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Abstract: Data envelopment analysis (DEA) is a data-oriented procedure to evaluate the relative 

performances of a set of homogenous decision making units (DMUs) with multiple incommensurate 

inputs and outputs. Performance measurement using tools such as DEA needs to construct an 

empirical production technology set. In this analysis, DMUs are partitioned into two groups: efficient 

and inefficient. Inefficient DMUs are projected onto efficient frontier in such a way that their inputs 

are reduced and their outputs are increased. In this sense, finding a projection point with the shortest 

distance is important and it is a most frequently studied subject in the field of DEA. In this paper, a 

two-steps procedure is proposed to determine a projection point on the efficient frontier with closest 

distance. The reference point is constructed in such a way that it is located on the strong defining 

hyperplane of the DEA technology set. As we will show, the low computational efforts and the 

guarantee of determining an efficient projection point on the strong efficient frontier are the two 

important advantages of the proposed model.To show the applicability of the proposed approach, a 

real case on 28 international airlines is given. 
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1. Introduction 

Data envelopment analysis (DEA) is a powerful knowledge-based analytical method to evaluate 

the relative performance of a set of homogeneous decision making units (DMUs) that consumes 

multiple incommensurate inputs and outputs. DEA initiated in 1978 by Charnes, Cooper and Rhodes 
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and extended by Banker, Charnes and Cooper [1]. In the last three decades, DEA has been applied in 

a wide range of applications in organizational units. See, for instances, Emrouznejad et al. [2,3]. 

The main result of DEA as a performance evaluation tool is to partition the DMUs into two 

groups: efficient and inefficient. Inefficient DMUs have to reduce their inputs and simultaneously 

increase their outputs to meet the efficient frontier of the production technology set. This means that 

inefficient DMUs have to lose part of their resources and simultaneously they should try to increase 

the level of their outputs production. In a rational sight, DMUs are interested to lose less resources 

and to increase less increment in outputs to meet the frontier. In this sense, determining an efficient 

projection point with minimal changes in inputs and outputs is an important and interesting subject in 

the field of DEA and it has attracted considerable attention among researchers in the last decade. 

In what follows, we briefly review some of these studies on efficiency measure with closest 

reference point: 

The first study on finding the distance to a reverse convex subset in a normed vector space is 

studied by Briec and Lemaire [4]. At the same time, Frei and Harker [5] have extended DEA 

methodology in two substantive ways. First, they developed a method to determine the least-norm 

projection from an inefficient DMU to the efficient frontier in both the input and output space 

simultaneously, and second, they introduced the notion of the “observable” frontier and its 

subsequent projection. 

Another work that considered the shortest distance, have proposed by González and Álvarez [6]. 

They have studied the problem of efficiency improvement and how to identify appropriate 

benchmarks for inefficient firms to imitate. They argued that the most relevant benchmark is the 

closest reference firm on the efficient subset of the isoquant. 

Lozano and Villa [7] had a different look at the shortest distance. They have advocated 

determining a sequence of targets, each one within an appropriate, short distance of the preceding. 

Their approach has two interesting features: (a) the sequence of targets ends in the efficient frontier 

and (b) the final efficient target is generally closer to the original unit than the one-step projection. 

Amirteimoori and Kordrostami [8] proposed a Euclidean distance-based efficiency measure to 

evaluate the relative efficiency of a set of homogeneous DMU. An alternative Euclidean 

distance-based efficiency measure is defined in their work and it has been shown that the reference 

point on the efficient frontier has shortest distance to the original point. They applied their approach 

to a real case on gas companies. Aparicio et al. [9] have used the full dimensional efficient facets to 

propose an alternative Russell output measure of technical efficiency. 

Aparicio and Pastor [10] have used two simple example to show a drawback of the approach 

proposed by Amirteimoori and Kordrostami [8]. They showed that in some cases, the reference point 

obtained from the work of Amirteimoori and Kordrostami [8] is not in the technology set. In order to 

overcome this drawback, they slightly modified the model introduced by Aparicio et al. [11]. 

In another study, Aparicio and Pastor [12] have shown that the least distance measures based on 

Hölder norms satisfy neither weak nor strong monotonicity on the strongly efficient frontier. Then, 

they provided a solution for output-oriented models that allows assuring strong monotonicity on the 

strongly efficient frontier. 

An et al. [13] proposed a non-oriented DEA approach based on enhanced Russell [14] measure 

for measuring the environmental efficiency of DMUs and meanwhile, they provided the closest 

target for the DMU under evaluation to be efficient with less effort. 
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Aparicio et al. [15] have shown that the existing approaches for determining the least distance 

without identifying explicitly the frontier structure for graph measures do not work for oriented 

models. Then, they proposed a methodology for satisfactorily implementing these situations. 

