Mathematics
http://www.aimspress.com/journal/Math

Research article

Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order

Erhan Deniz* ${ }^{*}$ and Hatice Tuğba Yolcu

Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100, Kars, Turkey

* Correspondence: Email: edeniz36@gmail.com; Tel: +904742251150; +904742253089.

Abstract

In this paper, we obtain the upper bounds for the $n-t h(n \geq 1)$ coefficients for meromorphic bi-subordinate functions of complex order by using Faber polynomial expansions. The results, which are presented in this paper, would generalize those in related works of several earlier authors.

Keywords: analytic functions; starlike functions; meromorphic functions; bi-univalent functions; subordination; Faber polynomial
Mathematics Subject Classification: 30C45, 30C80

1. Introduction

Let Σ be the class of meromorphic univalent functions in the domain $\Delta=\{z \in \mathbb{C}: 1<|z|<\infty\}$ of the form

$$
\begin{equation*}
f(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}} . \tag{1.1}
\end{equation*}
$$

Since $f \in \Sigma$ is univalent, it has an inverse f^{-1}, that satisfy

$$
f^{-1}(f(z))=z \quad(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad(M<|w|<\infty, M>0) .
$$

A simple calculation shows that the function $g:=f^{-1}$ is given by

$$
\begin{align*}
g(w) & =w+B_{0}+\sum_{n=1}^{\infty} \frac{B_{n}}{w^{n}} \tag{1.2}\\
& =w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{1}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}+\cdots .
\end{align*}
$$

Analogous to the bi-univalent analytic functions, a function $f \in \Sigma$ is said to be meromorphic biunivalent if $f^{-1} \in \Sigma$. We denote the family of all meromorphic bi-univalent functions by \mathcal{M}_{Σ}. Estimates on the coefficients of meromorphic univalent functions were widely investigated in theliterature, for example; Schiffer [18] obtained the estimate $\left|b_{2}\right| \leq 2 / 3$ for meromorphic univalent functions $f \in \Sigma$ with $b_{0}=0$ and Duren [6] proved that $\left|b_{n}\right| \leq 2 /(n+1)$ for $f \in \Sigma$ with $b_{k}=0$ for $1 \leq k \leq n / 2$. For the coefficient of the inverse of meromorphic univalent functions Springer [20] proved that

$$
\left|B_{3}\right| \leq 1 \quad \text { and } \quad\left|B_{3}+\frac{1}{2} B_{1}^{2}\right| \leq \frac{1}{2}
$$

and conjectured that

$$
\left|B_{2 n-1}\right| \leq \frac{(2 n-1)!}{n!(n-1)!}, \quad(n=1,2, \cdots)
$$

In 1977, Kubota [13] has proved that the Springer's conjecture is true for $n=3,4,5$ and subsequently Schober [19] obtained a sharp bounds for the coefficients $B_{2 n-1}, 1 \leq n \leq 7$. Recently, Kapoor and Mishra [12] found the coefficient estimates for a class consisting of inverses of meromorphic starlike univalent functions of order α in Δ.

For a brief history and interesting examples of functions which are in (or are not in) the class \mathcal{M}_{Σ}, including various properties of such functions we refer the reader to the work of Hamidi et al. [9,10] and references therein. Bounds for the first few coefficients of various subclasses of bi-univalent functions were obtained by a variety of authors including $[4,8,11,15,16,22]$. Not much was known about the bounds of the general coefficients $b_{n} ; n \geq 1$ of subclasses of \mathcal{M}_{Σ} up until the publication of the article [9, 10] by Hamidi, Halim and Jahangiri and followed by a number of related publications (see [$5,14,21]$). In this paper, we apply the Faber polynomial expansions to certain subclass of bi-univalent functions and obtain bounds for their $n-t h ;(n \geq 1)$ coefficients subject to a given gap series condition.

