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1. Introduction

In recent years, quadratic perturbations of nonlinear differential equations have attracted much
attention. We call such differential equations hybrid differential equations. There have been many
works on the theory of hybrid differential equations, and we refer the readers to the articles [6–8].
Dhage and Lakshmikantham [7] discussed the following first order hybrid differential equation

d
dt

[
u(t)

f (t,u(t))

]
= g(t, u(t)) t ∈ J

u(t0) = u0 ∈ R

where, f ∈ C(J × R,R \ {0}) and g ∈ C(J × R,R) They established the existence results and some
fundamental differential inequalities for hybrid differential equations initiating the study of theory of
such systems and proved utilizing the theory of inequalities, its existence of extremal solutions and a
comparison result.

From the above works, we develop the theory of hybrid differential equations with fuzzy initial
condition [2–4] involving their compact and convex level-cuts and generated division.

As we can see, a key point in our investigation is played by the division concepts for fuzzy numbers.
A recent very promising concept, the G-division proposed by [14] is studied here in detail. We observe
that this division has a great advantage over peer concepts, namely that it always exists. We obtain
relatively simple expressions, a minimality property and a characterization for the G-division.
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It is well-known that the usual division between two fuzzy numbers exists only under very
restrictive conditions [11]. The g-division (introduced in [14]) of two fuzzy numbers exists under
much less restrictive conditions, however it does not always exist [14]. The G-division proposed
in [14] overcomes these shortcomings of the above discussed concepts and the G-division of two
fuzzy numbers always exists.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper.

Let us denote by RF = {u : R → [0, 1]} the class of fuzzy subsets of the real axis satisfying the
following properties [10]:

(i) u is normal i.e., there exists an x0 ∈ R such that u(x0) = 1,
(ii) u is fuzzy convex i.e., for x, y ∈ R and 0 < λ ≤ 1,

u(λx + (1 − λ)y) ≥ min[u(x), u(y)]

(iii) u is upper semicontinuous i.e.,
(iv) [u]0 = cl{x ∈ R|u(x) > 0} is compact.

Then RF is called the space of fuzzy numbers. Obviously, R ⊂ RF . For 0 < α ≤ 1 denote
[u]α = {x ∈ R|u(x) ≥ α}, then from (i) to (iv) it follows that the α-cuts sets [u]α ∈ PK(R) for all
0 ≤ α ≤ 1 is a closed bounded interval which we denote by [u]α = [uα1 , u

α
2 ].

Where PK(R) denote the family of all nonempty compact convex subsets ofR and define the addition
and scalar multiplication in PK(R) as usual. The property of the fuzzy numbers is that the α-cuts [u]α

are closed sets for all α ∈ [0, 1].

Definition 1. [10, 12] We represent an arbitrary fuzzy number by an ordered pair of functions [u]α =

[uα1 , u
α
2 ], α ∈ [0, 1] which satisfy the following requirements:

(a) uα1 is abounded monotonic nondecreasing left-continuous function ∀α ∈]0, 1], and
right-continuous for α = 0

(b) uα2 is abounded monotonic nonincreasing left-continuous function ∀α ∈]0, 1], and
right-continuous for α = 0

(c) uα1 ≤ uα2 , 0 ≤ α ≤ 1

Theorem 1. [10] Let u ∈ RF and denote Cα = [u]α for α ∈ [0, 1]. Then

1. Cα is a nonempty compact convex set in R for each α ∈ [0, 1]
2. Cβ ⊆ Cα for 0 < α ≤ β ≤ 1 then
3. Cα =

⋂∞
i=1 Cαi , for any nondecreasing sequence αi → α on [0, 1]

A trapezoidal fuzzy number, denoted by u = 〈a, b, c, d〉 , where a ≤ b ≤ c ≤ d, has α-cuts
[u]α = [a + α(b − a), d − α(d − c)], α ∈ [0, 1] obtaining a triangular fuzzy number if b = c.

