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medical data.
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1. Introduction

Magnetic resonance human imaging has emerged 30 years ago and progressively imposed itself as
the reference for in vivo noninvasive multiorgans investigation. Recent and huge developments of
technical aspects and sequences have lead MRI to switch from “anatomic” to multiparametric
powerful investigation system. Namely, multinuclear spectroscopy/imaging and perfusion sequences
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today provide numerous so called “metabolic” information which match with tremendous increase of
human metabolism knowledge (see [2, 5]).

Then, significant metabolic modifications have been demonstrated in pathologies usually
presenting a normal “anatomic” appearance, such as psychiatric diseases (see [1, 3]). The correlative
(and underlying) question concerned the measurements’ reliability. Yet circadian variations of
metabolite concentrations, as they can be calculated from spectroscopic acquisitions, appeared to be
of importance in this context.

We performed three successive acquisitions at “key” moments referring to the circadian rhythm,
7.30 am, 1.30 pm and 5.30 pm, on 30 healthy volunteers and on 12 different areas in the brain. Several
fluctuations were found within acquisition time and location, thus suggesting modeling usefulness.

We propose hereafter to develop a mathematical analysis and modeling for describing and
integrating these fluctuations. More precisely, we consider models of the form

k
Y + —— =asin(bt +¢), a, b, k, K >0,
kK +y

k
y + Y - asin’*(bt +c), a, b, k, k' >0,
kK +y

with a symport nonlinear term (see [4]). Here, u is a metabolite’s concentration, e.g., lactate. We
give a mathematical analysis of these models; the main difficulty is the (expected) nonnegativity of
the concentration. We then present numerical simulations which we compare with the medical data
mentioned above.

2. Mathematical analysis

We consider the initial value problem

k
Y+ —2 — asin(bt +¢), a, b, k, K >0, 2.1)
kK +y

y(0) = yo > 0. (2.2)

Noting that the function

: (1, in(bt —
f:(t,x) — asin(bt + ¢) T

is C! on R X (=k’, +00), it follows from the Cauchy—Lipschitz theorem that (2.1)-(2.2) possesses the
maximal solution

y ; [Oa T*) - (_k,a —|—OO)
We have the

Theorem 2.1. The maximal solution y is defined on R* (i.e., T, = +00).
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Proof. Let y, be the maximal solution to the initial value problem

ky,
L+ =a, (2.3)
SN
y+(0) = yo. (2.4)
Noting that the function
. kx
DX
§ K+ ]

is of class C! and globally Lipschitz continuous on R, it follows that y, is uniquely defined on R*.
Multiplying (2.3) by =y, where y, = yI —y., yI = max(y,, 0), y; = max(-y,, 0), we obtain
1d

klyzl?

-2 -
+ ——— =—-ay, <0,
2dt|y+| Py R
so that
d _»
—yil” <0.
il
Therefore
;=0
and
v+ 2 0. (2.5)
This yields that y, is the unique solution to
ky.
!+ =a, 2.6
Yot oo " a (2.6)
y+(0) = yo, 2.7
defined on R*.
Let then y_ be the maximal solution to
ky_
Ly =g, 2.8)
k' +y_
y-(0) = o, (2.9)

defined on [0, T";) (the existence and uniqueness of y_ follows from the Cauchy-Lipschitz theorem).
We can note that (2.8) possesses a unique equilibrium defined by

ky®
k' +ye

b

i.e.,
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ak’
¢ =-— € (-k',0).
Y- a+k ( )
Setting z = y_ — y°, we have
Z+e-(0z=0,

where

1
(1) = f W (sy- + (1 = s)y*)ds > 0,
0

with h(x) = 2. Therefore,

k' +

(1) = 2(0)e™ b - ©

and

Yo(t) = ¢ + (v — Y )e b e-@ 4>, (2.10)

This yields that y_ is bounded, so that 7, = +c0 and

y-(t) > —k', t > 0. (2.11)

Now, it follows from the comparison principle that, V¢ € [0, T,),

y-(1) < y(@) < y.(0). (2.12)

In particular, if T, < +co, then y remains bounded as t — T, which yields a contradiction. Thus,
T, = +oo, which finishes the proof.
O

Remark 2.2. We can actually prove, proceeding as above, that y(r) > y°, t > 0. Indeed, we have,
setting z =y —y°,

7 +8(y)—g0°) = a+asin(bt +¢) > 0.