2. Coefficient estimates

An analytic function f is subordinate to an analytic function g, written by $f<g$, provided that there is an analytic function w defined on $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ with $w(0)=0$ and $|w(z)|<1$ satisfying $f(z)=g(w(z))$.

In the sequel, it is assumed that φ is an analytic function with positive real part in the unit disk \mathbb{D}, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$, and $\varphi(\mathbb{D})$ is symmetric with respect to the real axis. Such a function is known to be typically real with the series expansion $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots$ where B_{1}, B_{2} are real and $B_{1}>0$. We define the following comprehensive class of meromorphic functions:
Definition 2.1. For $0 \leq \lambda<1$ and $\gamma \in \mathbb{C} \backslash\{0\}$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $\mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right)<\varphi(z)
$$

and

$$
1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{\lambda w g^{\prime}(w)+(1-\lambda) g(w)}-1\right)<\varphi(w)
$$

where $z, w \in \Delta$ and the function g is given by (1.2).

A function $f \in \mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$ is said the be generalized meromorphic bi-subordinate of complex order γ and type λ.

By suitably specializing the parameters λ, γ and the function φ, we state new subclass of meromorphic bi-univalent functions as illustrated in the following examples.
(1) $\left.\mathcal{M}_{\Sigma}(0,1 ; \varphi)\right)=\mathcal{M}_{\Sigma}(\varphi)$ is class of meromorphic Ma-Minda bi-starlike functions,
(2) $\mathcal{M}_{\Sigma}(0,1 ;(1+A z) /(1+B z))=\mathcal{M}_{\Sigma}[A, B](-1 \leq B<A \leq 1)$ is class of meromorphic Janowski bi-starlike functions,
(3) $\mathcal{M}_{\Sigma}\left(0,(1-\beta) e^{-i \delta} \cos \delta ;(1+z) /(1-z)\right)=\Sigma^{*}[\delta, \beta](|\delta|<\pi / 2,0 \leq \beta<1)$ is class of meromorphic bi- δ-spirallike functions of order β,
(4) $\mathcal{M}_{\Sigma}(0,1 ;(1+(1-2 \beta) z) /(1-z))=\Sigma^{*}(\beta)(0 \leq \beta<1)$ is class of meromorphic bi-starlike functions of order β,
(5) $\mathcal{M}_{\Sigma}(0,1 ;(1+z) /(1-z))=\Sigma^{*}$ is class of meromorphic bi-starlike functions,
(6) $\mathcal{M}_{\Sigma}\left(0,1 ;\left(\frac{1+z}{1-z}\right)^{\beta}\right)=\Sigma_{\beta}^{*}$ is class of meromorphic strongly bi-starlike functions of order β,
(7) $\mathcal{M}_{\Sigma}(0, \gamma ;(1+z) /(1-z))=\mathcal{S}^{*}[\gamma]$ is class of meromorphic bi-starlike functions of complex order.

In the following theorem, we use the Faber polynomials introduced by Faber [7] to obtain a bound for the general coefficients $\left|b_{n}\right|$ of the bi-univalent functions in $\mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$ subject to a gap series condition.

Theorem 2.1. Let $f \in \Sigma$ given by (1.1) in the class $\mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$. If, $b_{m}=0,1 \leq m \leq n-1$ for n being odd or if $b_{m}=0,0 \leq m \leq n-1$ for n being even, then

$$
\left|b_{n}\right| \leq \frac{|\gamma| B_{1}}{(n+1) \mid 1-\lambda(n+1 \mid} \quad(n \geq 1) .
$$

Proof. If we write $\Lambda(f(z))=\lambda z f^{\prime}(z)+(1-\lambda) f(z)$, then

$$
\begin{aligned}
& f \in \mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi) \Leftrightarrow 1+\frac{1}{\gamma}\left(\frac{z \Lambda^{\prime}(f(z))}{\Lambda(f(z))}-1\right)<\varphi(z) \\
& g=f^{-1} \in \mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi) \Leftrightarrow 1+\frac{1}{\gamma}\left(\frac{w \Lambda^{\prime}(g(w))}{\Lambda(g(w))}-1\right)<\varphi(w) .
\end{aligned}
$$