The addition u + v and the scalar multiplication ku are defined as having the level cuts [u + v]α =

[u1
α + v1

α, u
2
α + v2

α]

k[u]α =

{
[kuα1 , kuα2 ] k ≥ 0
[kuα2 , kuα1 ] k < 0
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[uv] = [min{uα1 .v
α
1 , u

α
1 .v

α
2 , u

α
2 .v

α
1 , u

α
2 .v

α
2 },max{uα1 .v

α
1 , u

α
1 .v

α
2 , u

α
2 .v

α
1 , u

α
2 .v

α
2 }]

[u ÷ v]α =
[
min

{uα1
vα1
,

uα1
vα2
,

uα2
vα1
,

uα2
vα2

}
,max

{uα1
vα1
,

uα1
vα2
,

uα2
vα1
,

uα2
vα2

}]
For a real interval J = [0,T ], a mapping u : J → RF is called a fuzzy function. We denote [u(t)]α =

[uα1 (t), uα2 (t)], for t ∈ J and α ∈ [0, 1]. the derivative u′(t) of a fuzzy function u is defined by [13]

[u′(t)]α = [(uα1 )′(t), (uα2 )′(t)]

The integral
∫ b

a
u(t)dt, a, b ∈ J, is defined by [9]

[∫ b

a
u(t)dt

]α
=

[∫ b

a
uα1 (t)dt,

∫ b

a
uα2 (t)dt

]
provided that the Lebesgue integrals on the right exist.

3. Generalized division of fuzzy numbers

Definition 2. Given two fuzzy numbers u, v ∈ RF the generalized division (g-division for short) is the
fuzzy number w, if it exists, such that

[u]α ÷g [v]α = [w]α ⇔
{

(i) [u]α = [v]α[w]α

or (ii) [v]α = [u]α([w]α)−1 (3.1)

here ([w]α)−1 = [1/wα
2 , 1/w

α
1 ]

provided that w is a proper fuzzy number, where the multiplications between intervals are performed
in the standard interval arithmetic setting.

The fuzzy g-division ÷g is well defined if the α-cuts [w]α are such that w ∈ RF (wα
1 is nondecreasing,

wα
2 nonincreasing, w1

1 ≤ w1
2).

Clearly, if u ÷g v ∈ RF exists, it has the properties already illustrated for the interval case.

Proposition 1. [14] Let u, v ∈ RF (here 1 is the same as {1}). We have:

1. if 0 < [u]α ∀α, then u ÷g u = 1,
2. if 0 < [v]α ∀α, then uv ÷g v = u,
3. if 0 < [v]α ∀α, then 1 ÷g v = v−1 and 1 ÷g v−1 = v
4. if v ÷g u exists then either u(v ÷g u) = v or u(v ÷g u)−1 = u and both equalities hold if and only if

v ÷g u is crisp

It is easy to see that if w = u ÷g v exists according to case (i) then also z = u � v of [1] exists and
w = z; but the existence of v ÷g u according to case (ii) is not al lowed for u � v.

In the fuzzy case, it is possible that the g-division of two fuzzy numbers does not exist. For example
we can consider a triangular fuzzy number u = (1, 1.5, 5) and v = (−4,−2,−1) level-wise, the g-
divisions exist but the resulting intervals are not the α-cuts of a fuzzy number.

To solve this shortcoming, in [14] a new division between fuzzy numbers was proposed, a division
that always exists.
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Definition 3. The generalized division (G-division for short ) of two fuzzy numbers u, v ∈ RF and
0 < [v]α ∀α ∈ [0, 1], is given by its level sets as

[u ÷G v]α = cl
⋃
β≥α

(
[u]β ÷g [v]β

)
, ∀α ∈ [0, 1] (3.2)

where the g-division ÷g is with interval operands [u]β and [v]β.

Remark 1. • By [14] the g-division exist but the resulting intervals are not the α-cuts of fuzzy
number, applying G-division (3.2) we obtain the fuzzy number.
• w = u ÷G v can be considered as a generalized division of fuzzy numbers, existing for any u, v

with 0 < [v]α for all α ∈ [0, 1].
• If A is G-division, then is Gi-division (g-division satisfies (i)) or is Gii-division (g-division satisfies

(ii)).

