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Abstract: The fractional natural decomposition method (FNDM) is employed in the present
investigation to find the solution for fractional forced Korteweg-de Vries (FF-KdV) equation. Three
distinct cases are chosen for each equation to validate and illustrate the effectiveness of the future
technique. The behaviour for different values of Froude number (Fr) has been presented to assure the
proficiency and reliability and of the considered method. Moreover, we captured the behaviour of the
FNDM solution for distinct arbitrary order. The obtained results elucidate that, the considered method
is very effective and easy to employ while analyse the behaviour of nonlinear fractional differential
equations arising in connected areas of science and technology.
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1. Introduction

The concept of fractional calculus (FC) recently attracted the attention of mathematicians and
scientists working in diverse areas even though it debuted over 324 years ago. From the last thirty
years, it considered as a most essential tool to examine the complex as well as nonlinear phenomena,
due to its auspicious properties such as nonlocality, hereditary, memory effect and analyticity. The
concept of the generalized fractional has been established in order to the complexities associated to a
processes to heterogeneities. More preciously, the diffusion mechanism and chaotic behaviours are
effectively captured with the aid of differential and integral operators having fractional order. From
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last two decades, many young researchers begin to work on the fundamentals and applications of
generalized fractional calculus due to the swift growth of software and mathematical algorithm.

The basic foundation for fractional calculus prescribed by many pioneers and their orientations for
generalized calculus [1–6]. FC has been associated to practical projects and it has been employed
to diverse areas where the interesting ans simulating consequences associated to time and hereditary
properties [7–28]. The The solution for fractional differential equations describing these phenomena
play a vibrant role in unfolding the physical nature of complex problems exist in real life.

Recently, the Korteweg-de Vries (KdV) equation plays an important role in describing the various
phenomena [29–31]. In a two-dimensional channel flow, the impact of bottom configurations on the
free-surface waves is investigated with the help of forced Korteweg-de Vries equation. The bottom
topography plays a vital part in the study of shallow-water waves, and which can significantly
evaluate the behaviour of wave motions [32,33]. Shallow water or long waves are the waves in water
shallower than 1/20 their actual wavelength. When the bottom configuration is more complex, the
interplay between the bottom topography and solitary waves can demonstrate more stimulating
dynamics of the free surface waves. When the rigid bottom of the channel has some obstacles and for
an incompressible and inviscid fluid, the free surface waves of a two-dimensional channel flow have
been studied [34,35]. Fluid flows over an obstacle, the forcing approximately with the KdV equation
can portray the development of the free surface. The FKdV equation is very important while
describing the nature sine Gordon equation as well as the nonlinear Schrödinger equation. Further, the
proposed model has numerous applications in the connected branches of mathematics and physics.
This equation is considered as an essential tool to study propagation of short laser pulses in optical
fibers, atmosphere dynamics, geostrophic turbulence and the magnetohydrodynamic waves [36,37].
Particularly, it offers stimulating results associated with the physical problems such as acoustic waves
on a crystal lattice, oceanic stratified flows encountering topographic obstacles, tsunami waves over
obstacles, and shallow-water waves over rocks.

In this paper, we consider the forced KdV equation with the free water surface elevation measured
u(x, t) on critical flow over a hole from undisturbed water level and which introduce and nurtured by
Wu in 1987 [38], and presented as follows:

1
c
∂u
∂t

+

[
(Fr − 1) −

3
2

u (x, t)
h

]
∂u
∂x
−

h2

6
∂3u
∂x3 =

1
2
∂ f (x)
∂x

, (1.1)

where Fr is Froude number and it also calls as the critical parameter, h is the sea mean water depth, f (x)
is the external forcing term and define as f (x) =

pa(x)
ρg + b (x). Here, pa(x)

ρg is the surface air pressure,

and b (x) is rigid bottom topography and is defined by b (x) = −0.1e−
xn
4 − 1. The Froude number