Multiplying the above equality by —z~, we obtain

ld, _, o
zd—tlzl - (g —-g0O )z <0,

which yields, noting that g’ > 0 and —zz~ = |77,

d o
—|z7]7 <0
dtlz |

and the result follows. Note however that (2.10) gives a better lower bound on y, in the sense that it
yields that y is nonnegative at least for some time. Note indeed that y corresponds to a concentration
and is expected to be nonnegative (see below).
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We then have the
Theorem 2.3. We assume that k > a. Then the solution y to (2.1)-(2.2) (defined on R*) is bounded.

Proof. We again consider the solution y, to (2.6)-(2.7), defined on R*. Note that, when k > a, (2.6)
possesses a unique equilibrium y¢ defined by

Ry _
kK +y5 ’

i.e.,

ak’
¢ = > 0.
y+ k_a

Proceeding as in the proof of Theorem 2.1, we find

yi0) = V5 + (o — Y )e b e ©d 4> ) (2.13)

where

1
o= [ gloret (1= 50 ds 20 (2.14)
0

Therefore, y, is bounded and, recalling (2.12), it follows that y is bounded, which finishes the proof of
the theorem.
O

Actually, assuming that y, is large enough, we can also prove that y is bounded on R*. More
precisely, we have the

Theorem 2.4. We assume that
Yo 2 2;—;. (2.15)

Then, the solution y to (2.1)-(2.2) is bounded.

Proof. Let now y, be the solution (defined on R") to

Y, = asin(bt + ¢), (2.16)
y+(0) = yo. (2.17)
Clearly,
v, (1) = yo + g(cos ¢ — cos(bt + ¢)), (2.18)
so that
yi(6) >0, t>0. (2.19)

Next, we set z =y — y, and have
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ky
"+ =0, z(0) =0,
¢ k' + 20
which we can rewrite as
kz ky.
"+ = - . 2.20
STy K4y (220)
Multiplying (2.20) by z*, we obtain
1d klz*|? ky.z*
__|Z+|2 + |Z | = - BAss s
2dt kK +y k' +y
which yields, noting/recalling that k¥’ + y > 0 and y, > 0,
d +12
— <0,
dtlz |
so that
() < y.(0), t 2 0.
Employing once more the comparison principle, we deduce that
y-(1) < y(1) < y.(0), 20, (2.21)
where y_ is as defined in the proof of Theorem 2.1. The proof follows from (2.21).
O

Remark 2.5. One crucial question is whether the solution y to (2.1)-(2.2) remains nonnegative,
assuming that y, > 0 (note indeed that, if, for some ¢ > 0, y(¢) = 0, then

Y'(t) = asin(bt + c)

and can be negative; in particular, if yo = 0 and sinc < 0, then y’(0) < 0); as already mentioned,
y corresponds to a concentration and is thus expected to be nonnegative. We thus see that y can be
negative when y, = 0 (and even when y, > 0 is small). We believe however that, when y, > 0 is large
enough, then y remains positive; this is confirmed by the numerical simulations below. Unfortunately,
we have not been able to prove this. One difficulty is to find a nonnegative subsolution.

Remark 2.6. A model, ensuring nonnegativity, reads

, ky
+
Y kK +

5= asin’(bt + ¢), a, b, k, k' > 0, (2.22)

¥(0) = yo > 0. (2.23)
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As above, we have the existence and uniqueness of the solution, defined on R*, such that y(¢) > —&’,
t > 0. Then, multiplying (2.22) by —y~, we obtain

ld _, klyl ) _
- +—=— bt + <0,
2dt|y| vty a sin“( o)y <
so that
d 2
—p I <0
dtly |
and
y() >0, t>0.

