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Abstract: In this paper we write explicitly the open book decompositions of links of quotient surface
singularities supporting the corresponding unique Milnor fillable contact structure. The page-genus
of these Milnor open books are minimal among all Milnor open books supporting the same contact
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1. Introduction

The purpose of this paper is to construct the Milnor open book decompositions of the links of
quotient surface singularities supporting the unique Milnor fillable contact structure. By the work of
Bhupal–Altınok [1] and by Nemethi–Tosun [15], the page-genus of our Milnor open book is minimal
among all Milnor open books supporting the same contact structure, i.e. it gives the Milnor genus.
In [4], it is shown that for some examples of rational surface singularities Milnor genus is not equal to
the support genus. However, if we restrict ourself to quotient surface singularities, the question whether
the Milnor genus is equal to the support genus for the canonical contact structure is still unknown. For
most cases of the quotient surface singularities, we provide planar Milnor open books, so that for these
types the Milnor genus is equal to the support genus. In all remaining cases, the Milnor genus turns out
to be one. Hence, the support genus of the corresponding contact structure is at most one. We are able
to show that for some of these quotient surface singularities the Milnor genus is equal to the support
genus, which is one.

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020005


55

Our main result is the following theorem.

Theorem 1. The unique Milnor fillable contact structure on the link of the quotient surface
singularities has support genus one for each singularities of the following types:

• Tetrahedral part (i) where b = 2 (cf. Figure 3).
• Octahedral part (i) where b = 2(cf. Figure 4).
• Icosahedral part (i) and (ii) where b = 2. (cf. Figure 5).

The support genus is zero for singularities of the following types:

• Cyclic (cf. Figure 1).
• Dihedral, b > 2 (cf. Figure 2).
• Tetrahedral, b > 2 (cf. Figure 3).
• Octahedral, b > 2 (cf. Figure 4).
• Icosahedral, b > 2 (cf. Figure 5).

For the remaining cases, the corresponding contact structures have support genus at most one.

Remark 2. There are several other constructions of open books for plumbed circle bundles (see [7,
8, 10, 18].) We follow the algorithm given in [2], which is a generalization of the construction given
in [8]. They built horizantal open books in [8]. These open books coincides with Gay’s construction in
which Gay uses 4-dimensional symplectic handle attachments to get the open book decompositions on
plumbings of circle bundles. In [18], he obtained planar (genus zero) open books by using Legendrian
realization for certain plumbing trees and in [10] they extended the methods in [18] for more general
cases.

Remark 3. For icosahedral singularity of part (i) where b = 2, that is E8 singularity, by Theorem
1.2 of [9], the contact structure cannot be supported by a planar open book decomposition. This was
the first known non planar example. For tetrahedral singularity of part (i) where b = 2, namely E6,
octahedral singularity of part (i) where b = 2, E7, and icosahedral singularity of part (ii) where b = 2,
these all rational homology spheres, one can adapt the Proof of Theorem 1.2 in [9] and deduce that
these cannot be planar. In Proof of Theorem 1, we explicitly write and show that the corresponding
symplectic fillings cannot be embedded in connected sum of n copies of CP

2
.

2. Preliminaries

2.1. Quotient surface singularities

We study the quotient singularities C2/G, where G is a finite subgroup of GL(2,C). Brieskorn [6]
described the possible minimal resolutions for these singularities, by using earlier result of Prill [17].
These singularities are classified into five groups, namely cyclic quotient singularities, dihedral
singularities, tetrahedral singularities, octahedral singularities and icosahedral singularities. We give
the minimal resolution graphs of these singularities, and use it in our proof. The reader is referred
to [3] for more details.
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• Cyclic Quotient Singularities: An,q, where 0 < q < n and gcd(n, q) = 1. The minimal resolution
graph of An,q is given in Figure 1, where bi are defined by the continued fraction

n
q

= [b1, b2, . . . , br] = b1 −
1

b2 −
1

...− 1
br

with bi ≥ 2 for all i.

-b-b -b -b -b
r r-11 2 3

Figure 1. Cyclic quotient singularity

• Dihedral Quotient Singularities: The minimal resolution graph of a dihedral quotient
singularity is given in Figure 2, where b ≥ 2 and bi ≥ 2.

-b -b -b -br1 2 -1 -2

-2

Figure 2. Dihedral quotient singularities.

• Tetrahedral Singularities: The minimal resolution graph of a tetrahedral singularity is given in
Figure 3, where b ≥ 2.

-2

-2 -2-2-2

-2

-2 -2-3

-2
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(ii)

(iii)
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Figure 3. Tetrahedral singularities.
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• Octahedral Quotient Singularities: The minimal resolution graph of a octahedral quotient
singularity is of the form given in Figure 4, where b ≥ 2.
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(i)
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(ii)

-b

-b

-b

Figure 4. Octahedral quotient singularities.

