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1. Introduction

Throughout this paper, let a < b and p, g be two constants which satisfy 0 < g < p < 1.
In 2016, Tung¢ and GoOv defined the (p, ¢)-derivative and (p, ¢)-integral as follows.

Definition 1. ( [14]) Let f : [a,b] — R be continuous, the (p, g)-derivative of f at x € [a, b] is defined
by the expression
f(px+ (1 =pa) - flgx+ (1 - q)a)

p-9x—a)

Since f is a continuous mapping, one has D, ,f(a) = lim,_,,.D, ,f(x).

aDp,qf(x) = , X%a

Definition 2. ( [14]) Let f : [a,b] — R be continuous, the (p, g)-integral on [a, x] is defined as

fx f®adpyt = (p—q)(x—a) Z pZ:f( q" X+ (1 — pzlil)a)
a n=0

pn+1
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for x € [a, b]. Moreover, if ¢ € (a, x), then the (p, g)-integral on [c, x] is delineated as

f f(t)adp,qt:f f(t)adp,qt_f f(t)adp,qt-

In Definition 1 and Definition 2, if we take p = 1, then we get the definitions of g-derivative and
g-integral, respectively.

In 2018, Kunt et al. presented the (p, g)-integrals version of the Hermite-Hadamard’s inequality as
follows.

Theorem 1 ( [4]). Let f : [a,b] — R be convex, continuous and (p, q)-differentiable on [a,b]. Then
we have

qa + pb 1 phri=pla qf(a) + pf(b)
f(p+q)sp(b—a) a S (Xl gx < p+q

Clearly, if we put p = 1 in Theorem 1, then we obtain the g-integrals version of the Hermite—
Hadamard’s inequality. For recent results on the g-Hermite—Hadamard’s inequality, see [5, 7-9, 17].
Besides this, we also refer to some recent related work with respect to other type quantum integral
inequalities, for example, see [3, 6,10, 12,13, 16] and the references therein.

Here, our main purpose is to investigate the parameterized inequalities for (p, g)-integral operators.
For this purpose, we will establish a (p, g)-integral identity with parameters. Using this (p, g)-integral
identity, we present several (p, g)-integral inequalities for a class of (p, g)-differentiable mappings,
which are related to convex mappings. In addition, we obtain some estimation-type results for

(p, g¢)-integral inequalities by considering the boundedness and Lipschitz condition. Some relevant
connections of the derived results in this paper with previous ones are also pointed out.

2. Auxiliary results

We need the following lemma.

Lemma 1. Let f : [a,b] — R be a continuous and (p, q)-differentiable function on (a,b). If D, ,f is
integrable on [a, b] and A, u € [0, 1], then the following identity holds:

L
A, u;a,b) = (b - a){ j(: (gt + Au— ),D, ,f(tb + (1 — Ha)yd, ,t
1
+ f (gt + A= 1),Dp f(th + (1 - l)a)odp,qt}’
u

where

A, p;a,b) =A[(1 = ) f(@) + puf(D)] + (1 = D f(ub + (1 — pa)

1 pb+(1-p)a
pb-a) L et
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Proof. By identical transformation, we get
(b - a){ f:(qt +Au = DD, f(th + (1 = t)a)od,, 4t
+ f 1 (gt + A —1),D, , f(tb + (1 - t)a)odp,qt}
u
= (b a){ fo (gt + A= DDy f(th + (1 = D,

L
+ f (1 =)D, f(th + (1 - t)a)od,,,qt}.
0
From Definition 1, we get

aDp o f(th + (1 —t)a)
_ f(pltb + (1 = Hal + (1 = p)a) — f(q[tb + (1 = t)a] + (1 — g)a)

Hp - qb~-a
_ fptb + (A — pna) - flgtb + (1 — gt)a)
Hp—q)b~a) '

Utilizing the above calculation and Definition 2, we have

1
f t oDy f(th + (1 — Da)od, 4t
0
:j“ﬂmb+ﬂ—pmﬂ—ﬂwb+U—WM)d
0
1 (o)