Also, for the function $f(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}$ we have $\Lambda(f(z))=z+\sum_{n=0}^{\infty} a_{n} z^{n}$ where $a_{n}=(1-\lambda(n+1)) b_{n}$.
Now, an application of Faber polynomial expansion to the power series $\mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$ (e.g., see [2] or [3, equation (1.6)]) yields

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z \Lambda^{\prime}(f(z))}{\Lambda(f(z))}-1\right)=1+\frac{1}{\gamma} \sum_{n=0}^{\infty} F_{n+1}\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right) \frac{1}{z^{n+1}} \tag{2.1}
\end{equation*}
$$

where $F_{n+1}\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right)$ is a Faber polynomial of degree $n+1$, i.e.,

$$
F_{n}\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}\right)=\sum_{i_{1}+2 i_{2}+\cdots+n i_{n}=n} A\left(i_{1}, i_{2}, \cdots, i_{n}\right)\left(a_{0}^{i_{1}} a_{1}^{i_{2}} \ldots a_{n-1}^{i_{n}}\right)
$$

and

$$
A\left(i_{1}, i_{2}, \cdots, i_{n}\right):=(-1)^{n+2 i_{1}+\cdots+(n+1) i_{n}} \frac{\left(i_{1}+i_{2}+\cdots+i_{n}-1\right)!n}{i_{1}!i_{2}!\ldots i_{n}!} .
$$

The first few terms of $F_{n+1}\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right)$ are

$$
\begin{aligned}
F_{1}\left(a_{0}\right) & =-a_{0}, \\
F_{2}\left(a_{0}, a_{1}\right) & =a_{0}^{2}-2 a_{1}, \\
F_{3}\left(a_{0}, a_{1}, a_{2}\right) & =-a_{0}^{3}+3 a_{0} a_{1}-3 a_{2}, \\
F_{4}\left(a_{0}, a_{1}, a_{2}, a_{3}\right) & =a_{0}^{4}-4 a_{0}^{2} a_{1}+4 a_{0} a_{2}+2 a_{1}^{2}-4 a_{3}, \\
F_{5}\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right) & =-a_{0}^{5}+5 a_{0}^{3} a_{1}-5 a_{0}^{2} a_{2}-5\left(a_{1}^{2}-a_{3}\right) a_{0}+5 a_{1} a_{2}-5 a_{4} .
\end{aligned}
$$

By the same token, the coefficients of the inverse map $g=f^{-1}$ may be expressed by

$$
g(w)=f^{-1}(w)=w-b_{0}-\sum_{n=1}^{\infty} \frac{1}{n} K_{n+1}^{n} \frac{1}{w^{n}}=w+\sum_{n=0}^{\infty} \beta_{n} \frac{1}{w^{n}}
$$

where

$$
\begin{aligned}
K_{n+1}^{n}= & n b_{0}^{n-1} b_{1}+n(n-1) b_{0}^{n-2} b_{2}+\frac{1}{2} n(n-1)(n-2) b_{0}^{n-3}\left(b_{3}+b_{1}^{2}\right) \\
& +\frac{n(n-1)(n-2)(n-3)}{3!} b_{0}^{n-4}\left(b_{4}+3 b_{1} b_{2}\right)+\sum_{j \geq 5} b_{0}^{n-j} V_{j}
\end{aligned}
$$

and V_{j} for $5 \leq j \leq n$ is a homogeneous polynomial in the variables $b_{1}, b_{2}, \ldots, b_{n}$.
The first few terms of K_{n+1}^{n} are

$$
\begin{aligned}
& K_{2}^{1}=b_{1} \\
& K_{3}^{2}=2\left(b_{0} b_{1}+b_{2}\right), \\
& K_{4}^{3}=3\left(b_{0}^{2} b_{1}+2 b_{0} b_{2}+b_{3}+b_{1}^{2}\right), \\
& K_{5}^{4}=4\left(b_{0}^{3} b_{1}+3 b_{0}^{2} b_{2}+3 b_{0}\left(b_{3}+b_{1}^{2}\right)+b_{4}+3 b_{1} b_{2}\right) .
\end{aligned}
$$