• Icosahedral Quotient Singularities: The minimal resolution graph of a icosahedral quotient
singularity is of the form given in Figure 5, where b ≥ 2.

2.2. Mapping class groups

The mapping class group MCG(Σ) of a compact connected orientable surface Σ is defined as the
group of isotopy classes of orientation–preserving self–diffeomorphisms of Σ, where diffeomorphisms
and isotopies of Σ are assumed to be the identity on the boundary. The group MCG(Σ) is generated by
Dehn twists.

We need the following torus relations. These relations can be obtained from the well known one–
holed torus relation by using the lantern and braid relations. The reader is referred to [12] for the
details. For the curves in the relations see the appropriate picture in Figure 6.
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Figure 5. Icosahedral quotient singularities.
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Figure 6. Curves of torus relations.

One–holed torus relation is

tδ = (tαtβ)6. (2.1)

Two–holed torus relation is

tδ1tδ2 = (tα1tα2tβ)
4, (2.2)

or by using braid relations, equivalently we can write

tδ1tδ2 = (tα1tα2tα2tβ)
3, (2.3)

or

tδ1tδ2 = (tα1tα2tβtα2tα2tβ)
2. (2.4)

Three–holed torus relation is

tδ1tδ2tδ3 = (tα1tα2tα3tβ)
3. (2.5)

or

tδ1tδ2tδ3 = (tα1tα3tβtα2tα3tβ)
2, (2.6)

Four–holed torus relation is

tδ1tδ2tδ3tδ4 = (tα1tα3tβtα2tα4tβ)
2. (2.7)

The next theorem was proved by C. Bonatti and L. Paris (c.f [5], Theorem 3.6). It will be useful for
us in writing the roots of elements in the mapping class group of a torus with boundary.

Theorem 4. If Σ is a torus with non-empty boundary components, then each element f in MCG(Σ) has
at most one m-root up to conjugation for all m ≥ 1.
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3. Construction of Milnor open books

We write the minimal page-genus Milnor open book decompositions of the links of the quotient
surface singularities with the help of the minimal resolution graphs given in Section 2. We will give a
recipe for the construction of these open books. The reader is referred to [2] for a detailed explanation.

Let Γ be one of the graphs given in Section 2. The intersection matrix I(Γ) of Γ is the negative
definite symmetric matrix defined as follows: First label the vertices of Γ as A1, A2, . . . , Aq. We index
the vertices of the graph starting from left to right and then index the bottom vertex if exists. The (i, i)
entry of I(Γ) is the weight associated to Ai. For i , j, the (i, j) entry is defined as 1 (resp. 0) if Ai is
connected (resp. not connected) to A j.

In order to construct our open book, we first find 1 × q integer matrices m =
[

m1 m2 · · · mq

]
and n =

[
n1 n2 · · · nq

]
satisfying

I(Γ) mt = −nt. (3.1)

We choose m in such a way that mi are the smallest possible positive integers so that ni ≥ 0 for all i.
Here, mt denotes the transpose of the matrix m.

The page Σ of the open book associated to m and n satisfying the equality (3.1) is a union of the
following pieces: A collection of surfaces Fi, for i = 1, . . . , q; annuli U i

t , for i = 1, . . . , q, t = 1, . . . , ni;
and a collection of annuli U i, j

l , l = 1, . . . , gcd(mi,m j) for each pair (i, j) with 1 ≤ i < j ≤ q such that
(Ai, A j) ∈ E, where E denotes the set of edges of the graph Γ.

We determine the surface Fi as follows: For the vertex Ai with valency vi, Fi is an mi–cover of the
sphere with vi + ni boundary components. The genus g(Fi) of Fi is determined by the followings: If
ni > 0 then the surface Fi is connected and

2 − 2g(Fi) −
∑

(Ai,A j)∈E

gcd (mi,m j) − ni = mi(2 − vi − ni), (3.2)

from which we obtain

g(Fi) = 1 +
mi(vi + ni − 2) −

∑
(Ai,A j)∈E gcd (mi,m j) − ni

2
. (3.3)

If ni = 0 then Fi has di = gcd ({mi} ∪
{
m j|(Ai, A j) ∈ E

}
) connected components and the genus of these

components F s
i , s = 1, . . . , di is calculated as

g(F s
i ) = 1 +

(mi/di)(vi − 2) −
∑

(Ai,A j)∈E gcd (mi,m j)/di

2
. (3.4)

The number of boundary components of Fi is

ni +
∑

(Ai,A j)∈E

gcd (mi,m j).