(p—q)b-a) 0"

_ 9 (49" q'
- — “{Z; pnﬂf(l?b +(1- ]?)a)

n=

p & qn+1 qn+1 qn+l

- 5 pn+2f(pn+lb + (1 - pn+1 )a)
n=0

1

= m{}%f(b) " (1 - s)i pZ:f(fTZb +(1- ,%)“)}

_ f(b) 1 pb+(1-p)a
- C](b - (1) B pq(b - a)2 L f(x)adp,qx,

1
f aDpf(th + (1 —t)a)od, 4t
0

1 b n n & n+1 n+1
= G (- D)= s 0= )}
_ f®) - f@

b-a

2.1

(2.2)

(2.3)
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and

Y]
f aDp o f(th + (1 —t)a)d, 4t
0

{Zf(—ub+(l—p—u a)- Zf( L e (1= L) )}

_f(/1b+(1— )a) — f(a)
B b-a '

Substituting (2.2), (2.3) and (2.4) into (2.1), we obtain the desired result. This ends the proof.

Remark 1. Consider Lemma 1.
(i) Putting 4 = 0, we have

pb+(1-p)a 1
fla) - f f(x)dpx=(b—- a)j(; (gt — 1)yD, o f(tb + (1 — t)a)od, 4t.

p(b—a)
(if) Putting u = 1, we have

pb+(1-p)a 1
f f(X)dpyx = (b - a)f gt oD, o f(th + (1 — Ha)od,, 1.
0

pb—a)
(iii) Putting u = , we have
qf(a)+ pf(b) ga + pb 1 pb+(1-p)a
AT+(1—/1)JC( P+ g )_p(b—a)L F(0)adpx

o A
= (b~ a){ fo (qt - p—fq)aDM F(th + (1 = Dad, 1

1
A
+ f (qt + P2 _ l)aDp,q f@b+ (1 - t)a)odp,qt}.
L2 ptq
Remark 2. Consider Lemma 1.
() Putting 1 = 0, we get

pb+(1-p)a

fub+ (1 - f(x)ad, x

- a)
7 1
=(b- a){ f qt ¢D, o f (th + (1 = Ha)od, 4t + f (gt = 1)D,,f(th + (1 — t)a)odp,qt}.
0

Specially, takmg u = ——, we obtain Lemma 3 presented by Kunt et al. in [4].
(if) Putting A = 3, we get

pb+(1-p)a

Jf(X)adpqgx

1
§[<1 = WF@ + 1fB) + 2f (b + (1 = )| =

T
— (- a){ fo (qt + - §)aD,[,,q F(th + (1 = Dad, g1

! 1
+ f (q’ Ml 1)“Dp,qf(tb +(- t)a)od”’qt}'
u

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)
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Specially, taking u = pL we obtain the Simpson-like integral identity

+q’

l1gf(a) + pf(b) qa + pb 1 pb+(1-pla
g[T " 2f( p+q )] B pb-a)J, J(adp g
= (b — (1){ £1’+q (ql’ - —3p i 3q )aDp’qf(tb + (1 — t)a)Odp,qt (210)

1
p
+ f (qt+ e 1)uD,,,q F(tb+ (1 = t)a)odpﬂt}.

p

ptq

(iii) Putting A = 5, we get

1
29

1 1 pb+(1-pa
310 = 0@+ f 6+ Fab+ (1= 0] = s [T

w1
= (b- a){ fo (qt +oh E)QDM F(th + (1 - Da)od, gt @.11)

! 1
" f (a1 + 3= 1)aDp (b + (1 = Daod 1}
M

Specially, taking u = ﬁ, we obtain the averaged midpoint-trapezoid-like integral identity

l1gf(a) + pf(b) qa + pb 1 pb+(1-p)a
E[ p+gq +f( P+q )]_p(b—a) ’

— (h— (4 _
— (b a){ fo (qt 2pJrzq)aD,,,qf(ﬂH(l Daod, 1 2.12)