Obviously,

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w \Lambda^{\prime}(g(w))}{\Lambda(g(w))}-1\right)=1+\frac{1}{\gamma} \sum_{n=0}^{\infty} F_{n+1}\left(A_{0}, A_{1}, A_{2}, \cdots, A_{n}\right) \frac{1}{w^{n+1}} \tag{2.2}
\end{equation*}
$$

where $A_{n}=(1-\lambda(n+1)) \beta_{n}$. Since, the function f in the class $\mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$, by the definition of subordination, there exist two Schwarz functions $u(z)=\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\ldots+\frac{c_{n}}{z^{n}}+\ldots,|u(z)|<1, z \in \Delta$ and $v(w)=\frac{d_{1}}{w}+\frac{d_{2}}{w^{2}}+\ldots+\frac{d_{n}}{w^{n}}+\ldots,|v(w)|<1, w \in \Delta$, so that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z \Lambda^{\prime}(f(z))}{\Lambda(f(z))}-1\right)=\varphi(u(z))=1+B_{1} \sum_{n=1}^{\infty} K_{n}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n}, B_{1}, B_{2}, \ldots, B_{n}\right) \frac{1}{z^{n}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w \Lambda^{\prime}(g(w))}{\Lambda(g(w))}-1\right)=\varphi(v(w))=1+B_{1} \sum_{n=1}^{\infty} K_{n}^{-1}\left(d_{1}, d_{2}, \ldots, d_{n}, B_{1}, B_{2}, \ldots, B_{n}\right) \frac{1}{w^{n}} \tag{2.4}
\end{equation*}
$$

In general (e.g., see [1] and [2, equation (1.6)]), the coefficients $K_{n}^{p}:=K_{n}^{p}\left(k_{1}, k_{2}, \ldots, k_{n}, B_{1}, B_{2}, \ldots, B_{n}\right)$ are given by

$$
\begin{aligned}
K_{n}^{p}= & \frac{p!(-1)^{n}}{(p-n)!n!} k_{1}^{n} \frac{B_{n}}{B_{1}}+\frac{p!(-1)^{n+1}}{(p-n+1)!(n-2)!} k_{1}^{n-2} k_{2} \frac{B_{n-1}}{B_{1}} \\
& +\frac{p!(-1)^{n}}{(p-n+2)!(n-4)!} k_{1}^{n-3} k_{3} \frac{B_{n-2}}{B_{1}} \\
& +\frac{p!}{(p-n+3)!(n-4)!} k_{1}^{n-4}\left[(-1)^{n+1} k_{4} \frac{B_{n-3}}{B_{1}}+(-1)^{n} \frac{p-n+3}{2} k_{2}^{2} \frac{B_{n-2}}{B_{1}}\right] \\
& +\frac{p!}{(p-n+4)!(n-5)!} k_{1}^{n-5}\left[(-1)^{n} k_{5} \frac{B_{n-4}}{B_{1}}+(-1)^{n+1}(p-n+4) k_{2} k_{3} \frac{B_{n-3}}{B_{1}}\right]+\sum_{j \geq 6} k_{1}^{n-j} X_{j}
\end{aligned}
$$

where X_{j} is a homogeneous polynomial of degree j in the variables $k_{2}, k_{3}, \ldots, k_{n}$.
For the coefficients of the Schwarz functions $u(z)$ and $v(w)$, we have $\left|c_{n}\right| \leq 1$ and $\left|d_{n}\right| \leq 1$ (e.g., see [17]).