(Fr) plays an important role in Eq (1.1), since its value elucidates the kind of critical flows over the
localised obstacle. Specifically, for values greater than, equal, and less than 1 respectively represent the
flow is considered as supercritical, transcritical and subcritical. In the rigid bottom topography b (x),
two different kinds of hole examined, namely for n = 2 and n = 8. These cases respectively signify
the hole is expected an inverse of bell-shaped and the hole is more flattened at the bottom as well as
wider. Authors in [39], considered the simplified above equation by eliminating surface air pressure
and presented as follows
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= 0. (1.2)
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In the present investigation, we consider the fractional-order forced KdV (FF-KdV) equation by
replacing the time derivative with arbitrary order derivative in order. Now, FF-KdV equation is cited
as follows

Dα
t u (x, t) + c

([
(Fr − 1) −

3
2

u (x, t)
h

]
∂u
∂x
−

h2

6
∂3u
∂x3 −

1
2
∂b (x)
∂x

)
= 0, 0 < α ≤ 1, (1.3)

where Dα
t u (x, t) is the Caputo fractional derivative and α is the arbitrary order.

Recently, many mathematicians and physicist are introduced and natured various advanced
numerical as well as analytical schemes in order to find the solution and capture the its physical
behaiour for diverse class of differential and integral equations having integer or fractional order
describing the real world processes. Moreover, there have been numerous methods available in the
literature among them Adomian decomposition method (ADM) is more magnetized method due to its
efficiency and accuracy [40]. ADM has profitably and effectively employed to examine the problems
arisen in science and technology without linearization and perturbation. But, for the purpose of
computational work, ADM requires more time and huge computer memory. Hence, there is an
certainty of the combination of this method with existing transform methods. To fulfill these
requirements, Rawashdeh and Maitama introduced and nurtured the FNDM [41,42], and which is an
mixture of the ADM with natural transform method (NTM). Since FNDM is a improved method of
ADM, it will reduce vast computations and in addition it does not requires discretization, linearization
or perturbation. Recently, due to efficacy and reliability of the projected scheme has been extremely
considered by many authors to interpret results for various nonlinear problems [43–45]. The complex
nonlinear differential equations can be examined with simple procedure due to the considered method
offers us with extremely huge freedom to consider initial guess and equation type of linear
sub-problems. The novelty of FNDM is that it provides a simple algorithm to find the solution and it
defined by the Adomian polynomial, it offers the quick convergence in the achieved solution for the
nonlinear portion. These polynomials are generalized to a Maclaurin series along with the arbitrary
external parameter.

Due to numerous applications proposed model and also it plays an important role in describing
various complex phenomena, many authors find and analysed the solution in numerically as well as
analytically, for instance, authors in find the analytic solutions to proposed model [46], author in [47]
present the some interesting result for the proposed model and considered model for waves generated
by topography, authors in [39,48] find the approximated analytical solution by using the homotopy
analysis method (HAM), authors in [49] investigated the considered problem and presented dynamics
of trapped solitary waves, lines and pseudospectral solutions has been investigated by authors in [50].

2. Preliminaries

In this segment, we present the fundamental notion of FC and natural transform.
Definition 1. The Riemann-Liouville integral of a function f (t) ∈ Cδ (δ ≥ −1) having fractional order
(α > 0) is presented as follows

Jα f (t) =
1

Γ(µ)

∫ t

0
(t − ϑ)µ−1 f (ϑ)dϑ, (2.1)

J0 f (t) = f (t). (2.2)
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Definition 2. The Caputo fractional derivative of f ∈ Cn
−1 is presented as follows

Dα
t f (t) =

 dn f (t)
dtn , α = n ∈ N ,

1
Γ(n−α)

∫ t

0
(t − ϑ)n−α−1 f (n) (ϑ) dϑ, n − 1 < α < n , n ∈ N.