Razipour et al. [16] have used the problem of closest reference target to find the closest targets in 

bank branches in Iran. 

All the above studies show that the determination of closest efficient targets in production 

possibility set is an important subject in the field of DEA and it has attracted considerable interest 

among researchers in recent DEA literature. Despite of this, only a few studies exist that analyze the 

implications of using closest targets on the technical inefficiency measurement. 

In this paper, a two-steps procedure is proposed to determine a projection point on the efficient 

frontier with closest distance. The reference point is constructed in such a way that it is located on 

the strong defining hyperplane of the DEA technology set. To do this, we first construct a strong 

defining hyperplane of the production set corresponding to each inefficient DMU, and then, the 

DMU is projected to this hyperplane in the direction of gradient vector. 

The reminder of this paper is organized as follows: to start the study, the required preliminaries 

are given in next section. Our proposed approach appears in section 3. To illustrate the applicability 

of the approach, a real case on 28 international airlines in Asia-Australia is given in section 4. The 

paper ends with conclusions. 

2. Preliminaries 

Suppose there are n , 1,...,jDMU j n  and each 
jDMU  uses m inputs to produce s outputs. 

Specially,
jDMU  uses inputs 

1( ,..., ) 0j j mjx x x   to produce the outputs
1( ,..., ) 0j j sjy y y  . The 

technology set T is defined as the set of all feasible input–output combinations as 

0 0{( , ) | }m sT x y R R xcan produce y   
                     

(1) 

By accepting axiom such as constant return to scale (CRS), convexity, inclusion, free 

disposability of inputs and outputs and minimal extrapolation, Tc is constructed as follows: (Charnes 

et al. [17]). 

1 1

( , ) | , , 0, 1, ,
n n

c j j j j j

j j

T x y x x y y j n  
 

 
     
 

 
                

(2) 

In a same way, if we ignore the CRS assumption, in variable returns to scale (VRS) framework, 

Tv is constructed as follows: (Banker et al. [1]). 

1 1 1

( , ) | , , 1, 0, 1, ,
n n n

v j j j j j j

j j j

T x y x x y y j n   
  

 
      
 

  
             

(3) 

The input-oriented envelopment CCR model for evaluation efficiency of DMUo as follows: (Charnes 

et al. [17]). 
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

                       

(4) 

The first m constraints in model (4) guarantee that the inputs of the new target unit do not 

exceed the inputs of DMUo and the second s constraints guarantee that the outputs of the new target 

unit is not less than the outputs of DMUo. In the above model, DMUo is said to be efficient if and 

only if in all optimal solutions, we have 
* 1  and all slack variables are equal to zero. In model (4), 

if we remove the slack variables and rewrite the constraints in inequality form, the dual formulation 

of model (4) (known as multiplier form) is expressed as follows: 

1

1

1 1

. . 1,

0, 1,...,

, 0, ,

s

r ro

r

m

i io

i

s m

r rj i ij

r i

r i

Max u y

s t v x

u y v x j n

u v for all r and i





 



  







 

                     

(5) 

In model (5), oDMU  is said to be strong efficient if the optimal value of the objective function 

is equal to 1 and there exists at least one optimal solution 
* * * * * *

1 2 1 2, , , ,( , , , )s muu v v vu   with 
* 0ru   

and 
*v 0i   for all i and r. 

Definition 2.1: Let {( , ) | ( ) ( ) 0}T T

cH x y u y y v x x T     be a supporting hyperplane of cT

passing through a specific point ( , )x y  in cT . Then, H is called strong defining hyperplane if and 

only if ( , ) 0u v  . 

Definition 2.2 (Pareto-Koopmans efficiency): A DMU is said to be strong efficient if and only if it is 

not possible to improve any input or output without getting worse some other input or output. 

For an inefficient oDMU , the reference set consists of all DMUs with * 0j  , in which *

j  is 

optimal solution to model (4). It is easy to show that all DMUs in the reference set of oDMU  are 

located on a unique supporting surface. 

Definition 2.3 (Reference supporting surface): For a oDMU , an efficient surface of cT  is called a 

reference Supporting surface, if it contains the reference units of oDMU . 