After gluing those surfaces according to the graph Γ, we end up with the page Σ of the open book
decomposition.

For a simple closed curve a on an oriented surface, let us denote by ta the right Dehn twist about
a. In order to find the monodromy φ of the open book decomposition, we first find the monodromy
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restricted to the annuli U i
t and U i, j

l ’s which make up the page Σ together with the surfaces Fi’s. The
monodromy φ restricted to the annulus U i

t is given by(
φ|U i

t

)mi
= tδi

t
,

for i = 1, . . . ,N, where δi
t is the core circle of U i

t and, hence, it is parallel to the boundary components
of the page Σ. The monodromy restricted to annulus U i, j

l is given by(
φ|U i, j

l

)mim j/ gcd (mi,m j)
= tc j−1 ,

where c j−1 is the core of the annulus U i, j
l . We glue these diffeomorphisms to get the monodromy

φ : Σ→ Σ of the open book decomposition.
Let us now construct the open book explicitly for all types of singularities.

4. Milnor open book decompositions

In this section we give the whole list of Milnor open book decompositions supporting the
corresponding unique Milnor fillable contact structure on the links of quotient surface singularities.

4.1. Cyclic quotient singularities

We start by investigating the cyclic quotient singularities. We construct the Milnor open book
supporting the unique Milnor fillable contact structure by following the construction steps explained in
the previous section. This is the easiest part and the open books turned to be planar.

Proposition 5. (Cyclic quotient singularities) The unique Milnor fillable contact structure on the
link of a cyclic quotient surface singularity is supported by a planar open book decomposition with
N = b1 + b2 + · · · + br − 2(r − 1) boundary components. The monodromy of the open book is

φ = (tδ1
1
· · · tδ1

b1−1
) · · · (tδi

1
· · · tδi

bi−2
) · · · (tδr

1
· · · tδr

br−1
)(tc1 · · · tcr−1),

where i = 2, . . . , r − 1.

Proof. The intersection matrix I(Γ) of the cyclic quotient surface singularity is

−b1 1 0 · · · 0 0 0
1 −b2 1 · · · 0 0 0
0 1 −b3 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1 −br−1 1
0 0 0 · · · 0 1 −br


.

Consider the r-tuple of integers m = (1, 1, . . . , 1), which gives the fundamental cycle of the resolution
(We see m as a matrix). Then we find that n1 = b1 − 1, nr = br − 1 and ni = bi − 2 for i = 2, 3, . . . , r − 1.
The page Σ of the open book associated to m consists of the following pieces. A collection of surfaces
Fi, annuli U i

t for each binding component of the open book and a collection of annuli U i, j
l connecting
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the surfaces Fi and F j. Notice that the equations (3.3) and (3.4) become the same in both cases ni > 0
and ni = 0. By using either of these equations, we find that g(Fi) = 0 for all i. The number of boundary
components of Fi is ni +

∑
(Ai,A j)∈E gcd (mi,m j). It follows that each Fi is a sphere with bi boundary

components.
Next, we glue the annuli to the Fi’s. For each 1 ≤ i ≤ r − 1, glue the annulus U i,i+1

1 to Fi and Fi+1 to
get a connected surface (cf. Figure 7). There are ni annuli U i

t which are not used to plumb the surfaces
Fi. They will give the binding components of the open book. As seen in Figure 7, the page Σ is a
sphere with N boundary components, where

N = n1 + n2 + · · · + nr

= b1 + b2 + · · · + br − 2(r − 1).

In order to find the monodromy φ, we only need to find φ|U i
t

and φ|U i, j
l

. We know that (φ|U i
t
)mi = tδi

t
,

for i = 1, . . . ,N, where δi
t are the core circles of U i

t . We find that the monodromy restricted to each
annulus U i, j

l is given by (φ|U i, j
l

)mim j/ gcd (mi,m j) = tc j−1 , where c j−1 is the core of the annulus U i, j
l (cf.

Figure 7). Since mi = 1, we have

• φ|U1
j

= tδ1
j

for j = 1, . . . , b1 − 1,
• φ|U i

j
= tδi

j
for i = 2, . . . , r − 1 and j = 1, . . . , bi − 2,

• φ|Ur
j
= tδr

j
for j = 1, . . . , br − 1, and

• φ|U i,i+1
1

= tci for i = 1, . . . , r − 1.

By gluing these maps, we find that the monodromy is

φ = (tδ1
1
· · · tδ1

b1−1
) · · · (tδi

1
· · · tδi

bi−2
) · · · (tδr

1
· · · tδr

br−1
)(tc1 · · · tcr−1),

where i = 2, . . . , r − 1.
�

δ
1

1
δ

1

δ δ

21
c c c c

r r

r
b b

r-1r-2

δ δ
b

2

r-1

δ δ
r-1r-1

1

2

2

b1 11 -2 -1
-1 -2

Figure 7. The page for cyclic singularities.