(2.3)

Definition 3. The Mittag-Leffler type function with one-parameter is presented [51] as follows

Eα (z) =

∞∑
k=0

zk

Γ (αk + 1)
, α > 0, z ∈ C. (2.4)

Definition 4. The natural transform (NT) of f (t) is symbolized by N
[
f (t)

]
for t ∈ R and presented

[52] by

N
[
f (t)

]
= R (s, ω) =

∫ ∞

−∞

e−st f (ωt) dt; s, ω ∈ (−∞,∞),

where s and ω are the NT variables. Now, we present the NT as

N
[
f (t) H (t)

]
= N+ [

f (t)
]

= R+ (s, ω) =

∫ ∞

0
e−st f (ωt) dt; s, ω ∈ (0,∞) and t ∈ R, (2.5)

where H (t) is symbolise the Heaviside function. Further, for s = 1, the Eq (2.5) signifies the Sumudu
transform and for ω = 1, Eq (2.5) is simplifies to the Laplace transform.
Theorem 1 [52]: Let R (s, ω) be the natural transform of f (t), then the NT Rα (s, ω) of the Riemann-
Liouville fractional derivative of f (t) is symbolized by Dα f (t) and which is defined as

N+ [
Dα f (t)

]
= Rα (s, ω) =

sα

ωα
R (s, ω) −

n−1∑
k=0

sk

ωα−k

[
Dα−k−1 f (t)

]
t=0
, (2.6)

where n be any positive integer and α is the order. Further n − 1 ≤ α < n.
Theorem 2 [53]: Let R (s, ω) be the natural transform of f (t), then the NT Rα (s, ω) of the Caputo
fractional derivative of f (t) is symbolize by cDα f (t) and which is presented as

N+ [cDα f (t)
]

= Rc
α (s, ω) =

sα

ωα
R (s, ω) −

n−1∑
k=0

sα−(k+1)

ωα−k

[
Dk f (t)

]
t=0
, (2.7)

where n be any positive integer and α is the order.
Remark 1: Some basic properties of the natural transform are defined as below:

1. N+ [1] = 1
s ,

2. N+ [tα] =
Γ(α+1)ωα

sα+1 ,

3. N+
[
f (n) (t)

]
= sn

ωn R (s, ω) −
∑n−1

k=0
sn−(k+1)

un−k
Γ(α+1)ωα

sα+1 .
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3. Fundamental solution procedure of the proposed algorithm

In order to demonstrate the fundamental theory and solution procedure of FNDM [38,39], we
consider

Dα
t u (x, t) + Ru (x, t) + Fu (x, t) = h (x, t) , (3.1)

with initial condition

u (x, 0) = g (x) , (3.2)

where Dαu (x, t) signifies the fractional Caputo derivative of u (x, t), R and F respectively are the linear
and nonlinear differential operator, and h (x, t) is the source term. On applying NT and by the assist of
Theorem 2, then Eq (3.1) provides

U (x, s, ω) =
uα

sα

n−1∑
k=0

sα−(k+1)

ωα−k

[
Dku (x, t)

]
t=0

+
ωα

sα
N+ [h (x, t)]

−
ωα

sα
N+ [R u (x, t) + Fu (x, t)] . (3.3)

Apply the inverse NT on Eq (3.3) to get

u (x, t) = G (x, t) − N−1
[
ωα

sα
N+ [Ru (x, t) + F u (x, t)]

]
. (3.4)

From non-homogeneous term and given initial condition, G (x, t) is exists. The infinite series solution
is defined as follows

u (x, t) =

∞∑
n=0

un (x, t), F u (x, t) =

∞∑
n=0

An, (3.5)

where the Anis indicating the nonlinear term of Fu (x, t). By using the Eqs (3.4) and (3.5), we have
∞∑

n=0

un (x, t) = G (x, t) − N−1

ωα

sα
N+

R ∞∑
n=0

un (x, t)

 +

∞∑
n=0

An

 . (3.6)

By comparing both sides of Eq (3.6), we obtain

u0 (x, t) = G (x, t) ,

u1 (x, t) = −N−1
[
ωα

sα
N+ [Ru0 (x, t)] + A0

]
,

u2 (x, t) = −N−1
[
ωα

sα
N+ [Ru1 (x, t)] + A1

]
,

...