Proposition 2. The G-division (3.2) is given by the expression

[u ÷G v]α =
[
inf
β≥α

min
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
, sup
β≥α

max
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}]
. (3.3)

Proof. Let α ∈ [0, 1] be fixed . We observe that for any β ≥ α, 0 < [v0
1, v

0
2] we have

[u]β ÷g [v]β =
[
min

{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
,max

{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}]
⊆

[
inf
λ≥β

min
{uλ1
vλ1
,

uλ1
vλ2
,

uλ2
vλ1
,

uλ2
vλ2

}
, sup
λ≥β

max
{uλ1
vλ1
,

uλ1
vλ2
,

uλ2
vλ1
,

uλ2
vλ2

}]
and it follows that

cl
⋃
β≥α

([u]β ÷g [v]β) ⊆
[
inf
β≥α

min
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
, sup
β≥α

max
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}]
.

Let us consider now

cl
⋃
β≥α

([u]β ÷g [v]β) = cl
⋃
β≥α

[
min

{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
,max

{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}]
.

For any n ≥ 1, there exist an ∈ {
uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2
|β ≥ α} such that

inf
β≥α

min
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
> an −

1
n

Also there exist bn ∈
{uβ1

vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2
|β ≥ α

}
such that

sup
β≥α

max
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
< bn +

1
n
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We have [an, bn] ⊆ cl
⋃

β≥α([u]β ÷g [v]β),∀n ≥ 1 and we obtain

( lim
n→∞

an, lim
n→∞

bn) ⊆
⋃
n≥1

[an, bn] ⊆ cl
⋃
β≥α

([u]β ÷g [v]β)

and finally [
inf
β≥α

min{
uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2
}, sup

β≥α

max{
uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2
}
]
⊆ cl

⋃
β≥α

([u]β ÷g [v]β)

The conclusion [
inf
β≥α

min{
uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2
}, sup

β≥α

max{
uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2
}
]

= cl
⋃
β≥α

([u]β ÷g [v]β)

of the proposition follows. �

The following proposition gives a simplified notation for u ÷G v and v ÷G u.

Proposition 3. For any two fuzzy numbers u, v ∈ RF the two G-divisions u ÷G v and v ÷G u exist and,
for any α ∈ [0, 1], we have u ÷G v = (v ÷G u)−1 with 0 < [v]β,0 < [u]β and

[u ÷G v]α = [dα1 , d
α
2 ] and [v ÷g u]α =

[ 1
dα2
,

1
dα1

]
where

d1
α = inf(Dα) d2

α = sup(Dα)

and the sets Dα are

Dα =
{uβ1
vβ1
|β ≥ α

}
∪

{uβ1
vβ2
|β ≥ α

}
∪

{uβ2
vβ1
|β ≥ α

}
∪

{uβ2
vβ2
|β ≥ α

}
. (3.4)

Proof. Consider a fixed α ∈ [0, 1]. Clearly, using Proposition (3.2)

[u ÷G v]α =
[
inf
β≥α

min
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
, sup
β≥α

max
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}]
⊆

[
inf(Dα), sup(Dα)

]
=

[
dα1 , d

α
2
]

Vice versa, for all n ≥ 1 and from the definition of dα1 and dα2 there exist an, bn ∈ Dα such that

dα1 ≤ an < dα1 +
1
n
, dα2 −

1
n
< bn ≤ dα2

and the following limits exist:
lim an = dα1 , lim bn = dα2 ,

on the other hand,[ [an, bn] ⊆ cl
⋃

β≥α([u]β ÷g [v]β),∀n ≥ 1 and then⋃
n≥1

[
an, bn

]
⊆ cl

⋃
β≥α

([u]β ÷g [v]β)

It follows that
[dα1 , d

α
2 ] = [lim an, lim bn] ⊆

⋃
n≥1

[
an, bn

]
⊆ cl

⋃
β≥α

([u]β ÷g [v]β)

and the proof is complete. �
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Remark 2. We observe that there are other possible different expressions for the G-division as e.g.,

[u ÷G v]α =
[
min

{
inf
β≥α

(
uβ1
vβ1

), inf
β≥α

(
uβ1
vβ2

), inf
β≥α

(
uβ2
vβ1

), inf
β≥α

(
uβ2
vβ2

)
}
,

max
{
sup
β≥α

(
uβ1
vβ1

), sup
β≥α

(
uβ1
vβ2

), sup
β≥α

(
uβ2
vβ1

), sup
β≥α

(
uβ2
vβ2

)
}]
.