Note that for $a_{m}=0,1 \leq m \leq n-1$, we have

$$
F_{n+1}\left(a_{0}, 0,0, \cdots, 0, a_{n}\right)=(-1)^{n+1} a_{0}^{n+1}-(n+1) a_{n} .
$$

Comparing the corresponding coefficients of (2.1) and (2.3) yields

$$
\begin{equation*}
\frac{1}{\gamma} F_{n+1}\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right)=B_{1} K_{n}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n}, B_{1}, B_{2}, \ldots, B_{n}\right) . \tag{2.5}
\end{equation*}
$$

Then, under the assumption $a_{m}=0,1 \leq m \leq n-1$, we get

$$
\begin{equation*}
\frac{1}{\gamma}\left[(-1)^{n+1} a_{0}^{n+1}-(n+1) a_{n}\right]=\frac{1}{\gamma}\left[(-1)^{n+1}\left((1-\lambda(n+1)) b_{0}\right)^{n+1}-(n+1)(1-\lambda(n+1)) b_{n}\right]=B_{1} c_{n+1} \tag{2.6}
\end{equation*}
$$

Similarly, comparing the corresponding coefficients of (2.2) and (2.4) gives

$$
\begin{equation*}
\frac{1}{\gamma} F_{n+1}\left(A_{0}, A_{1}, A_{2}, \cdots, A_{n}\right)=B_{1} K_{n}^{-1}\left(d_{1}, d_{2}, \ldots, d_{n}, B_{1}, B_{2}, \ldots, B_{n}\right) . \tag{2.7}
\end{equation*}
$$

Note that, for $A_{m}=0,1 \leq m \leq n-1$, we have

$$
\begin{equation*}
\frac{1}{\gamma}\left[(-1)^{n+1} A_{0}^{n+1}-(n+1) A_{n}\right]=\frac{1}{\gamma}\left[(-1)^{n+1}\left((1-\lambda(n+1)) \beta_{0}\right)^{n+1}-(n+1)(1-\lambda(n+1)) \beta_{n}\right]=B_{1} d_{n+1} . \tag{2.8}
\end{equation*}
$$

On the other hand, comparing the corresponding coefficients of the functions f and $g=f^{-1}$, we obtain $\beta_{0}=-b_{0}$ and $\beta_{n}=-b_{n}$ for $b_{m}=0,1 \leq m \leq n-1$.

Hence, when n is odd, by using Eqs. (2.6), (2.8) and $\beta_{0}=-b_{0}$ and $\beta_{n}=-b_{n}$, we obtain following system

$$
\begin{aligned}
& \frac{1}{\gamma}\left[\left((1-\lambda(n+1)) b_{0}\right)^{n+1}-(n+1)(1-\lambda(n+1)) b_{n}\right]=B_{1} c_{n+1} \\
& \frac{1}{\gamma}\left[\left((1-\lambda(n+1)) b_{0}\right)^{n+1}+(n+1)(1-\lambda(n+1)) b_{n}\right]=B_{1} d_{n+1} .
\end{aligned}
$$

Subtracting two above equation, we have

$$
\frac{2}{\gamma}\left[(n+1)(1-\lambda(n+1)) b_{n}\right]=B_{1}\left(d_{n+1}-c_{n+1}\right) .
$$

Applying the $\left|c_{n}\right| \leq 1$ and $\left|d_{n}\right| \leq 1$ yields

$$
\left|b_{n}\right| \leq \frac{|\gamma| B_{1}}{(n+1) \mid 1-\lambda(n+1 \mid} .
$$