JF(X)adpqx

1
p
+ f p (qt+ o 1)aD,,,q F(tb+(1 = z)a)od,,,qz}.

ptq

(iv) Putting 4 = 1, we get

1 pb+(1-p)a
(1= f@-+ i) =~ [

. (2.13)
=0b-a) j; (gt +p—1),D, f(th + (1 — t)a)od, 4.
Specially, taking y = ﬁ, we obtain the trapezoid-like integral identity
+ b 1 pb+(1-p)a
qf (a; " l;f b —— f FOudy o
| » ‘ (2.14)
= (b-a) fo (ar+ - 1D f (b + (1 = D)oyt

Worth mentioning, to the best of our knowledge the above-obtained (p, ¢)-integral identities (2.5)-
(2.14) are new in the literature.
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3. Main results

In 2017, Kunt et al. established the (p, g)-Hermite—Hadamard inequality in the paper [4]. Here we
give a new proof, which is more concise.

Theorem 2. Let f : [a,b] — R be convex, continuous and (p, q)-differentiable on (a, b). Then we have

ga + pb 1 phr(i=pi qf(a) + pf(b)
f(p+q)gp(b—a)fa J(Dadpqx < p+q

Proof. It is obvious that Z (1 - % [q)— = 1,0 < g < p < 1. Since Jensen’s inequality defined on convex

sets for infinite sums stlll remalns true, utilizing this fact and Definition 2, we have

o)A B 05 - 5)

n=0
N a\q" (q" q
< (1——)—f(—b+ 1——a)
1 pb+(1-p)a
_ oo,
o), T

Using Definition 2 and the convexity of f, we get

e 1_ . fpb+(1—p)a o
:2(1——)—f( b+ (1 __) )
S;@"+{f@W nMM

_ af@+ pfh)
p+q

The proof is completed. O

Theorem 3. Let f : [a,b] — R be continuous and (p, q)-differentiable on (a,b), and let ,D,,f be
integrable on [a, b]. Then the following inequality

AL 130, b)

<(b- a){[CDl(ﬂ,u; P @) + @2, 15 p, @) = ©3(A, 13 P, @) | aDp o f D))
+ | @a(d, 15 p, @) + O, 113 p, ) = DA, 13 P, g) = P1(A, 15 P, )

= ©a(A, 5 p, @) + ©3(A, 5 p, q)] aDp,qf(a)I}

3.1
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holds for all A,u € [0, 1] if |,D, ,f| is convex on [a, b], where

U
(A, 15 p,q) = f t|qt + A — /1|0dp’qt
0
PA- gl
p+q PP+pa+q?’ A+ qu <A, 42
2=’ 1

1
9 ptq  prpa+q? )

3 2
qu _ @@=
+pz+pq+qz p+q ’ (/1 + q)l'l > /17

1
(I)2(/l’ M5 D, CI) = f t|qt + /lﬂ - 1|Odp,qt
0

Ldn 4 A+qg<l,

p+q P>+pa+q*’ (3 3)
20wt 1 )
¢ ‘ptq p]2+pq+42
q —Au
+5—— - Au+q>1
Ppate®  prq” Hrq=>1

L
O3(A, 15 p, q) = f tlgt + A = 1)od, gt
0

A=A q’
- 72 29 (ﬂ + (]),Ll < 1,
~ 20— 1

1
@  \ptq  pPHpgt+q? )

g P-4
Prpa+q’ - prq (/l+q),u> 1,

L
Oy, 15 p,q) = f lgt + A — Alod,, 4
0

2
Al = p) = =, A+ qu < 4,
3.5
=) 20-4p? 1
q (1 P+q
+E= =l — ), A+ > A,

1
Os(4, 15 p,q) = f |gt + A — 1]od, gt
0
L2 Au+g<1
/'l’ /‘l q — B
- (3.6)
T 20?1
q (1 p+q
=S utg> 1,
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and

U
Oo(A, 15 p, q) = f |gt + A — 1]od, ot
0
qi
u(l = Ap) = =, A+ qu <1,
(3.7)
20—y 1
q ( p+q)

- -
+o u(l =), A+qu>1.