The next proposition shows that the G-division is well defined for any two fuzzy numbers u, v ∈ RF .

Proposition 4. [14] For any fuzzy numbers u, v ∈ RF , 0 < [v0
1, v

0
2] the G-division u÷G v exists and it is

a fuzzy number.

Proof. We regard the fuzzy quantity u ÷G v Then according to the previous result, if we denote w1 =

(u ÷G v)1 and w2 = (u ÷G v)2 with 0 < [v]α, ∀α ∈ [0, 1] we have

wα
1 = inf

β≥α
min

{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
≤ wα

2 = sup
β≥α

max
{uβ1
vβ1
,

uβ1
vβ2
,

uβ2
vβ1
,

uβ2
vβ2

}
Obviously w1 is bounded and decreasing inverse while w2 is bounded. Also w1,w2 are left continuous
on (0, 1], since u1

v1
, u1

v2
, u2

v1
, u2

v2
are left continuous on (0, 1] and they are right continuous at 0 since so are

the functions u1
v1
, u1

v2
, u2

v1
, u2

v2
�

Proposition 5. Let u, v ∈ RF (here 1 is the same as {1}). We have:

1. u ÷G v = u ÷g v, if 0 < [v]α ∀α ∈ [0, 1] whenever the expression on the right exists; in particular
u ÷G u = 1 if 0 < [u]α ∀α

2. (uv) ÷G v = u,
3. 1 ÷G v = v−1 and 1 ÷G v−1 = v
4. if 0 < [u]α and 0 < [v]α ∀α ∈ [0, 1] then 1 ÷g (v ÷g u) = u ÷g v
5. v ÷G u = u ÷G v = w if and only if w = w−1, furthermore, w = 1 if and only if u = v.

Proof. The proof of (1) is immediate.
For (2) we can use (1), Indeed in this case uv ÷g u existe and we have

uv ÷G v = uv ÷g v = u

The proof of (3) is immediate.
The proof of (4) follows from(3.4) for all α ∈ [0, 1][

1 ÷g (v ÷g u)
]α

= [1, 1] ÷g [dα1 , d
α
2 ]

=
[
min{

1
dα1
,

1
dα2
},max{

1
dα1
,

1
dα2
}
]

=
[ 1
dα2
,

1
dα1

]
=

[
1/max

{vα1
uα1
,

vα1
uα2
,

vβ2
uα1
,

vα2
uα2

}
, 1/min

{vα1
uα1
,

vα1
uα2
,

vα2
uα1
,

vβ2
uα2

}]
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=
[
min

{uα1
vα1
,

uα1
vα2
,

uα2
vα1
,

uα2
vα2

}
,max

{uα1
vα1
,

uα1
vα2
,

uα2
vα1
,

uα2
vα2

}]
=

[
u ÷g v

]α
To prove(5), consider again (3.4); for all α ∈ [0, 1] we have [w]α = [v ÷G u]α = [dα1 , d

α
2 ] and [w]α =

[u ÷G v]α = [ 1
dα2
, 1

dα1
] so that w = w−1 and vice versa, the last part of (5) follows from the last part of (1)

and the fact that w = w−1 = 1 if and only if dα1 = dα2 for all α ∈ [0, 1] this is true if and only if uα1
vα1

= 1

and uα2
vα2

= 1 i. e., uα1 = vα1 and uα2 = vα2 for all α ∈ [0, 1]. �

4. Some results for hybrid differential equations

Were call the result which establishes the existence of solution for first order hybrid differential
equation (in short HDE) with initial condition. This result will be useful in the study of the
corresponding fuzzy problem.

We consider the initial value problem
d
dt

[
u(t)

f (t,u(t))

]
= g(t, u(t)) t ∈ J

u(t0) = u0 ∈ R
(4.1)

where, f ∈ C(J × R,R \ {0}) and g ∈ C(J × R,R).
By a solution of the HDE (4.1) we mean a function u ∈ AC(J,R) such that

(i) the function t 7→ u
f (t,u) is absolutely continuous for each u ∈ R, and

(ii) u satisfies the equations in (4.1),

where AC(J,R) is the space of absolutely continuous real-valued functions defined on J = [0,T ].