4.2. Dihedral quotient singularities

First, we consider the dihedral quotient surface singularity. If b1 = b2 = · · · = br−1 = b = 2, then
the singularity is a simple surface singularity. In [2], Bhupal computes the open book decomposition:
The page of the open book is a one–holed torus (cf. Figure 8) and the monodromy is

(
tαtβ

)3
(tα)r−2. In

the following proposition, we assume that the surface singularity is not simple.
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Figure 8. The page for the dihedral simple surface singularity for r = 2 and r > 2.

Proposition 6. (Dihedral quotient singularities) If b > 2 then the unique Milnor fillable contact
structure on the link of the dihedral quotient surface singularity is supported by a planar open book
decomposition with N = b1 + b2 + · · ·+ br−1 + b− 2r + 1 boundary components. The monodromy of the
open book is

φ = T1T2 · · · Tr−1Tr

(
tδr+1

1

)2 (
tδr+2

1

)2 (
tc1 · · · tcr−1

)
.

If b = br−1 = br−2 = · · · = bk+1 = 2 and bk > 2 for some 1 ≤ k ≤ r−1, then the unique Milnor fillable
contact structure on the link of the dihedral quotient surface singularity is supported by an open book
of genus one. The number of boundary components is N = b1 + b2 + · · ·+ bk − 2k + 1. The monodromy
is given by

φ =


(
tδ1

1
tδ1

2
· · · tδ1

b1−2

) (
tα1tα2tβ

)2
, if r = 2 (hence k = 1)

T1T2 · · · Tk−1Wk(tc1 · · · tck−1)(tα1tα2tβ)
2 (

tα2

)r−(k+1) , if r > 2.

Here,

T1 = tδ1
1
· · · tδ1

b1−1
,

Ti = tδi
1
· · · tδi

bi−2
, i = 2, . . . , r − 1.

Tr = tδr
1
· · · tδr

b−3
, and

Wk = tδk
1
· · · tδk

bk−3
.

Proof. We construct the open book by following the steps explained in Section 3.
Suppose first that b > 2. Let m = (1, . . . , 1). From the equation (3.1), we get n = (b1 − 1, b2 −

2, . . . , br−1 − 2, b − 3, 1, 1). For each vertex Ai of the graph with valency vi, we take a sphere S i with
vi + ni boundary components. Since mi = 1, S i = Fi in the notation of Section 3. For each edge E of
the graph connecting the vertices Ai and A j, we glue an annulus connecting the spheres S i and S j. We
then glue ni annuli to the sphere S i. The resulting surface is a page of the open book and is a sphere
with N = n1 + · · · + nr+2 = b1 + b2 + · · · + br−1 + b − 2r + 1 boundary components (cf. Figure 9). For
the monodromy, we have the diffeomorphisms below, gluing them we find the monodromy of the open
book.

In Section 3, it is explained that (φ|U i
t
)mi = tδi

t
, for i = 1, . . . ,N, where δi

t are the core circles of
U i

t . We find that the monodromy restricted to each annulus U i, j
l is given by (φ|U i, j

l
)mim j/ gcd (mi,m j) = tc j−1 ,

where c j−1 is the core of the annulus U i, j
l . Then we have

• φ|U1
j

= tδ1
j

for j = 1, . . . , b1 − 1,
• φ|U i

j
= tδi

j
for i = 2, . . . , r − 1 and j = 1, . . . , bi − 2,
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• φ|Ur
j
= tδr

j
for j = 1, . . . , b − 3,

• φ|Ur+1
1

= tδr+1
1

,
• φ|Ur+2

1
= tδr+2

1
, and

• φ|U i,i+1
1

= tci for i = 1, . . . , r + 1.

The curve cr is isotopic to the curve δr+1
1 and the curve cr+1 is isotiopic to the curve δr+2

1 , and gluing
the maps above we can easily get the monodromy.

φ = (tδ1
1
· · · tδ1

b1−1
) · · · (tδi

1
· · · tδi

bi−2
) · · · (tδr

1
· · · tδr

b−3
)
(
tδr+1

1

)2 (
tδr+2

1

)2 (
tc1 · · · tcr−1

)
,

where i = 2, . . . , r − 1.

φ = T1T2 · · · Tr−1Tr

(
tδr+1

1

)2 (
tδr+2

1

)2 (
tc1 · · · tcr−1

)
.