Similarly, when n is even, by using Eqs. (2.6), (2.8) with $b_{m}=0,0 \leq m \leq n-1$, we obtain following system

$$
\begin{aligned}
\frac{1}{\gamma}\left[-(n+1)(1-\lambda(n+1)) b_{n}\right] & =B_{1} c_{n+1} \\
\frac{1}{\gamma}\left[(n+1)(1-\lambda(n+1)) b_{n}\right] & =B_{1} d_{n+1} .
\end{aligned}
$$

Hence

$$
\frac{2}{\gamma}\left[(n+1)(1-\lambda(n+1)) b_{n}\right]=B_{1}\left(d_{n+1}-c_{n+1}\right) .
$$

Applying the $\left|c_{n}\right| \leq 1$ and $\left|d_{n}\right| \leq 1$ yields

$$
\left|b_{n}\right| \leq \frac{|\gamma| B_{1}}{(n+1) \mid 1-\lambda(n+1 \mid}
$$

Corollary 2.2. Let $f \in \Sigma$ given by (1.1) in the class $\mathcal{M}_{\Sigma}(\varphi)$. If, $b_{m}=0,1 \leq m \leq n-1$ for n being odd or if $b_{m}=0,0 \leq m \leq n-1$ for n being even, then

$$
\left|b_{n}\right| \leq \frac{B_{1}}{n+1} \quad(n \geq 1) .
$$

For functions in the class $\mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$, the following initial coefficients estimation holds. To prove our next theorem, we shall need the following well-known lemma (see [17]).

Lemma 2.1. ([17]) If $p \in \mathcal{P}$, the class of all functions with $\mathfrak{R}(p(z))>0(z \in \mathbb{D})$, then $\left|p_{n}\right| \leq 2$ $(n \in \mathbb{N}=\{1,2, \cdots\})$, where $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$.

We know that $p(z) \in \mathcal{P}(z \in \mathbb{D}) \Leftrightarrow p\left(\frac{1}{z}\right) \in \mathcal{P}(z \in \Delta)$. Define the functions p and q in \mathcal{P} given by

$$
p(z)=\frac{1+u(z)}{1-u(z)}=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\cdots
$$

and

$$
q(z)=\frac{1+v(z)}{1-v(z)}=1+\frac{q_{1}}{z}+\frac{q_{2}}{z^{2}}+\cdots,
$$

where $u(z)=\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\ldots+\frac{c_{n}}{z^{n}}+\ldots,|u(z)|<1, z \in \Delta$ and $v(z)=\frac{d_{1}}{z}+\frac{d_{2}}{z^{2}}+\ldots+\frac{d_{n}}{z^{n}}+\ldots,|v(z)|<1, z \in \Delta$ are Schwarz functions (e.g., see [17]). It follows that

$$
\begin{equation*}
u(z)=\frac{p(z)-1}{p(z)+1}=\frac{p_{1}}{2} \frac{1}{z}+\frac{1}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right) \frac{1}{z^{2}}+\cdots \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z)=\frac{q(z)-1}{q(z)+1}=\frac{q_{1}}{2} \frac{1}{z}+\frac{1}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right) \frac{1}{z^{2}}+\cdots . \tag{2.10}
\end{equation*}
$$

Theorem 2.3. Let f given by (1.1) be in the class $\mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$. Then

$$
\left|b_{0}\right| \leq \min \left\{\frac{\sqrt{|\gamma|\left(B_{1}+\left|B_{2}\right|\right)}}{1-\lambda}, \frac{\sqrt{|\gamma|\left(\left|B_{2}-B_{1}\right|+B_{1}\right)}}{1-\lambda}\right\}
$$

and

$$
\left|b_{1}\right| \leq \frac{|\gamma| B_{1}}{2|1-2 \lambda|}
$$

Proof. Let $f \in \mathcal{M}_{\Sigma}(\lambda, \gamma ; \varphi)$. Then, there are analytic functions $u, v: \Delta \rightarrow \mathbb{C}$, with $u(\infty)=v(\infty)=0$, satisfying

$$
\begin{align*}
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right) & =\varphi(u(z)) \tag{2.11}\\
\text { and } 1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{\lambda w g^{\prime}(w)+(1-\lambda) g(w)}-1\right) & =\varphi(v(w)),\left(g:=f^{-1}\right) .
\end{align*}
$$