Proof. Utilizing Lemma 1 and the convexity of |,D,, , f|, we have

AL 3 0, )
S(b—a){fﬂ|qt+/l,u—/l
0

1
+ f |qt + Au—1
o
L
<(b- a){f |qt + Au — /l|[t
0
1
+ f |qt+/1,u - 1|[t
’ u 1
= (b- a){[f tlgt + Ap — Aod, 4 + f tlgt + Au = 1]od, ot
0 0
_ fﬂ tlgt + Au - 1|od,,,qt]
0
1
+ [fﬂ lgt + A — Afod,, 4t + f |gt + A — 1]od, ot
0 0

u L
- j; |gt + A = 1]od, ot — fo tlgr + Ap — Alod, gt

Dy f(th + (1 = Da)|od, 4t

WDy f(th+ (1 - r)a)|0d,,,qz}

Dpgf )] + (1 = D]uDp g f(@)]od gt

aDp,qf(b)| + (1 - t) aDPan(a)|]0dp,qt}

Dyt f D)

1 H
- f tlgr + A — 1fod, ot + f t|qt+ﬁy—1|0d,,,qt] aDp,qf(a)|}.
0 0

The proof is completed. O

Remark 3. Consider u = ﬁ in Theorem 3.
(i) For A = 0, we obtain the midpoint-like integral inequality presented by Kunt et al. in [4, Theorem
7]. Specially, taking p = 1, we get Theorem 13 established by Alp et al. in [2].
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(ii) For A = % we obtain the Simpson-like integral inequality

‘l[qf(a) + pf(b) N 2f(qa + pb )] B 1 fpb+(1—p)a P
3 p+q pP+q pb—a) J, ’
< (b- a){[cbl(%, Lip.a)+ (5, Lip.a)
- <I>3(%, ﬁ;p, q)] Dy fB)] + [%(%, ﬁ;p, q)
(DS(%’I%Q?I” q)—fba(%,p%iq;p, q)—@(%,]%q;p,q)

1 p 1 p )]
-0 o «D .
(3 p+q’p’q)+ (3 p+q’p° p’qf(a)|

Specially, taking p=1andletg — 17, we get Corollary 1 established by Alomari et al. in [1].

(iii) For A = 5, we obtain the averaged midpoint-trapezoid-like integral inequality

b+(1-p)a
)

I p I p
S b_ (D(_a—; a) q)( s a)
( a){[12p+qpq 22p+qpq
—CD(l P g )] D f(b)|+[d)(——
2p a ) a’p.q 42’p+q
1 p 1 p ) (1 p )
CD ) s Ps _CD ) P> _(D ) P
5(2 p+qpq) 6(2 p+qpq 12p+qpq
1 p 1 p )]
- Oyl =, ——; p, q|+ P3| =, ——; p. g )||.D .
2(2 p+qpq) 3(2 el L paf (@)

Specially, taking p = 1 and let g — 17, we get Corollary 3.4 established by Xi and Qi in [15].
(iv) For A = 1, we obtain the trapezoid-like integral inequality

@-+pf) 1 (O
’qf ap +Zf pb-a) f S (apg

<(b- a){q)z(l, ﬁ; P, q) Dy f (D)

P P
+[<D (1,—,19 q) () (1 ;p,q)]a
p+g p+g

Specially, taking p = 1, we get Theorem 4.1 given by Sudsutad et al. in [11].

J(X)adpqx

»

D,, f(a)|}.

If |,D,,f1" for r > 1 is convex, then we have the following theorem.