Similarly, we can obtain the recursive relation in general form for n ≥ 1 and defined as

un+1 (x, t) = −N−1
[
ωα

sα
N+ [Run (x, t)] + An

]
. (3.7)

Lastly, the approximate solution is defined as follows

u (x, t) =

∞∑
n=0

un (x, t).
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4. Solution for fractional forced KdV equation

Here, we consider the nonlinear fractional forced KdV equation in ordered to elucidate the
applicability and efficiency of the proposed algorithm. Consider the FF-KdV equation defined in Eq
(1.3) with b (x) value presented in Section 1 [39]

Dα
t u (x, t) + c

((
(Fr − 1) −

3
2

u (x, t)
h

)
∂u (x, t)
∂t

−
1
6

h2∂
3u (x, t)
∂t3 +

1
2
∂

∂t

(
0.1e−

xn
4 + 1

))
= 0, 0 < α ≤ 1,(4.1)

associated with initial condition

u (x, 0) = −
2ex

(1 + ex)2 . (4.2)

By employing NT on Eq (4.1), we have

N+ [
Dα

t u (x, t)
]

= −cN+

[(
(Fr − 1) −

3
2

u
h

)
∂u
∂t
−

1
6

h2∂
3u
∂t3 +

1
2
∂

∂t

(
0.1e−

xn
4 + 1

)]
. (4.3)

The non-linear operator is defined as

sα

ωα
N+ [u (x, t)] −

n−1∑
k=0

sα−(k+1)

ωα−k

[
Dku

]
t=0

= −cN+[
(
(Fr − 1) −

3
2

u (x, t)
h

)
∂u (x, t)
∂t

−
1
6

h2∂
3u (x, t)
∂t3 +

1
2
∂

∂t

(
0.1e−

xn
4 + 1

)
]. (4.4)

By the above equation, we get

N+ [u (x, t)] =
1
s

[
−

2ex

(1 + ex)2

]
−

cωα

sα
N+[

(
(Fr − 1) −

3
2

u (x, t)
h

)
∂u (x, t)
∂t

−
1
6

h2∂
3u (x, t)
∂t3 +

1
2
∂

∂t

(
0.1e−

xn
4 + 1

)
]. (4.5)

On employing inverse NT on Eq (4.5), we have

u (x, t) = −
2ex

(1 + ex)2 − cN−1[
ωα

sα
N+[

(
(Fr − 1) −

3
2

u (x, t)
h

)
∂u (x, t)
∂t

−
1
6

h2∂
3u (x, t)
∂t3

+
1
2
∂

∂t

(
0.1e−

xn
4 + 1

)
]]. (4.6)

Let us consider that, the series solution for u (x, t) is

u (x, t) =

∞∑
n=0

un (x, t).

Note that, uux =
∑∞

n=0 An be the nonlinear term and it is known as the Adomian polynomial. By the
help of this term, the Eq (4.6) becomes

∞∑
n=0

un (x, t) = −
2ex

(1 + ex)2 − cN−1[
ωα

sα
N+[

(
(Fr − 1) −

3
2

u (x, t)
h

)
∂u (x, t)
∂t
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−
1
6

h2∂
3u (x, t)
∂t3 +

1
2
∂

∂t

(
0.1e−

xn
4 + 1

)
]]. (4.7)

We can generate the recursive relation by comparing both sides of the above equation and which are
presented as follows

u0 (x, t) = −
2ex

(1 + ex)2 ,

u1 (x, t) =
−tα

Γ [α + 1]
(c(

6e2x (−1 + ex)
(1 + ex)5h

−
ex

(
−1 + 11ex − 11e2x + e3x

)
h2

3(1 + ex)5 − 0.0125e−
xn
4 nx−1+n

+
2ex(−1 + ex)(−1 + Fr)

(1 + ex)3 )),

...