The numerical simulations below show that this model gives satisfactory results for the lactate
concentrations (the solution to the first model becomes indeed negative in that case). We can also note
that, as far as the other metabolites concentrations are concerned, the first model matches better the
experimental data. However, it is less precise for predicting the longtime behavior of the
concentrations.

3. Numerical simulations

3.1. Using model (2.1)

We test model (2.1) with medical data, supplied from MRI scans by the Poitiers University
Hospital (see the introduction). These data consist, for several patients, in the concentrations of brain
metabolites (e.g., lactate, choline) at different brain areas and at different times of the day: 7.30 am,
1.30 pm and 5.30 pm. Basically, these data can be divided into four classes: the hat shape (the second
dosage is maximal), the reverse hat shape (the second dosage is minimal), the increasing shape (the
three dosages increase with respect to time) and the decreasing shape.

In Figure 1, we present, for each class of data, a comparison between the medical data and the
simulations, during the ten hours (left) and during the three days (right) next to the first MRI scan.
In the right columns of Figure 1, the blue circles correspond to actual measured data, and the red
crosses correspond to predicted values, taking into account the circadian rhythm. The first row of
the figure corresponds to a choline dosage, for a patient of the hat shape class. The corresponding

model is y'(f) = — ?(‘)(.)23 + 0.5sin(0.265¢ + 1.4). The second row corresponds to a choline dosage, for
0.01y

a patient of the reverse hat shape class, with the model y’(¢) = 55 T 0.5 sin(0.265¢ — 0.85). The
third row corresponds to a choline dosage, for a patient of the increasing shape class, with the model

Y(@) = —%%Ofyy + 0.29sin(0.265¢ + 1). Finally, the fourth row corresponds to a Cr dosage for a patient

of the decreasing shape class, and the model is y'(¥) = —O’;)f;‘y + 0.3sin(0.265¢ + 2.8). Figure 1 shows
that the model matches well the medical data.
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Figure 1. Comparisons between the medical data and the simulations, during the first 10
hours (left column) and during the three days (right column) next to the first MRI scan. First
row: choline dosage for a patient of the hat shape class; second row: choline dosage for a
patient of the reverse hat shape class; third row: choline dosage for a patient of the increasing
shape class; and fourth row: choline dosage for a patient of the decreasing shape class.
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3.2. Using model (2.22)

Although model (2.1) seems convenient in many cases, it is not suitable for modeling the variations
of lactate. Indeed, the concentrations being small for this metabolite, the simulations may become
negative during the simulations. In Figure 2, we compare, in the case of a lactate concentration,
two solutions given by the models (2.1) (y'(¢) = —% + 0.55in(0.265¢ + 1.9)) and (2.22) (y'(¢) =
- Séﬂy + 0.95in%(0.2657 + 0.9)). With the first model, the solutions become negative after ten hours,
while, with the second one, the solutions remain positive (see Remark (2.6)).

In Figure 3, we compare, for a choline concentration, two solutions : one given by model (2.1)

0.7y

’ _ 0007 ) . . Vi _
@) = —153 jy + 0.55sin(0.2657 + 1.4) ) and the second one given by model (2.22) (y'(t) = — 155 el

0.8 sin?(0.1325¢+1.4)). As far as the first ten hours are concerned, the solutions are very similar (Figure
2, left). Furthermore, although both solutions match well the medical data, they are very different after
the three days period (right). In particular, the range of variations of the solution of model (2.1) is
significantly larger than the one for model (2.22) and may be less medically relevant.
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Figure 2. Comparison of the simulations obtained with model (2.1) and (2.22) for a lactate
concentration.
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Figure 3. Comparison of the simulations obtained with model (2.1) and (2.22) for a choline
concentration.
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