AIMS Mathematics
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Theorem 4. Let f : [a,b] — R be continuous and (p, q)-differentiable on (a,b), and let ,D,,f be
integrable on [a, b]. Then the following inequality

AL 130, b)

r

aDp.qf(b)

1
i

_1
<(b- a){(D; (4, 1; p, q)[CDz(/Lu;p, )

Dpof@|

+ (@5(/1,/1, P, 6]) - (I)2(/l7/~l;p’ Q))

2
aDp,qf(b)r + ( - le—+q) aDp,qf(a)

o I}
holds for all A, € [0, 1] if |.D,, . f|" for r > 1 is convex on [a, b], where ©»(A, u; p, q) and @s(A, u; p, q)
are defined by (3.3) and (3.6), respectively.

2
+ —A)u‘—i[ a

Proof. Using Lemma 1 and the power mean inequality, we have

AL 130, b)

1 1-1
< (- a){(f |qt + Au — 1|0dp,qt)
0

1
x ( f lgt + At = 1]|uD o f (1 + (1 - t)a)|’0d,,,qz)
0

r(l- A)(foﬂ 1 odp,qt)l_l( foﬂ

Utilizing the convexity of |,D, ,f]", we get
1
f |gt + A = 1]|uD, o f(tb + (1 = D)a)| od ot
0

1
< fo gt + 4t = 1] 1Dy )

1
- (f tlgr + Ap - 1|0dp,qt)
0
1 1
+ (f |gt + A — 1]od, ot — f tlgr + Ap - 1|0dp,qt)
0 0

ﬁﬂ u
<[]

2 2
U r 7
Dy o) + (- £=)
g | p+q

Using (3.9) and (3.10) in (3.8), we deduce the desired result. The proof is completed. O

1 (3.8)

7

WDy f(th + (1 - r)a)|’0d,,,qr)'}.

"+ (-9

Draf @[ oyt
(3.9)

r

aDp.qf(b)

r

aDp.qf(a)

and

Dy f(th + (1 = 1)a)| od, 4t

Doaf®) + (1 = 0Dy f@) oot (3.10)

Dyfa| .
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A similar result is embodied in the following theorem.

Theorem 5. Let f : [a,b] — R be continuous and (p, q)-differentiable on (a,b), and let ,D,,f be
integrable on [a, b]. Then the following inequality

AL 130, b)

. 1
<(b- a){‘PS(/Lu;p,q)[]T

+ (1 - ]%Jrq) aDp
Dpq.f (a)|r]r}

holds for all A, u € [0, 11 if |,D, ,f1" for r > 1 with r™' + s7' = 1 is convex on [a, b],
where

e

# (= et | LoDy )] —p“—:q)

Y, 1 p, q)
1
= f |ql + Au — 1|S0dp’ql‘
0
& n n+1 N
(P=9 3 (1 = = 5). 0<ius<l-g,
[ & n—1 n o\
| w- ot -4 3 (1 - )
n+l1 s
+Hp - q)Z L (% — 1+ ap) L l-g<au<l.
i n—1 n N
| (-9 =4 3 (e 1)

Proof. Using Lemma 1 and the Holder inequality, one has

AL 130, b)

1 1
< (- a){(f |qt + Au — 1|S0dp,qt)> (
0
u 1 W
r (- z)( f 1“‘0d,,,qr) ( D
0 0

Utilizing the convexity of |,D, ,f|", one gets

1
f Dy f(th + (1 = 1)a)| odp gt
0

1
< [ [dp
0
1

aDpqf(th+ (1 - t)a)rodmt)7 (3.11)

paf(th+ (1 - t)a)|’od,,,qr)’}.

an(b)r-+(1-—r)al)ﬂqf(a)r]odpgz (3.12)
I
R (e 22

AIMS Mathematics Volume 5, Issue 1, 568-586.
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and
H r
fo Dy f(th + (1 = D)a)| odp gt
U
< f [t aDpafD) + (A =1)|.Dp 4 f(a) ]Odp,qt (3.13)
0
2 2
M r e r
= LD O + (1= LDyt (@
p + q p-q p + q 2%
Using (3.12) and (3.13) in (3.11), one has the desired result. The proof is completed. O

Remark 4. For u = I%I’ ifwetake A =0, 1 = %, A= % and A = 1 in Theorem 4 and Theorem 5,
respectively, then we obtain the midpoint-like integral inequality, the Simpson-like integral inequality,
the averaged midpoint-trapezoid-like integral inequality and the trapezoid-like integral inequality,
respectively.