Theorem 2. [5] Let S be a non-empty, closed convex and bounded subset of the Banach algebra X
and let A : X → X and B : S → X be two operators such that

(a) A isD-Lipschitz withD-function ψ,
(b) B is completely continuous,
(c) x = AxBy⇒ x ∈ S for all y ∈ S , and
(d) Mψ(r) < r, where M = ‖B(S )‖ = sup{‖Bx‖ : x ∈ S }.

Then the operator equation AxBx = x has a solution in S .

We consider the following hypotheses in what follows.
(A0) The function x 7→ x

f (t,x) is increasing in R almost everywhere for t ∈ J.
(A1) There exists a constant L > 0 such that

| f (t, x) − f (t, y) |≤ L | x − y | (4.2)

for all t ∈ J and x, y ∈ R.
(A2) There exists a function h ∈ L1(J,R) such that

| g(t, x) |≤ h(t) t ∈ J

In the following section, we consider a fuzzy differential equation which is a fuzzy analogue to
(4.1).
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5. Hybrid fuzzy differential equations

We shall consider the initial value problem,

d
dt

[ u(t)
f (t, u(t))

]
= g(t, u(t)) t ∈ J (5.1)

u(0) = u0 ∈ RF

The extension principle of Zadeh leads to the following definition of f (t, u) and g(t, u) when are a fuzzy
numbers

f (t, u)(y) = sup{u(x) : y = f (t, x), x ∈ R,

g(t, u)(y) = sup{u(x) : y = g(t, x), x ∈ R.

It follows that

[ f (t, u)]α =
[
min{ f (t, x) : x ∈ [uα1 , u

α
2 ]}, max{ f (t, x) : x ∈ [uα1 , u

α
2 ]}

]
,

[g(t, u)]α =
[
min{g(t, x) : x ∈ [uα1 , u

α
2 ]}, max{g(t, x) : x ∈ [uα1 , u

α
2 ]}

]
for u ∈ RF with α-level sets [u]α = [uα1 , u

α
2 ], 0 < α ≤ 1. We call u : J → RF a fuzzy solution of (5.1),

if [ d
dt

[
u(t) ÷G f (t, u(t))

]]α
=

[
g(t, u(t))

]α
and [u(0)]α = [u0]α (5.2)

for all t ∈ J and α ∈ [0, 1]. Denote f̃ = ( f1, f2) and g̃ = (g1, g2),

f1(t, u) = min{ f (t, x) : x ∈ [u1, u2]}, f2(t, u) = max{ f (t, x) : x ∈ [u1, u2]} and

g1(t, u) = min{g(t, x) : x ∈ [u1, u2]}, g2(t, u) = max{g(t, x) : x ∈ [u1, u2]} (resp),

where u = (u1, u2) ∈ R2. Thus for fixed α we have an initial value problem in R2

d
dt

[ uα1 (t)

f̃ (t, uα1 (t), uα2 (t))

]
= g̃(t, uα1 (t), uα2 (t))

uα1 (0) = uα01

and (5.3)
d
dt

[ uα2 (t)

f̃ (t, uα1 (t), uα2 (t))

]
= g̃(t, uα1 (t), uα2 (t))

uα2 (0) = uα02

If we can solve it (uniquely) we have only to verify that the intervals [uα1 (t), uα2 (t)], α ∈ [0, 1], define a
fuzzy number u(t) in RF . see [2–4]. Since f and g are assumed continue and Caratheodory (resp), the
initial value problem (5.3) is equivalent to the following nonlinear hybrid integral equation (HIE)

u(t) = f̃ (t, u(t))
( u0

f̃ (0, u(0)
+

∫ t

0
g̃(s, u(s))ds

)
(5.4)
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Theorem 3. Assume sign(u(0)) = sign(u(t)), for all t ∈ J,
let z(t) = u ÷G f (t, u(t)) and 0 < [ f (t, u)]α α ∈ [0, 1] and

r(t) = f (t, u(t)) ÷G

(
z(0) +

∫ t

0
g(s, u(s))ds

)
, 0 <

[
z(0) +

∫ t

0
g(s, u(s))