Based on the structure of cT
 
or vT , different strategies can be considered to project an 

inefficient point to the efficient frontier. The CCR model (4) evaluates the radial efficiency and it 

does not take the output shortfalls and input excesses in to consideration. However, the existence of 

nonzero slacks leads to incorrect estimation of efficiencies. Additive model deals directly with input 
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excesses and output shortfalls to project an inefficient DMU to strong efficient frontier. The 

mathematical formulation of Additive model is as follows: 

1 1

1

1

. . , 1,..., ,

, 1,..., ,

0 , 0, 0, , , .

s m

r i

r i

n

j ij i io

j

n
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Max z s s
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




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 

  
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  

 





                  

(6) 

In this model, oDMU  is said to be efficient if and only if the optimal objective value is equal 

to zero. The dual formulation of the additive model (6) is as follows: 

1 1

1 1

. . 0, 1,..., ,

, 1, 1,..., 1,..., .

m s

o i io r ro

i r

m s

i ij r rj

i r

r i

Min e v x u y

s t v x u y j n

u v r s and i m

 

 

 

  

  

 

 

       

(7) 

The second constraint in (7) guarantees the positivity of the weights. So, if oDMU  prevails as 

inefficient, model (7) projects it to a strong defining hyperplane. Clearly, the projection point of an 

inefficient oDMU  is not necessarily the closest point on the frontier. It is important and interesting 

to find a point with closest distance to oDMU  under evaluation. 

Tone [18] have augmented the additive model (6) by introducing an efficiency measure that is 

invariant to the units of the data. The slack-based measure (SBM) of efficiency introduced by Tone [18] as 

follows: 

1

1
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r
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(8) 

In model (8), we assume that 0iox  for all i. If 0iox  , we can remove the term i

io

s

x



from the 

summation. Furthermore, it can easily be seen that 0 1o  . 

Definition 2.4: oDMU  is efficient if and only if * 1o  . 
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Theorem 2.1: If ADMU  dominates BDMU  so that A Bx x  and A By y  then we have * *

B A  . 

Proof. See Tone [18]. 

Aparicio et al. [11] proposed a general two-step procedure to find minimum distance on the 

Pareto-efficient frontier. In the first step, efficient and inefficient DMUs are obtained by one of the 

classical radial models. Let E be the set of all extreme efficient units. In the second step, the 

following multiplier model (MADD) is proposed to the members of E: 

1 1

1 1

. . , 1,...,

, 1,...,

0,

1, 1,...,

1, 1,...,

,

(1 ),

{0,1},

0,

0,

0,

m s

io ro

i r

j ij io io

j E

j rj ro ro

j E

m s

j ij r rj j

i r

i

r

j j

j j

j

j

j

io

Min s s

s t x x s i m

y y s r s

v x y d i E
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r s

d Mb j E

M b j E

b j E

d j E

j E

s













 

 









 





  

  

    

 

 

 

  

 

 

 



 





 

1,...,

0, 1,...,ro

i m

s r s



 

                     

(9) 

In which ros  and ios  are slacks variables and M is a large positive number. In this model 

oDMU is said to be efficient if and only if the optimal slacks in (MADD) are all zero. Model (9) is a 

mixed integer linear programming problem and if oDMU  is inefficient, its efficient projection on 

the frontier is closest point. 

3. Closest reference point 

As we stated before, in traditional DEA models, the reference point of an inefficient unit is 

calculated in input or output or jointly orientation. Clearly, the reference points in such orientations 

are not the closest reference points and we are interested to determine a reference point on the 

efficient frontier with minimal distance. In this section, an alternative shortest distance method has 

been developed by using gradient vectors.  

Suppose the set of all DMUs is partitioned into four sets E, NE, F and NF in which E is the set 

of all strong efficient DMUs, NE is the set of all inefficient DMUs, but their reference point belongs 

to E, F is the set of weak efficient DMUs and NF is the set of inefficient DMUs but their reference 

point belongs to F. A procedure to partition DMUs into four sets E, NE, F and NF will be given later. 



817 

AIMS Mathematics  Volume 5, Issue 2, 811–827. 

We are interested to find a projection point on the efficient frontier with minimal distance. We 

first employ the formulations (4) and (5) to determine efficient and inefficient DMUs. Efficient 

DMUs are belong to   and inefficient DMUs are belong to   . The weak efficient DMUs are belong 

to F. also the inefficient DMUs that projection point are on the week supporting frontier, are belong 

to NF. Therefore ( )NE E F NF  . Also the formulation (7) is used to determine the closest 

reference supporting surface of oDMU E  as follows: 

* *{( , ) | 0}T T

o o o cF U V V X U Y T    

Which * *( , )U V  is an optimal solution to model (7). Consider the gradient vector * *( , )U V  and 

we now solve the following linear programming problem: 