The following result is a lower bound for (p, g)-integral inequality involving product of two convex
functions.

Theorem 6. Let f,g : [a,b] — R be continuous and non-negative on [a,b]. If f and g are convex
functions on |a, b], then the following inequality holds:

a ; b)g(a ; b) b 1 a fab J(0)8(x)adp g

1 1
< (1= o+ e f@s®) + fo)z(@)

4f(

2 1
e )@@+ (1- Jr@re.
p+q p*+pq+q P’ +pg+q
Proof. Since f and g are convex and non-negative, we have
a+b\ (a+b
4
f( 2 )g( 2 )
B th+(1—-1a ta+(1—t)b) (tb+(1—t)a ta+(1—t)b)
_4f( 2 2 BT T2

<[f(b+ (1 =Da) + f(ta+ (1 = b)|[s(th + (1 = a) + g(ta + (1 — 1)b)]
= f(tb+ (1 —ta)g(thb + (1 — H)a) + f(tb + (1 — t)a)g(ta + (1 — 1)b)
+ f(ta+ (1 =0)b)g(th + (1 — ta) + f(ta + (1 —)b)g(ta + (1 — 1)b)
< f(tb+ (1 —=ta)g(th + (1 —t)a)
+[tf(b) + (1 =) f(a)][tg8(a) + (1 — 1)g(b)]
+[tf(@) + (1 =) f(b)][te(d) + (1 — D)g(a)]
+[tf(a) + (1 =) f(b)][tg(a) + (1 — 1)g(b)]
= f(th + (1 = Na)g(th + (1 = na) + (1 — 1 + ) f(@)g(b) + f(b)g(a)]
+ (2t = ) f(a)g(a) + (1 - ) f(b)g(b).

AIMS Mathematics Volume 5, Issue 1, 568-586.
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Taking (p, g)-integral for the above inequality about 7 on (0, 1), we get

)t

1
S[La_pﬂw%ﬁu@gMamwwn

1
+ [ f (2t = )od,, 4t
0

1 1
= (1= o+ @) + fo)g(a)

2 1
’ (p +q P +pat )f(a)g(a)

4 f(

1
fla)g(a) + [ fo (1- tz)Odp,qt]f (b)g(b).

1
+ (1 - m)ﬂb)g(b)-

This ends the proof. o

Our next result is an upper bound of (p, g)-integral inequality through product of two convex
functions.

Theorem 7. Let f,g : [a,b] — R be continuous and non-negative on [a,bl. If f and g are convex
functions on [a, b), then the following inequality holds:

1 b
m L f(x)g(x)adp,qx
ﬂmam+@—

A

TP tpgtd p+q+p2+pq+q2)f(“)g(“)
1 1
+ (p+q - P2 +pq+q2)[f(a)g(b) + f(b)g(a)].

Proof. Using the convexity of f and g, for all ¢ € [0, 1], we have

f(tb+ (1 —1t)a)g(th + (1 —fa)
<[tfb) + (1 - f@][tg®) + (1 - Hg(a)]
= £ f(b)g(b) + (1 — 1)’ f(a)g(a) + t(1 - D[ f(a)g(b) + f(b)g(a)].

Taking (p, g)-integral for the above inequality about 7 on (0, 1), we obtain

1
f Ftb + (1 = Da)g(th + (1 = Da)ed, gt
0

1
s—f(b)g(b)+(1— +
P?+pq+q* p+q p*+pg+q?

1 1
+ (p +q - P+ pg+ qz)[f(a)g(b) + f(b)g(a)].