δ
1

1
δ

1

δ δ

21
c c c c

r

r

b b

r-1r-2

δ δ
b

2

r-1

δ δ
r-1r-1

1

2

2
b1 11 -2-1 -2

-3

δ
1

c

r r+1

r+2

δ
1

c
r+1

Figure 9. The page for dihedral singularities for b > 2.

Suppose now that b = 2. We consider two cases:
Case 1: r = 2. In this case by taking m = (1, 2, 1, 1), we find from equation (3.1) that n =

(b1 − 2, 1, 0, 0). It follows from the construction that the page of the open book is a torus with b1 − 1
boundary components (cf. Figure 10). For the monodromy, there are the diffeomorphisms of the annuli
U2

1 , U1
i and U1,2

1 given by(
φ|U2

1

)2
= tδ2

1
,(

φ|U1,2
1

)2
= tc1 , and(

φ|U1
i

)
= tδ1

i
, for i = 1, 2, . . . , b1 − 2.

By using the two-holed torus relation (2.2) for the torus bounded by c1 and δ2
1, and by Theorem 4, the

monodromy is found to be

φ =

(
(φ|U1

1
)(φ|U1

2
) · · · (φ|U1

b1−2
)
) (

(φ|U2
1
)(φ|U1,2

1
)
)

=

(
tδ1

1
tδ1

2
· · · tδ1

b1−2

) (
tα1tα2tβ

)2
.

Case 2: r > 2. We divide this case into two subcases: k = r − 1 and k < r − 1.
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Figure 10. The page Σ for dihedral singularity for r = 2, b = 2 and b1 > 2.

Suppose first that k = r − 1, so that br−1 > 2. In this case we take

m = (1, 1, . . . , 1, 1, 2, 1, 1)

so that all mi = 1 but mr = 2. We easily find from equation (3.1) that

n = (b1 − 1, b2 − 2, b3 − 2, . . . , br−2 − 2, br−1 − 3, 1, 0, 0).

It follows that the page of the open book is a torus; the number of boundary components is N =

b1 + b2 + · · · + br−1 − 2r + 3 (cf. Figure 11). The monodromy is

T1T2 · · · Tr−2Wr−1(tc1 · · · tcr−2)(tα1tα2tβ)
2.

α

β

α1 2

δ1

δ1
δ

11

b1
δ1

δ
−2b

δ δ
1−1

22

2

δ 1
δ

b−2 -3

i

b

21
c c c c

r

r-1
r-2

r-1r-1

r-1

ii

i

i

c c
i-1

Figure 11. The page for dihedral singularity for r > 2, b = 2 and br−1 > 2.

Suppose now that k < r − 1. Taking mi = 1 for 1 ≤ i ≤ k, m j = 2 for k + 1 ≤ j ≤ r, mr+1 = mr+2 = 1,
so that

m = (1, 1, . . . , 1, 2, . . . , 2, 2, 1, 1),

we find
n = (b1 − 1, b2 − 2, b3 − 2, . . . , bk−1 − 2, bk − 3, 1, 0, . . . , 0).

It follows again from the construction in Section 3 that the page of the open book is a torus with
N = b1 + b2 + · · ·+ bk − 2k + 1 boundary components (cf. Figure 12). For the monodromy, we glue the
following maps:

φ|U1
j

= tδ1
j
, j = 1, . . . , b1 − 1,
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φ|U i
j
= tδi

j
, i = 2, . . . , k − 1 and j = 1, . . . , bi − 2,

φ|Uk
j
= tδk

j
for j = 1, . . . , bk − 3,

φ|U i,i+1
1

= tci , i = 1, . . . , k − 1,(
φ|Uk,k+1

1

)2
= tck ,(

φ|Uk+1
1

)2
= tδk+1

1
,(

φ|U i,i+1
j

)2
= tci , i = k + 1, . . . , r − 1 and j = 1, 2.

In this case, for i = k + 1, . . . , r − 1 the curves ci are isotopic to α2. By the two–holed torus relation
(2.2) for the torus with boundary ck and δk+1

1 and by Theorem 4, we get the monodromy to be

T1T2 · · · Tk−1Wk(tc1 · · · tck−1)(tα1tα2tβ)
2 (

tα2

)r−(k+1) .

�
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α α
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Figure 12. The page for dihedral singularity for r > 2, b = br−1 = · · · = bk+1 = 2, bk > 2 and
1 ≤ k < r − 1.

4.3. Tetrahedral quotient singularities

In this subsection, we investigate the tetrahedral quotient singularities. We write explicitly the
Milnor open book decomposition supporting the unique Milnor fillable contact structure on the link of
a tetrahedral quotient singularity.