]α
1. If z(0) ∗ g(t, u) > 0 then the function u(t) ∈ AC((0,T ],RF ) is a fuzzy solution of (5.1)

• If z(t) is Gi-division
• or z(t) is Gi-division and r(t) is Gi-division

2. Or if z(t) is Gi-division and zα1 (0) ≤ 0 ≤ zα2 (0) then u(t) is a fuzzy solution.

Proof. We solve initial value problem in R2

d
dt

zα1 = min{g(t, x) : x ∈ [uα1 (t), uα2 (t)]}, uα1 (0) = uα01

d
dt

zα2 = max{g(t, x) : x ∈ [uα1 (t), uα2 (t)]}, uα2 (0) = uα02 (5.5)

Step 1 :
It can be assume that (4.2) implies

‖ f (t, x) − f (t, y)‖ ≤ L‖x − y‖, for all t ∈ J, x, y ∈ R (5.6)

where the ‖.‖ is defined by ‖u‖ = max{|u1|, |u2|. It is well known that (5.6) and the assumptions on g
Theorem 2 guarantee the existence and continuous dependence on initial of a solution to d

dt

[
u(t)

f̃ (t,u(t))

]
= g̃(t, u(t)),

u(0) = u0

(5.7)

and that for any continuous function u0 ∈ R
2 we have (5.4).

By choosing u0 = (uα01, u
α
02) in (5.7) we get a solution uα(t) = (uα1 (t), uα2 (t)) to (5) for all α ∈ (0, 1].

Step 2 :
We will show that the intervals [uα1 (t), uα2 (t)], α ∈ [0, 1], define a fuzzy number u(t) ∈ RF . For

simplicity assume [u(0)]α ≤ 0, [ f (t, u(t))]α > 0 and [g(t, u(t))]α < 0 for all α ∈ [0, 1] (The proof for
other cases is similar and omitted), then wa have tow cases.
Case I:

By Eq. (5.3), we have the two following HDE with initial conditions d
dt

[ uα1 (t)
f α2 (t,u(t))

]
= gα1 (t, u(t))

uα1 (0) = uα01

(5.8)

and  d
dt

[ uα2 (t)
f α1 (t,u(t))

]
= gα2 (t, u(t))

uα2 (0) = uα02

(5.9)
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In consequence by Step 1, we deduce that, for every α ∈ [0, 1], the solution to problems (5.8)–(5.9)
are respectively

uα1 (t) = f α2 (t, u(t))
[ uα1 (0)

f α2 (0, u(0))
+

∫ t

0
gα2 (s, u(s))ds

]
uα2 (t) = f α1 (t, u(t))

[ uα2 (0)
f α1 (0, u(0))

+

∫ t

0
gα1 (s, u(s))ds

]
We check that {[uα1 (t), uα2 (t)], α ∈ [0, 1]} represent the level set of a fuzzy set u(t) in RF , for each t ∈ J
fixed, by applying the stacking Theorem 1. Indeed, we fix t ∈ J and check the validity of the three
conditions.
(1) : First, we check that uα1 (t) ≤ uα2 (t), for every α ∈ [0, 1] and t ∈ J, Indeed, for each α ∈ [0, 1] and
t ∈ J we have that f α1 (t, u(t)) ≤ f α2 (t, u(t)) and

uα1 (0)
f α2 (0, u(0))

+

∫ t

0
gα1 (s, u(s))ds ≤

uα2 (0)
f α1 (0, u(0))

+

∫ t

0
gα2 (s, u(s))ds

and by classical arithmetic we have

uα1 (t) = f α2 (t, u(t))
[ uα1 (0)

f α2 (0, u(0))
+

∫ t

0
gα1 (s, u(s))ds

]
≤ f α1 (t, u(t))

[ uα2 (0)
f α1 (0, u(0))

+

∫ t

0
gα2 (s, u(s))ds

]
= uα2 (t)

(2) : Let 0 ≤ α ≤ β ≤ 1. Since u0 ∈ RF , we have that f β2 (t, u(t)) ≤ f α2 (t, u(t)) and

uα1 (0)
f α2 (0, u(0))