*

1

*

1

. . , 1,...,

, 1,...,

0 , 1,...,

n

j ij io i

j

n

j rj ro r

j

j

Max t

s t x x v t i m

y y u t r s

j n











  

  

 





                  

(10) 

Suppose : ( , )o o oDMU X Y NE , we move from ( , )o oX Y  in the direction 
* *( , )U V  and   is 

the step size. Clearly, in the optimality, 
*t  is the maximum step size and as we should expect, the 

obtained projected point is now calculated as 

* * * * * *( , ) ( , )o o o oX Y X t V Y t U  
                         

(11) 

Now suppose : ( , )o o oDMU X Y F NF . In this case, we solve the following linear quadratic 

formulation: 

2 2

1 1

* *

1 1

* *

1 1

( ) ( )

. . 0,

0, , 1,..., ,

, 0 .

m s

i io r ro

i r

m s

io i ro r

i r

m s

ij i rj r

i r

i r

Min z x w y

s t v z u w

v z u w j o j n

z w for all i and r

 

 

 

  

 

   



 

 

 

              

(12) 

In which iz  and rw  are respectively the i-th and r-th coordination of the i-th input and r-th output 

of the projected point. * *( , )j jU V  for , 1,...,jDMU j n  is an optimal solution to model (7) when 

jDMU  is under evaluation. The first constraint guarantees that the new projection point is located 

on the efficient frontier and the second n-1 constraints are given to guarantee the feasibility of the 

new projection point. 

Theorem 3.1: The projection point obtained from the above mentioned procedure is the closest 

reference point on the strong efficient hyperplane. 
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Proof. Case 1: let oDMU NE  because the gradient vector is vertical on the reference hyperplane, 

therefore, move from ( , )o oX Y  in the gradient direction to vertical image on the reference 

hyperplane is the shortest distance. 

Case 2: let oDMU F NF  because * *

1 1
0

m s

io i ro ri r
v z u w

 
    is the strong reference supporting 

surface of oDMU , according to the objective function (square distance function) of formulation (12), 

the verdict is obvious.■ 

Let * *( , )o oX Y  is the projection point of ( , )o oX Y  using the proposed approach and let * *( , )o oU V  

is the multiplier of closest reference supporting surface. Inspired by the efficiency index of Tone [18], 

we define the inefficiency index o  as follows: 

*

*

1 1

*

*

1 1

1
1

1
1

1

m m

io ro

io roi i

o m m

io ro

io roi i

x y
x ym s

x y
x ym s

  
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 
     

 
    

 

 
                      

(13) 

Proposition 3.1: oDMU E  if and only if 1o  . 

Proof. Let oDMU E  then *

o ox x  and *

o oy y  so it’s obvious 1o  . If 1o  , then  

*

*
1 1

1
1 ( ) 0

m s
io ro

i rio ro

x y

m s x y 

  


   

So, 

*

*
1 1

( )
m s

io ro

i rio ro

x y
m s

x y 

     

On the other hand, because *

o ox x  and *

o oy y  so we always have 

*

*
1 1

( )
m s

io ro

i rio ro

x y
m s

x y 

     

The above equality holds true if *

o ox x  and *

o oy y  this means that oDMU E . ■ 

A point to be noted is that in all of the above discussion, the underlying technology set was 

constant returns to scale technology set. The procedure can easily be extended to variable returns to 

scale technology set. 

At the end of this section, a simple example is used to illustrate the proposed approach. Suppose 

we have eight DMUs with two inputs and one output. We employ the formulations (4) and (5) to 

determine efficient and inefficient DMUs. The data set, the efficiency scores and the optimal weights 

obtained from models (4) and (5) are given in Table 1. As columns 5–11 of Table 1 show, four DMUs 

D1, D2, D3 and D4 are strong efficient and hence, { 1, 2, 3, 4}E D D D D  and 

{ 5, 6, 7, 8}E D D D D  . As columns 5–8 of Table 1 shows, for D5 and D6 the efficiency scores are 
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one, but the slack variables are not zero, so, { 5, 6}F D D . Moreover, the projection point of D8 is 

located on the weak supporting surface and hence { 8}NF D . Finally, { 7}NE D

 ( )NE E F NF   . The Farrell cut of production possibility set is shown in Figure 1. 

Table 1. The data set and results for simple example. 