Since

$$
\begin{aligned}
& 1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right) \\
= & 1-\frac{(1-\lambda) b_{0}}{\gamma} \frac{1}{z}+\frac{(1-\lambda)^{2} b_{0}^{2}-2(1-2 \lambda) b_{1}}{\gamma} \frac{1}{z^{2}}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& 1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{\lambda w g^{\prime}(w)+(1-\lambda) g(w)}-1\right) \\
= & 1+\frac{(1-\lambda) b_{0}}{\gamma} \frac{1}{w}+\frac{(1-\lambda)^{2} b_{0}^{2}+2(1-2 \lambda) b_{1}}{\gamma} \frac{1}{w^{2}}+\ldots
\end{aligned}
$$

then (2.3) and (2.4) yield

$$
\begin{gather*}
-\frac{(1-\lambda) b_{0}}{\gamma}=B_{1} c_{1} \tag{2.12}\\
\frac{(1-\lambda)^{2} b_{0}^{2}-2(1-2 \lambda) b_{1}}{\gamma}=B_{1} c_{2}+B_{2} c_{1}^{2} \tag{2.13}\\
\frac{(1-\lambda) b_{0}}{\gamma}=B_{1} d_{1} \tag{2.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda)^{2} b_{0}^{2}+2(1-2 \lambda) b_{1}}{\gamma}=B_{1} d_{2}+B_{2} d_{1}^{2} \tag{2.15}
\end{equation*}
$$

Now, considering (2.12) and (2.14), we get

$$
\begin{equation*}
c_{1}=-d_{1} . \tag{2.16}
\end{equation*}
$$

Also, from (2.13) and (2.15), we find that

$$
b_{0}^{2}=\frac{\gamma\left[B_{1}\left(c_{2}+d_{2}\right)+2 B_{2} c_{1}^{2}\right]}{2(1-\lambda)^{2}}
$$

which, in view of the inequalities $\left|c_{n}\right| \leq 1$ and $\left|d_{n}\right| \leq 1$ yield

$$
\left|b_{0}\right|^{2} \leq \frac{|\gamma|\left(B_{1}+\left|B_{2}\right|\right)}{(1-\lambda)^{2}} .
$$

Since $B_{1}>0$, the last inequality gives the desired first estimate on $\left|b_{0}\right|$ given in the theorem. On the other hand, comparing the coefficients of (2.9) and (2.10) with (2.11), we have

$$
\begin{gather*}
-\frac{(1-\lambda) b_{0}}{\gamma}=B_{1} \frac{p_{1}}{2} \tag{2.17}\\
\frac{(1-\lambda)^{2} b_{0}^{2}-2(1-2 \lambda) b_{1}}{\gamma}=\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} \tag{2.18}\\
\frac{(1-\lambda) b_{0}}{\gamma}=B_{1} \frac{q_{1}}{2} \tag{2.19}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda)^{2} b_{0}^{2}+2(1-2 \lambda) b_{1}}{\gamma}=\frac{1}{2} B_{1}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} . \tag{2.20}
\end{equation*}
$$

From (2.17) and (2.19), we get $p_{1}=-q_{1}$. Considering the sums of (2.18) and (2.20) with $p_{1}=-q_{1}$, we have

$$
b_{0}^{2}=\frac{\gamma}{4(1-\lambda)^{2}}\left[p_{1}^{2}\left(B_{2}-B_{1}\right)+B_{1}\left(p_{2}+q_{2}\right)\right] .
$$

