard inequality is proved. All the results
hold for convex, m-convex and s-convex functions and for integral operators given in [25, 26, 28-30].
The reader can obtain results for s-convex functions and for convex functions proved in [11]. The
method adopted in this paper can be applied to derive bounds of other kinds of well known integral
operators already exist in literature.
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