DMUs x1 x2 y Ө   
 

  v1 v2 u1 

D1 1 5 1 1 0 0 0 1 0 1 

D2 2 3 1 1 0 0 0 0.286 0.143 1 

D3 3 2 1 1 0 0 0 0.2 0.2 1 

D4 5 1 1 1 0 0 0 0 1 1 

D5 7 1 1 1 2 0 0 0 1 1 

D6 1 6 1 1 0 1 0 1 0 1 

D7 5 3 1 0.64 0 0 0 0.091 0.182 0.636 

D8 7 1.2 1 0.83 0.83 0 0 0 0.833 0.833 

 

Figure 1. Production Possibility Set (PPS). 

Now, we use model (7) to determine the closest reference supporting surface, the results 

are given in columns 3–5 of Table 2. Suppose { 7}oDMU NE D  . We have solved model (10) 

with  * * ( , ) 5,1,1U V  . The optimal value   is shows in column six of Table 2. 

The projection point of D7 is obtained as   4.895,  2.895,  1.525 . Now, consider

8 DMU F NF . We solve model (12) as follows: 

 

 

 

 

 

 

  
    

    
  



820 

AIMS Mathematics  Volume 5, Issue 2, 811–827. 

                            

                   

                

              

          

          

              

Table 2. The results for simple example. 

DMUs z V1* V2* U1* t* 

D1 0 2 1 7  

D2 0 2 1 7  

D3 0 1 1 5  

D4 0 1 2 7  

D5 2 1 2 7  

D6 1 2 1 7  

D7 3 1 1 5 0.10526 

D8 2.4 1 2 7   

The projection point of D8 is obtained as  6.96,  1.11,  1.31 . 

The projection points of the inefficient DMUs are obtained in a similar manner and the results 

are shown in table 3. In each row, three different values are given, original data, the results of the 

CCR model and the results of our proposed model. The last column shows the Euclidean distance 

from original point to the new projection point (To this end, we have used the simple distance 

formulation 2 2

1 1
  ( ) ( )

m s

i io r roi r
d z x w y

 
     ). As the results show, in all four DMUs, the 

distance obtained from our proposed approach is strictly less than the CCR model. 

Table 3. The projection points to the inefficient DMUs. 

DMUs   x1 x2 y   d 

D5 Original 7 1 1   

  CCR 5 1 1  2 

  GDM 6.852 1.37 1.37   0.54379 

D6 Original 1 6 1   

  CCR 1 5 1  1 

  GDM 1.185 5.926 1.185   0.27217 

D7 Original 5 3 1   

  CCR 3.2 1.92 1  2.0991 

  GDM 4.895 2.895 1.526   0.5470 

D8 Original 7 1.2 1   

  CCR 4.98 0.996 1  2.03027 

  GDM 6.89 1.378 1.378  0.43173 
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4. An empirical example 

In this section, we apply the proposed procedure to a real data set consisting of 28 international 

airlines from Asia-Australia, Europe and North America. The data has been taken from Ray [19] and 

Aparicio et al. [11] have used this data set in their work. As Ray [19] and Aparicio et al. [11], we also 

used constant returns to scale technology. These 28 international airlines uses four inputs to generate 

two outputs. The inputs are as follows: 

Number of employees (x1). 

Millions of gallons fuel (x2). 

Other kind of inputs (millions of U.S. dollar equivalent) excluding labor and fuel expenses (x3). 

Capital, as the sum of maximum takeoff weights of all aircraft flown multiplied by the number of 

days flown (x4). 

Outputs include: 

Passenger-kilometers flown (y1). 

Freight tonne-kilometers flown (y2). 

The inputs/outputs data are given in Table 4. We first applied the dual formulation of the 

additive models, in constant returns to scale environment. The results are given in column 3 of 

Table 5. The input/output weights are also given in columns 4–9. As the results show, nine airlines 

are relatively efficient and all weights are strictly positive. The classification of DMUs are as 

follows: 

                                                                      

                

                                                              

                                                                          

                                              }. 

Table 4. The data related to 28 international airlines. 

NUM Name Input Output 

    x1 x2 x3 x4 y1 y2 

1 NIPPON 12222 860 2008 6074 35261 614 

2 CATHAY 12214 456 1492 4174 23388 1580 

3 GARUDA 10428 304 3171 3305 14074 539 

4 JAL 21430 1351 2536 17932 57290 3781 

5 MALAYSIA 15156 279 1246 2258 12891 599 

6 QUANTAS 17997 393 1474 4784 28991 1330 

7 SAUDIA 24708 235 806 6819 18969 760 

8 SINGAPORE 10864 523 1512 4479 32404 1902 

9 AUSTRIA 4067 62 241 587 2943 65 

10 BRITISH 51802 1294 4276 12161 67364 2618 

11 FINNAIR 8630 185 303 1482 9925 157 

     Continued on next page 
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NUM Name Input Output 