Proposition 7. (Tetrahedral quotient singularities) The unique Milnor fillable contact structure on
the link of a tetrahedral quotient singularity is supported by a planar open book decomposition (resp.
a genus-1 open book decomposition) if b > 2 (resp. b = 2). The number N of boundary components of
the page and the monodromy φ are given as follows (cf. Figure 13 and Figure 14): For b > 2

(N, φ) =


(
b, (tδ1

1
)3(tδ3

1
· · · tδ3

b−3
)(tδ5

1
)3(tδ6

1
)2
)
, in the case (i)(

b + 1, tδ1
1
tδ1

2
(tδ2

1
· · · tδ2

b−3
)(tδ4

1
)3(tδ5

1
)2tc1

)
, in the case (ii)(

b + 2, tδ1
1
tδ1

2
(tδ2

1
· · · tδ2

b−3
)tδ3

1
tδ3

2
(tδ4

1
)2tc1 tc2

)
, in the case (iii)

and for b = 2

(N, φ) =


(
1, (tαtβ)4

)
, in the case (i)(

2, tδ1
1
(tα1tα2tβtα1tα2tβtα2)

)
, in the case (ii)(

3, tδ1
1
tδ3

1
(tα1 tα3tβtα2tα3tβ)

)
, in the case (iii).

AIMS Mathematics Volume 5, Issue 1, 54–78.



67

21
c c c

δ δ
b1δ

1

1
δ

1

c

δ
1

6

3 4

5
c

-3

3 3 5

21
c c

δ δ
b1δ

1

1
δ

1

c

δ
1

3

4
c

-3

5

δ
1

2

2 2 4

21
c c

δ δ
b1δ

1

1
δ

δ
1

3
c

-3
δ

1

2

2 2

4

δ
1

33

2

(i)

(ii) (iii)

Figure 13. The page for tetrahedral singularities for b > 2.
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Figure 14. The page for tetrahedral singularities for b = 2.

Proof. Case 1: b > 2. We analyze each case.
(i) Following the steps in the construction given in Section 3, we choose m = (1, 1, 1, 1, 1, 1). From

the equation (3.1) we find n = (1, 0, b − 3, 0, 1, 1). Since mi = 1 for all i, the surface Fi at the vertex Ai

is a sphere with vi + ni boundary components. We connect these spheres Fi and F j with an annulus if
the vertices Ai and A j are connected by an edge. It follows that the page of the open book is a sphere
with n1 + · · · + n6 = b boundary components (cf. Figure 13(i)). The monodromy φ restricted to each
annuli is given as

• φ|U1
1

= tδ1
1
,

• φ|U3
j

= tδ3
j
, for j = 1, . . . , b − 3,
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• φ|U5
1

= tδ5
1
,

• φ|U6
1

= tδ6
1
,

• φ|U i,i+1
1

= tci , for i = 1, . . . , 4, and
• φ|U3,6

1
= tc5 .

Note that the curves c1 and c2 are isotopic to δ1
1, c3 and c4 are isotopic to δ5

1, and c5 is isotopic to δ6
1.

From this we find that
φ = (tδ1

1
)3(tδ3

1
· · · tδ3

b−3
)(tδ5

1
)3(tδ6

1
)2.

(ii) Choosing m = (1, 1, 1, 1, 1) gives n = (2, b − 3, 0, 1, 1). Following the construction above we
easily get the desired open book (cf. Figure 13(ii)).

(iii) Taking m = (1, 1, 1, 1) gives n = (2, b − 3, 2, 1). The rest of the proof is the same as the case (i)
(cf. Figure 13(iii)).

Case 2: b = 2. Again we investigate each of the three cases.
This type of singularity has a graph Γ given in Figure 3. For each vertex Ai of Γ, there is a sphere

with vi + ni boundary components, where vi is the valency of the vertex Ai and ni is calculated from
equation (3.1).

(i) Choosing m = (1, 2, 3, 2, 1, 2) gives n = (0, 0, 0, 0, 0, 1). To construct the page, we plumb the
surfaces Fi, according to the graph Γ. The surface Fi is the mi–cover of the sphere with vi +ni boundary
components. The number of boundary components of Fi is

ni +
∑

(Ai,A j)∈E

gcd (mi,m j) = ni + vi.

Hence the surface F1 is a sphere with one boundary component, F2 is a sphere with two boundary
components, F3 is a torus with three boundary components, F4 is a sphere with two boundary
components, F5 is sphere with one boundary component, and F6 is sphere with two boundary
components.

The page of the open book is constructed by connecting these surfaces with an annulus according
to the graph Γ (cf. Figure 14(i)). Thus the page is a one–holed torus. The monodromy can easily be
calculated by gluing the monodromy restricted to the annuli U3,6

1 and U6
1 .

φ = (φ|U3,6
1

)(φ|U6
1
).