Similarly, the remaining terms can be obtained with the aid of FNDM. Accordingly, we obtained the
series solutions as

u (x, t) = u0 (x, t) + u1 (x, t) + u2 (x, t) + . . .

= −
2ex

(1 + ex)2 −
tα

Γ [α + 1]
(c(

6e2x (−1 + ex)
(1 + ex)5h

−
ex

(
−1 + 11ex − 11e2x + e3x

)
h2

3(1 + ex)5 − 0.025e−
x2
4 x

+
2ex (−1 + ex) (−1 + Fr)

(1 + ex)3 )) + . . .

5. Numerical results and discussions

In the present investigation, we consider three special cases (n = 2, 4 and 8) for the proposed
model. Also, we consider constant wave speed c ≈

√
g × h =

√
9.8 with a mean water depth of the

sea h = 1. For n = 2, the nature of FNDM solution for FF-KdV equation with different fractional-
order is captured in Figures 1 and 2. From these plots, we can see the small variation in the nature
of the obtained solution for the different values of fractional order. In 3D plots, it is very difficult to
see the small changes of behaviour of the obtained solution, and hence we capture and presented in
the 2D plot. The behaviour of the solution for the proposed model obtained with the aid of FNDM
for Froude number (Fr) is presented in Figure 3. In order to present more interesting consequences of
the considered model, we present the behaviour of the FNDM solution for the second case (n = 4) in
Figures 4 and 5 for different fractional order. In the same manner, for n = 8 surfaces for the obtained
solution with distinct Fr is cited in Figure 6. The response of FNDM solution for FF-KdV equation
with distinct α is dissipated in Figure 7. We can observe from Figure 3, for distinct Froude number the
obtained solution coincides at x = 0. From Figures 1, 2, 4, 5 and 7 we can see that by incorporating
the fractional derivative in the proposed model we have some interesting behaviour. These behaviours
may help the researchers in order to understand the new properties of the considered model.
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(a) (b)

(c)
Figure 1. Surfaces of FNDM solution for (a) α = 0.50, (b) α = 0.75, (c) α = 1 at n = 2 and
Fr = −1.
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Figure 2. Response of obtained solution with distinct α at n = 2 and Fr = −1.
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Figure 3. Nature of FNDM solution with distinct Froude number at n = 2 and α = 1.
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(a) (b)

(c)
Figure 4. Surfaces of FNDM solution for (a) α = 0.50, (b) α = 0.75, (c) α = 1 at n = 4 and
Fr = −1.

α = 1

α = 0.75

α = 0.50

-10 -5 0 5 10

-2

0

2

4

x

u
(x
,
t)

Figure 5. Response of obtained solution with distinct α at n = 4 and Fr = −1.
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(a) (b)

(c)
Figure 6. Surfaces of FNDM solution for (a)Fr = −1, (b) Fr = 0, (c) Fr = 1 at n = 8 and
α = 1.
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Figure 7. Response of obtained solution with distinct α at n = 8 and Fr = −1.

6. Conclusions

In the present framework, the FNDM is lucratively employed to find the numerical solution for
fractional forced Korteweg-de Vries equation. The results achieved by the proposed scheme are
interesting as compared to results achieved by traditional techniques. It is worth revealing that, in the
future method, the solution for nonlinear problems can be obtained without making any discretization
or transformations. The present study shows that, the projected model is highly depends on the the
time instant and time history, which can effectively illustrated by the help of fractional calculus.
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Finally, we can conclude the considered method is more accurate and highly effective, and it can be
employed to investigate the different classes of nonlinear problems arisen in real life.
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