    x1 x2 x3 x4 y1 y2 

12 IBERIA 30140 499 1238 3771 23312 845 

13 LUFTHANSA 45514 1078 3314 9004 50989 5346 

14 SAS 22180 377 1234 3119 20799 619 

15 SWISSAIR 19985 392 964 2929 20092 1375 

16 PORTUGAL 10520 121 831 1117 8961 234 

17 AIR CANADA 22766 626 1197 4829 27676 998 

18 AM. WEST 11914 309 611 2124 18378 169 

19 AMERICAN 80627 2381 5149 18624 133796 1838 

20 CANADIAN 16613 513 1051 3358 24372 625 

21 CONTINENTAL 35661 1285 2835 9960 69050 1090 

22 DELTA 61675 1997 3972 14063 96540 1300 

23 EASTERN 21350 580 1498 4459 29050 245 

24 NORTHWEST 42989 1762 3678 13698 85744 2513 

25 PANAM 28638 991 2193 7131 54054 1382 

26 TWA 35783 1118 2389 8704 62345 1119 

27 UNITED 73902 2246 5678 18204 131905 2326 

28 USAIR 53557 1252 3030 8952 59001 392 

We then applied model (10) for DMUs in NE. The results are listed in tenth column of 

Table 5. Consider, for example, NIPPON AIR in NE. The optimal value of 
* t  is 138.3009. 

So, the projection point on the efficient frontier to NIPPON AIR is calculated as
* * ( , ) (11868.2,721.7,1869.7,5935.7,35399.3,752.3)X Y  . Now, consider CONTINENTAL AIR 

in     , running the proposed approach to this unit and the projection point to this unit is 

calculated as (35651.37, 1257.374, 2590.639, 9950.374, 69065.55, 1099.626). 

Table 5. The result of model (10) along with the input/output weights. 

DMU Name         

  Z v1 v2 v3 v4 u1 u2 t 

1 NIPPON 4333 2.558 1 1 1 1 1 138.3009 

2 CATHAY 8127.4 1 33.367 1 1 1 1 1.823832 

3 GARUDA 12434.6 1 33.367 1 1 1 1 3.478064 

4 JAL 0 1 1 34.7 1 1 18.89  

5 MALAYSIA 13982.92 1 1 1 4.779 1 1 81.44536 

6 QUANTAS 0 1 127.438 1 1 2.518 1  

7 SAUDIA 0 1 748.473 1 1 10.937 1  

8 SINGAPORE 0 1 33.367 1 1 1 1  

9 AUSTRIA 3955.76 1 33.367 1 1 1 1 0.6980644 

10 BRITISH 41434.04 1 33.367 1 1 1 1 11.67467 

11 FINNAIR 0 1 1 92.075 1 3.833 1  

       Continued on next page 
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DMU Name         

  Z v1 v2 v3 v4 u1 u2 t 

12 IBERIA 25351.36 1 1 12.196 1 1 1 29.74644 

13 LUFTHANSA 0 1 1 1 14.989 1 25.043  

14 SAS 17280 1 1 1 4.779 1 1 64.18586 

15 SWISSAIR 0 1 1 211.877 6.903 5.199 102.95  

16 PORTUGAL 0 1 232.907 1 22.338 7.17 1  

17 AIR CANADA 12900.43 1 1 25.385 1 1.615 1  

18 AM. WEST 0 1 1 1 15.442 2.474 1  

19 AMERICAN 14364.34 1 1 25.385 1 1.615 1 17.63091 

20 CANADIAN 7167.57 1 1 25.385 1 1.615 1 7.136312 

21 CONTINENTAL 6237.59 1 1 25.385 1 1.615 1  

22 DELTA 21311.39 1 1 25.385 1 1.615 1 27.33843 

23 EASTERN 15363.26 1 748.473 1 1 10.937 1 0.2282259 

24 NORTHWEST 10789.3 1 1 25.385 1 1.615 1  

25 PANAM 3727.28 1 1 25.385 1 1.615 1 4.824861 

26 TWA 4417.27 1 1 25.385 1 1.615 1 4.796741 

27 UNITED 23079.82 1 1 25.385 1 1.615 1  

28 USAIR 41231.32 1 1 1 4.779 1 1 318.3093 

The projection points are calculated by three different approaches: CCR model, Aparicio et al. [11] 

and our proposed approach. The results are listed in Table 6. Now, let us compare the results of the 

proposed method with other approaches such as CCR model and Aparicio et al. [11]. In Table 6, in 

the first row of each airline the original data is given, the second row shows the projection points 

obtained from CCR model, the third row shows the results of Aparicio et al. [11], denoted by mERG, 

and the fourth row shows the results of our proposed method, denoted by GDM (Gradient Direction 

Method). As the results show, both approaches, our proposed and Aparicio et al. [11], provided closer 

projections than the CCR model. 