From Section 3, we have

•
(
φ|U3,6

1

)6
= tc5 , and

•
(
φ|U6

1

)2
= tδ6

1
.

Since the curves c5 and δ6
1 are isotopic, we may write

φ3 =
(
(φ|U3,6

1
)(φ|U6

1
)
)3

=
(
tδ6

1

)2

=
(
tαtβ

)12
,
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by using the once-punctured torus relation (2.1). By Theorem 4, we find

φ =
(
tαtβ

)4
.

(ii) We take m = (1, 2, 2, 1, 1) and get n = (1, 0, 1, 0, 0). It follows that the page of the open book is
a torus with two boundary components (cf. Figure 14(ii)). The monodromy can easily be calculated.

(iii) Choosing m = (1, 2, 1, 1) gives n = (1, 1, 1, 0). Then the page of the open book is a torus with
three boundary components (cf. Figure 14(iii)). The monodromy is found to be as stated. �

4.4. Octahedral quotient singularities

In the proposition below, we construct the Milnor open book decomposition supporting the unique
Milnor fillable contact structure on the link of an octahedral quotient singularity.

Proposition 8. (Octahedral quotient singularities) The unique Milnor fillable contact structure on
the link of an octahedral quotient singularity is supported by a planar open book decomposition if
b > 2 and a genus-1 open book decomposition if b = 2. The number N of boundary components of the
page and the monodromy φ are given as follows (cf. Figure 4): For b > 2

(N, φ) =



(
b, (tδ1

1
)4(tδ4

1
· · · tδ4

b−3
)(tδ6

1
)3(tδ7

1
)2(tδ6

1
)2
)
, in the case (i)(

b + 1, (tδ1
1
)4(tδ4

1
· · · tδ4

b−3
)tδ5

1
tδ5

2
(tδ6

1
)2tc1

)
, in the case (ii)(

b + 2, tδ1
1
tδ1

2
(tδ2

1
· · · tδ2

b−3
)tδ3

1
tδ3

2
(tδ4

1
)2tc1tc2

)
, in the case (iii)(

b + 3, tδ1
1
tδ1

2
tδ1

3
(tδ2

1
· · · tδ2

b−3
)(tδ4

1
)3(tδ5

1
)2tc1

)
, in the case (iv)

and for b = 2

(N, φ) =



(
1, tβ(tαtβ)4

)
, in the case (i)(

2, tδ2(tα1tα2(tα1tα2tβ)
2
)
, in the case (ii)(

3, tδ1tδ2(tα1tα2tβtα1tα2tβtα2)
)
, in the case (iii)(

4, tδ1tδ2tδ4(tα1 tα3tβtα2tα3tβ)
)
, in the case (iv).

Proof. Case 1: b > 2.
(i) We choose m = (1, 1, 1, 1, 1, 1, 1) from which we find n = (1, 0, 0, b − 3, 0, 1, 1). Since mi = 1

for all i, the surface Fi at the vertex Ai is a sphere with vi + ni boundary components. We connect these
spheres Fi and F j with an annulus if the vertices Ai and A j are connected by an edge. It follows that
the page of the open book is a sphere with n1 + · · · + n7 = b boundary components (cf. Figure 15(i)).
The monodromy φ restricted to each annuli is given as

• φ|U1
1

= tδ1
1
,

• φ|U4
j

= tδ4
j
, for j = 1, . . . , b − 3,

• φ|U6
1

= tδ6
1
,

• φ|U7
1

= tδ7
1
,

• φ|U i,i+1
1

= tci , for i = 1, . . . , 5, and
• φ|U4,7

1
= tc6 .

The curves c1, c2 and c3 are isotopic to δ1
1, c3 and c4 are isotopic to δ6

1, and c6 is isotopic to δ6
1. From

this we find that
φ = (tδ1

1
)4(tδ4

1
· · · tδ4

b−3
)(tδ6

1
)3(tδ7

1
)2.
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Similarly, in order to construct the Milnor open books in part (ii), (iii) and (iv), we choose m and
n as in the table below. Following the construction steps, one can easily get the open book stated in
Proposition 8.

Part m n
(ii) (1, 1, 1, 1, 1, 1) (1, 0, 0, b − 3, 2, 1)
(iii) (1, 1, 1, 1, 1) (3, b − 3, 0, 1, 1)
(iv) (1, 1, 1, 1) (3, b − 3, 2, 1)

Case 2: b = 2. Again we investigate each of the four cases.
This type of singularity has a graph Γ given in Figure 4. For each vertex Ai of Γ, there is a sphere

with vi + ni boundary components, where vi is the valency of the vertex Ai and ni is calculated from
equation (3.1).