)@@ (3.14)
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A simple calculation shows that

1 b
f Ftb + (1 = Da)g(th + (1 — Ha)d, t = ﬁ f FX)g(X)ad, . (3.15)
0 - a

Combining (3.14) and (3.15), we deduce the desired result. This ends the proof. O
Corollary 1. Putting p = 1 in Theorem 7, we get Theorem 4.3 established by Sudsutad et al. in [11].

4. Further estimation results

If ,D,,f is bounded, one gets the following theorem.

Theorem 8. Let f : [a,b] — R be continuous and (p, q)-differentiable on (a,b), and let ,D,,f be
aDp,qf(X)| < M < +oo for all x € [a,b],

then the following inequality

holds together with A,u € [0, 1], where ®4(A, u; p, q), Ps(A, u; p, q) and
DOg(A, u; p, q) are defined by (3.5), (3.6) and (3.7), respectively.

Proof. From Lemma 1, utilizing the property of the modulus, we have

AL 130, b)

U
S(b—a){f|
0
1
+f|qt+/lp—1
u

1
<M(b - a){ f " |gt + A — Aod, o1 + f gt + Ap — 1o, gt
0 0

,u
_ fo |q;+z,,¢—1|0dp,qz}.

Using (3.5), (3.6) and (3.7) in the above inequality, we deduce the desired result. The proof is
completed. |

Dy f(th + (1 = Da)|od, 4t

aDp g f(th + (1 — t)a)|0d,,,qt}

Corollary 2. Consider Theorem 8.
(i) Putting A = 0, we get

pb+(1-pla 2qu2 +p
b1 - iy Fuy| < Mb = 0| = ]
(ii) Putting A =1 =pand u = ﬁ we get
‘qf(a) +fb) f Fod 2 b -aM
l+q T Tl
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If ,D,,f satisfies Lipschitz condition, one has the following theorem.

Theorem 9. Let f : [a,b] — R be continuous and (p, q)-differentiable on (a,b), and let ,D,,f be
integrable on [a, b). If ,D, ,f satisfies Lipschitz condition for some L > 0 on [a, b], then the following
inequality
AL 3, b)|
< L(b - a)z[q)l(ﬂ,,u;p, q) = O2(A, 5 p, @) + ©3(A, 113 p, 9)
+ ©s5(4, 45 P, q) = De(A, 13 p, )| + (b — )| @u(A, 115 p, )
+ (D5(4, 15 p, @) = Pe(A, 115 P, @)D f D)

Dy f(@)

holds together with A,u € [0,1], where ®;(A,u;p,q) (i = 1,2,---,6) are defined by (3.2)-(3.7),
respectively.

Proof. From Lemma 1, utilizing the property of the modulus, we have

AL 130, b)

S(b—a){fﬂ|qt+/l,u—/l
0

1
+ f |qt +Au—1)[uD, o f(th + (1 = t)a) — aDp,qf(b)‘odp,qt
M

L
Dyuf (@) fo lgt -+ At — Aod gt +

Dy af(th + (1= D) = Dy g f(@)|od gt

+

1
Dyt f) f |gt + Ap - 1|0dp,qr}
u

YL YL
<(b- a){ f L(b - a)tlgt + A — Alod, ot + Dy f(@) f |gt + A — Afod,t
0 0

+ f# 1 L(b - a)(1 - gt + du = 1od, gt + |aDpo f )| f# | gt + A - 1|0d,,,qt}

= L(b - a)z{ j; " tlgt + A — Aod, gt + j; 1 lgt + Ap — 1|od, ot — fo " |gt + A — 1]od, ot
- fol tlgt + Ap = 1fod,, 4t + foy tlgt + A - 1|0dp,qt}
+ (- a){( fo gt + A Aodat)
+ (fol |gt + A = 1]od, ot — foﬂ |gt + A - 1|0dp,qt)

Using (3.2)-(3.7) in the above inequality, one get the desired result. This ends the proof. O

Dy f (@)

aDp,qf<b>|}.