To compare the results of these three different approaches, the distance of each projection 

point to original unit has been calculated and the results are given in the last column of Table 6. 

Consider the first airline, NIPPON. At the first and third inputs, the reduction level of our 

approach is better than one that proposed by Aparicio et al. [11] and for inputs two and four, the 

reduction level of Aparicio et al. [11] is better than ours. However, in whole sense, the distance 

from the original point to our projection point is 469.903, while this distance is 1552.975, in 

Aparicio et al. [11]. Comparing the results of the two approaches for other airlines, we have 

found that, except for AIR CANAD (DMU17) and AIR CONTINENTAL (DMU21), in all other 

airlines, the distances between projection points and observed airlines in our approach is less 

than the approach proposed by Aparicio et al. [11]. However, we checked the Air-Canada and 

AIR CONTINENTAL and it has been found that the projection points provided by Aparicio et 

al. [11] to these two DMUs are not efficient.  It should be pointed out that we do not claim that 

our approach is better than the previous approach of Aparicio et al. [11], but, we provide 

another projection point with minimal distance. Moreover, we just use the results of Aparicio et 

al. [11] to confirm our results. 
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Table 6. The results obtained from different methods. 

Name    Input   Output     

    x1 x2 x3 x4 y1 y2 d 

NIPPON   12222 860 2008 6074 35261 614   

  CCR 11821.86 569.11 1645.31 4873.91 35261 2069.7 1983.822 

  mERG 12222 620.9 1623.1 6074 35261 2099.4 1552.975 

  GDM 11868.2 721.7 1869.7 5935.7 35399.3 752.3 469.903 

CATHAY   12214 456 1492 4174 23388 1580   

  CCR 10687.44 399.01 1180.86 3434.26 23388 1580 1725.589 

  mERG 12214 439.3 1139.6 4174 23388 1580 352.795 

  GDM 12212.2 395.2 1490.2 4172.2 23389.8 1581.8 60.933 

GARUDA   10428 304 3171 3305 14074 539   

  CCR 7063.86 205.93 691.06 2165.45 14074 720.78 4336.909 

  mERG 10428 301.7 541.7 3305 14902.4 539 2756.714 

  GDM 10424.5 187.9 3167.5 3301.5 14077.5 542.5 116.363 

MALAYSIA   15156 279 1246 2258 12891 599   

  CCR 5318.84 210.21 558.78 1709.7 12891 599 9876.606 

  mERG 14979.4 231.1 1246 2258 16559 599 3672.561 

  GDM 15074.55 197.55 1164.55 1868.77 12972.45 680.45 429.733 

AUSTRIA   4067 62 241 587 2943 65   

  CCR 2299.56 42.93 166.86 406.41 2943 84.45 1778.397 

  mERG 3475.1 62 232.2 479 4014.4 65 1228.814 

  GDM 4066.3 38.7 240.3 586.3 2943.7 65.7 23.353 

BRITISH   51802 1294 4276 12161 67364 2618   

  CCR 40533.04 1014.53 3352.49 9534.51 67364 2618 11611.153 

  mERG 51802 1294 2559.7 11407.2 67364 2618 1874.540 

  GDM 51790.33 904.45 4264.32 12149.32 67375.67 2629.67 390.424 

IBERIA   30140 499 1238 3771 23312 845   

  CCR 11124.94 383.38 945.94 2982.8 23312 845 19033.981 

  mERG 23184.8 481.8 923.8 3771 25453.8 845 7284.307 

  GDM 30110.3 469.3 875.2 3741.3 23341.7 874.7 368.828 

SAS   22180 377 1234 3119 20799 619   

  CCR 13975.27 324.18 1061.11 2682 20799 619 8218.348 

  mERG 17426 338.3 1234 3119 22862 619 5182.469 

  GDM 22115.8 312.8 1169.8 2812.3 20863.2 683.2 338.634 

AIR CANADA   22766 626 1197 4829 27676 998   

  CCR 19827.27 504.58 1042.49 4205.65 27676 998 3010.534 

  mERG 22766 544 1019.4 4829 27726.8 998 202.105 

  GDM 22646.14 506.1355 1138.032 2979.014 27970.74 1097.634 1884.531 

AMERICAN   80627 2381 5149 18624 133796 1838   

  CCR 76484.91 2258.68 4884.48 16956.88 133796 2908.5 4600.772 

      Continued on next page 
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Name     Input     Output     