+

∫ t

0
gα1 (s, u(s))ds ≤

uβ1(0)

f β2 (0, u(0))
+

∫ t

0
gβ1(s, u(s))ds

we deduce that

uα1 (t) = f α2 (t, u(t))
[ uα1 (0)

f α2 (0, u(0))
+

∫ t

0
gα1 (s, u(s))ds

]
≤ f β2 (t, u(t))

[ uβ1(0)

f β2 (0, u(0))
+

∫ t

0
gβ1(s, u(s))ds

]
= uβ1(t)

and, similarly, f α1 (t, u(t)) ≤ f β1 (t, u(t)) and

uβ2(0)

f β1 (0, u(0))
+

∫ t

0
gβ2(s, u(s))ds ≤

uα2 (0)
f α1 (0, u(0))

+

∫ t

0
gα2 (s, u(s))ds

so

uβ2(t) = f β1 (t, u(t))
[ uβ2(0)

f β1 (0, u(0))
+

∫ t

0
gβ2(s, u(s))ds

]
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≤ f α1 (t, u(t))
[ uα2 (0)

f α1 (0, u(0))
+

∫ t

0
gα2 (s, u(s))ds

]
= uα2 (t)

which proves that [uβ1(t), uβ2(t)] ⊆ [uα1 (t), uα2 (t)].
(3) : Given a nondecreasing sequence {αi} in (0, 1] such that αi ↑ α ∈ (0, 1], we prove that
[uα1 (t), uα2 (t)] =

⋂∞
i=1[uαi

1 (t), uαi
2 (t)].

Indeed, by the Dominated Convergence Theorem,

lim
αi↑α

∫ t

0
gαi

1 (s, u(s)) =

∫ t

0
lim
αi↑α

gαi
1 (s, u(s))ds =

∫ t

0
gα1 (s, u(s))ds

and, hence,

lim
αi↑α

uαi
1 (t) = lim

αi↑α

(
f αi
2 (t, u(t))

[ uαi
1 (0)

f αi
2 (0, u(0))

+

∫ t

0
gαi

1 (s, u(s))ds
])

= lim
αi↑α

(
f α2 (t, u(t))

[ uα1 (0)
f α2 (0, u(0))

+

∫ t

0
gα1 (s, u(s))ds

])
= uα1 (t)

Hence, u(t) ∈ RF .
Case II: By Eq. (5.3), we have the two following HDE with initial conditions d

dt

[ uα2 (t)
f α1 (t,u(t))

]
= gα1 (t, u(t))

uα2 (0) = uα02

(5.10)

and  d
dt

[ uα1 (t)
f α2 (t,u(t))

]
= gα2 (t, u(t))

uα1 (0) = uα01

(5.11)

The solution to problems (5.10)–(5.11) are respectively

uα2 (t) = f α1 (t, u(t))
[ uα2 (0)

f α1 (0, u(0))
+

∫ t

0
gα1 (s, u(s))ds

]
uα1 (t) = f α2 (t, u(t))

[ uα1 (0)
f α2 (0, u(0))

+

∫ t

0
gα2 (s, u(s))ds

]
By applying step 1 and we consider the situation where 0 <

[
z(0) +

∫ t

0
g̃(s, u(s))ds

]α,

f α2 (t, u(t))

z1(0) +
∫ t

0
gα1 (s, u(s))ds

≤
f α1 (t, u(t))

z2(0) +
∫ t

0
gα2 (s, u(s))ds

(5.12)

i.e., (uα1 (t) ≤ uα2 (t)) similarly by applying theorem 1 the details for the case I are analogous, and if the
situation (5.12) does not hold i.e., (uα2 (t) ≤ uα1 (t)), then by theorem 1, u(t) is not a fuzzy solution of
(5.7).

�
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6. Conclusions and further work

We have investigated generalized division concepts for fuzzy number. The G-division introduced
here is a very general division concept, being also practically applicable. Developed the theory of
hybrid differential equation with fuzzy condition involving their compact and convex level-cuts. The
next step in the research direction proposed here is to investigate hybrid fuzzy fractional differential
equations with G-division and applications.
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