Applying Lemma 2.1 for the coefficients p_{1}, p_{2} and q_{2}, we obtain

$$
\left|b_{0}\right| \leq \frac{\sqrt{|\gamma|\left(\left|B_{2}-B_{1}\right|+B_{1}\right)}}{1-\lambda}
$$

that gives the second estimate on $\left|b_{0}\right|$ given in the theorem.
Next, in order to find the bound on $\left|b_{1}\right|$, by further computations from (2.13), (2.15) and (2.16) lead to

$$
\frac{4(1-2 \lambda) b_{1}}{\gamma}=B_{1}\left(d_{2}-c_{2}\right) .
$$

Applying the inequalities $\left|c_{n}\right| \leq 1$ and $\left|d_{n}\right| \leq 1$, we readily get

$$
\left|b_{1}\right| \leq \frac{|\gamma| B_{1}}{2|1-2 \lambda|}
$$

which is the bound on $\left|b_{1}\right|$.

Corollary 2.4. Letf given by (1.1) be in the class $\mathcal{M}_{\Sigma}(\varphi)$. Then,

$$
\left|b_{0}\right| \leq \min \left\{\sqrt{B_{1}+\left|B_{2}\right|}, \sqrt{\left|B_{2}-B_{1}\right|+B_{1}}\right\}
$$

and

$$
\left|b_{1}\right| \leq \frac{B_{1}}{2}
$$

Remark 2.5. Taking $\varphi(z)=(1+(1-2 \beta) z) /(1-z)$ in Corollary 2.2 and 2.4, we obtain results of [10].

Conflict of interest

The authors declare no conflict of interest.

References

1. H. Airault, A. Bouali, Differential calculus on the Faber polynomials, B. Sci. Math., $\mathbf{1 3 0}$ (2006), 179-222.
2. H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, B. Sci. Math., 126 (2002), 343-367.
3. A. Bouali, Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions, B. Sci. Math., 130 (2006), 49-70.
4. S. Bulut, Coefficient estimates for new subclasses of meromorphic bi-univalent functions, Int. Scholarly Res. Notices, 2014 (2014), 376076.
5. S. Bulut, N. Magesh, V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 113-116.
6. P. L. Duren, Coefficients of meromorphic schlicht functions, P. Am. Math. Soc., 28 (1971), 169172.
7. G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389-408.
8. S. A. Halim, S. G. Hamidi, V. Ravichandran, et al. Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 352 (2014), 277-282.
9. S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 351 (2013), 349-352.
10. S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci., 2013 (2013), 498159.
11. T. Janani, G. Murugusundaramoorthy, Coefficient estimates of meromorphic bi-starlike functions of complex order, Int. J. Anal. Appl., 4 (2014), 68-77.
12. G. P. Kapoor, A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., 329 (2007), 922-934.
13. Y. Kubota, Coefficients of meromorphic univalent functions, Kodai Mathematical Seminar Reports, Department of Mathematics, Tokyo Institute of Technology, 28 (1977), 253-261.
14. A. Motamednezhad, S. Salehian, Faber polynomial coefficient estimates for certain subclass of meromorphic bi-univalent functions, Commun. Korean Math. Soc., 33 (2018), 1229-1237.
15. F. M. Sakar, Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions, J. Inequal. Appl., 2018 (2018), 283.
16. T. Panigrahi, Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, B. Korean Math. Soc., 50 (2013), 1531-1538.
17. C. Pommerenke, Univalent Functions, Gottingen: Vandenhoeck \& Ruprecht, 1975.
18. M. Schiffer, Sur un problème d'extrémum de la représentation conforme, B. Soc. Math. Fr., 66 (1938), 48-55.
19. G. Schober, Coefficients of inverses of meromorphic univalent functions, P. Am. Math. Soc., 67 (1977), 111-116.
20. G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, T. Am. Math. Soc., 70 (1951), 421-450.
21. P. G. Todorov, On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162 (1991), 268-276.
22. H. G. Xiao, Q. H. Xu, Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions, Filomat, 29 (2015), 1601-1612.

AIMS Press
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