    x1 x2 x3 x4 y1 y2 d 

  mERG 80627 2349.1 4698.8 18624 133796 2402.3 722.587 

  GDM 80609.4 2363.4 4701.4 18606.4 133824.5 1855.6 449.886 

CANADIAN   16613 513 1051 3358 24372 625   

  CCR 13264.87 404.33 918.92 3000.18 24372 625 3371.537 

  mERG 16050.5 374.8 1051 3358 24496.6 625 592.478 

  GDM 16605.9 505.9 869.8 3350.9 24383.5 632.1 182.119 

CONTINENTAL   35661 1285 2835 9960 69050 1090   

  CCR 34411.55 1175.23 2735.67 9611.03 69050 2338.77 1806.723 

  mERG 35661 1196.1 2680.3 9960 69050 2174.4 1098.981 

  GDM 35573.8 1197.799 2747.799 8613.461 69265.72 1177.201 1374.816 

DELTA   61675 1997 3972 14063 96540 1300   

  CCR 54899.41 1639.98 3535.64 12518.05 96540 2163.98 7025.655 

  mERG 61675 1696.8 3338.7 12720.7 98100.1 1300 2174.137 

  GDM 61647.7 1969.7 3278.0 14035.7 96584.2 1327.3 697.546 

EASTERN   21350 580 1498 4459 29050 245   

  CCR 17364.35 471.72 1218.35 3626.59 29050 748.11 4113.558 

  mERG 18832.4 488.4 965.8 3357.4 29050 267.1 2800.705 

  GDM 21349.77 409.1798 1497.772 4458.772 29052.5 245.2282 170.839 

NORTHWEST   42989 1762 3678 13698 85744 2513   

  CCR 40686.89 1491.5 3481.04 12964.46 85744 3294.21 2561.258 

  mERG 42989 1533.8 3378.7 13698 85744 2998.2 614.064 

  GDM 42972.42 1745.423 3257.203 13681.42 85770.78 2529.577 422.950 

PANAM   28638 991 2193 7131 54054 1382   

  CCR 27617.88 896.7 2114.88 6876.99 54054 1678.14 1099.027 

  mERG 28638 912.5 2096.8 7131 54054 1541.6 202.210 

  GDM 28633.2 986.2 2070.5 7126.2 54061.8 1386.8 123.123 

TWA   35783 1118 2389 8704 62345 1119   

  CCR 34678.89 1069.66 2315.29 8435.43 62345 1542.37 1215.813 

  mERG 35783 1086.5 2266.5 8704 62345 1394.1 302.785 

  GDM 35778.2 1113.2 2267.2 8699.2 62352.7 1123.8 122.420 

UNITED   73902 2246 5678 18204 131905 2326   

  CCR 69949.77 2125.89 5374.34 17230.46 131905 4285.1 4529.085 

  mERG 73902 2246 4877.6 17368.3 131905 3146 1418.251 

  GDM 73866.54 2210.543 4777.909 18168.54 131962.3 2361.457 904.697 

USAIR   53557 1252 3030 8952 59001 392   

  CCR 41428.43 968.47 2343.82 6924.72 59001 684.57 12322.699 

  mERG 38248.9 992 1961.6 6818.9 59001 542.6 15495.799 

  GDM 53238.7 933.7 2711.7 7430.8 59319.3 710.3 1679.484 

As it is observed in the column 9 of Table 6, the distance of GDM method in all inefficient 

Airlines is evidently lower than the mERG method. 
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5. Conclusion 

Benchmarking techniques, especially data envelopment analysis uses rational ideal evaluation to 

analyze the relative performances of decision making units. In this sense, a specific DMU is 

compared with a reference point on the efficient frontier of the production possibility set. In a 

rational sight, we may expect the reference point has the shortest distance to the DMU under 

consideration. So, finding a reference point to an inefficient DMU on the efficient frontier with 

closest distance is an important subject that recently has attracted considerable attention among 

researchers. This issue is important in the sense that inefficient DMUs could be efficient in an easiest 

manner. In this paper, we proposed an alternative procedure to determine a projection point with 

minimal changes and shortest distance on the strong efficient frontier. The gradient vectors of the 

reference supporting surfaces of the production technology set are used to determine closest 

reference points. The low computational efforts and the guarantee of determining an efficient 

projection point on the strong efficient frontier are the two important advantages of the proposed 

model. A real case on 28 internationals airlines from Asia-Australia, Europe and North America is 

given to show the real applicability of the proposed approach. 
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