Corollary 3. Consider Theorem 9.
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(i) Putting 1 = 0, we get

pb+(1-p)a
f F(X)adyyx
a

‘f(,ub +(1 - wa) -

p(bz— a)
=to- a)z[(l - q;ﬂ+;p =+ p2 + pqq +q _M]
# (b= L]0 @) + (L qp = 1)l f 0|
(ii) Putting 1 =1 = p and ji = 7, we get
“” 27 qf S f " fudx
< Lb- a)z[(l +q g7 " jqr261)3 1+ 5 + qz] * ‘1(21(11:1)‘? lDraf @]+ |eDpas @]

S. Examples

In this section, we give three examples to illustrate our main results.

Example 1. Let f(x) = x°, for x € [1,3]. Applying Theorem 2 witha =1,b =3, g = % and p = 1, the
left-hand side becomes:

ga + pb 1 pb+(1=pla
(p+q )_p(b—a) J0adpgx
Ly3y Ly
2
= - 1--= 3-1 — X3+1-—=
Y e T (SF ECRIE S CRE R R
49 250
—?—E~—0.5079<0.

For the right-hand side, one has:

fpb+(1—p)a FO0udx— M
aYp.q

pb—a) p+q

1) ix1+1x3?
1-=|x3-1 —x34+l-—] -2 ="
( ) ( )Z ( 2") L+3
250 19
_E—?~—0.3810<0.

Example 2. Let f(x) = x> and g(x) = )% on [1,2]. Applying Theorem 7 witha =1,b =2, q = % and
p = 1, the left-hand side becomes:

! ’ d = ! 1 ! 2-1 v |
EL S(0)g(x)a p,qx_mx ) X (2 - );5
=1.
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For the right-hand side, one has:

Fw)b) + (1 ) f(@gta

2 2 + 2
PPHpgtq p+q pP+pgtq

1 1
+(p+q P +pg+q 2)[f(a)g(b)+f(b)g(a)]

1 2 1
—+(1— + )
1+1+4 1+ 1+44+12

1 1
+(1 L4l

+ 3 +3+
1.5833.

Q

It is clear that 1 < 1.5833, which demonstrates the result described in Theorem 7.

Example 3. Theorem 3, Theorem 4, Theorem 5, Theorem 8 and Theorem 9 provide an upper bound
for the approximation of (p, ¢)-integral fa phri=pia f(x)adp 4x. There exist some (p, g)-integral functions
that can not be easy to calculate. Therefore, the above theorems are of importance to deal With such
(p, g¢)-integral mappings. For example, let f(x) = ln , for x € [2,00), if we take 4 = 0, u = 5,a =3,
b=5q= % and p = %, then all assumptions in Theorem 8 are satisfied. The left-hand 51de term of

4.1) is:

pb+(1-pa
b+ (1= ) =~ F(9)up
5.1)
1 1 2n+1 1 (
= X (4-3) — ‘
() $xG6-3) (2 ) Z (B @4-3)+3)
Clearly, the term )}, 2’;‘ X m can not easy solved directly. However, applying Theorem 8,
n(=—(4-3)+
we obtain an upper bound for (55. 1),1.e.
2 2 1 2 X 1 X L + 1 1
M(b_a)[q,u—-l-p_#] =—x(5- 3)x[#——]
p+q In3 % + % 2
~ 0.6502.

6. Conclusion

We have established a new (p,g)-integral identity with parameters and developed certain
(p, q)-integral error estimations of different type inequalities, such as the midpoint-like inequalities,
the Simpson-like inequalities, the averaged midpoint-trapezoid-like inequalities and the trapezoid-like
inequalities. We also give the upper and lower bounds for (p, g)-integral inequalities via product of
two convex functions. It is worthwhile to mention that some inequalities obtained in this article
generalize certain results given by Alp, N. et al. (2018), Kunt, M. et al. (2018) and Sudsutad, W. et al.
(2015). The (p, g)-integral inequalities deduced in the present research are very general and helpful in
error estimations involved in various approximation processes. With these contributions, we hope to
motivate the interested reader to explore this fascinating field of quantum integral inequalities based
on these techniques and the ideas developed in this paper.
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