(i) Choosing m = (1, 2, 3, 4, 3, 2, 2) gives n = (0, 0, 0, 0, 0, 1, 0). To construct the page, we plumb the
surfaces Fi, according to the graph Γ. The surface Fi is the mi–cover of the sphere with vi +ni boundary
components. There are ni+vi boundary components of the surface Fi. Hence, the surfaces F1 and F7 are
spheres with one boundary component. F2, F3, F5 and F6 are spheres with two boundary components
and F3 is a torus with three boundary components. The page of the open book is constructed by
connecting these surfaces with an annulus according to the graph Γ (cf. Figure 16(i)). Thus the page
is a one–holed torus. The monodromy can easily be calculated by gluing the monodromy restricted to
the annuli U4,5

1 , U5,6
1 and U6

1 .
φ = (φ|U4,5

1
)(φ|U5,6

1
)(φ|U6

1
).

From the calculations of Section 3,

•
(
φ|U4,5

1

)12
= tc4 ,

•
(
φ|U3,6

1

)6
= tc5 , and

•
(
φ|U6

1

)2
= tδ6

1
.

Since the curves c4, c5 and δ6
1 are isotopic, we may write

φ4 =
(
(φ|U4,5

1
)(φ|U5,6

1
)(φ|U6

1
)
)4

=
(
tδ6

1

)3
.

By using the once-punctured torus relation (2.1),

φ4 =
(
(tαtβ)6

)3
.

Using the braid relations we may write

φ4 =
(
tβ(tαtβ))4

)4
.

Using Theorem 4, we obtain the monodromy as

φ = tβ(tαtβ)4.
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In order to prove the rest of the proposition, we take m and n as in the table below. Then following
the construction steps, braid relations and Theorem 4 one can get Milnor open book given in
Proposition 8.

Part m n
(ii) (1, 2, 2, 2, 1, 1) (0, 1, 0, 0, 1, 0)
(iii) (1, 2, 2, 1, 1) (2, 0, 1, 0, 0)
(iv) (1, 2, 1, 1) (2, 1, 1, 0)
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Figure 15. The page for octahedral singularities for b > 2.
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4.5. Icosahedral quotient singularities

In this part, we write the Milnor open book decomposition supporting the unique Milnor fillable
contact structure on the link of an icosahedral quotient singularity. Notice that for b = 2, (i) is the
E8 singularity, and its open book decomposition is constructed in [2], and [11]. We simplify the
construction of [2], and write it for the completeness of the paper.

Proposition 9. (Icosahedral quotient singularities) The unique Milnor fillable contact structure on
the link of an icosahedral quotient singularity is supported by a planar open book decomposition if
b > 2 and a genus-1 open book decomposition if b = 2. The number N of boundary components of the
page and the monodromy φ are given as follows (cf. Figure 5): For b > 2

(N, φ) =



(
b, (tδ1

1
)5(tδ5

1
· · · tδ5

b−3
)(tδ7

1
)3(tδ8

1
)2
)
, in the case (i)(

b + 1, (tδ1
1
tδ1

2
(tδ3

1
· · · tδ3

b−3
)(tδ5

1
)3(tδ6

1
)2(tc1)

2
)
, in the case (ii)(

b + 2, (tδ1
1
)5(tδ5

1
· · · tδ5

b−3
)tδ6

1
tδ6

2
(tδ7

1
)2tc1

)
, in the case (iii)(

b + 1, (tδ1
1
)2tδ2

1
(tδ3

1
· · · tδ3

b−3
)(tδ5

1
)3(tδ6

1
)2tc1

)
, in the case (iv)(

b + 2, tδ1
1
tδ1

2
(tδ3

1
· · · tδ3

b−3
)tδ4

1
tδ4

2
(tδ5

1
)2(tc1)

2tc2

)
, in the case (v)(

b + 3, tδ1
1
tδ1

2
tδ1

3
tδ1

4
(tδ2

1
· · · tδ2

b−3
)(tδ4

1
)3(tδ5

1
)2tc1

)
, in the case (vi)(

b + 2, (tδ1
1
)2tδ2

1
(tδ3

1
· · · tδ3

b−3
)tδ4

1
tδ4

2
(tδ5

1
)2tc1tc2

)
, in the case (vii)(

b + 4, tδ1
1
tδ1

2
tδ1

3
tδ1

4
(tδ2

1
· · · tδ2

b−3
)tδ3

1
tδ3

1
(tδ4

1
)2tc1tc2

)
, in the case (viii)

and for b = 2

(N, φ) =



(
1, (tαtβ)5

)
, in the case (i)(

2, tδ1(tα1(tα2)
2tβ)2

)
, in the case (ii)(

2, tδ2tα1tα2(tα1tα2tβtα1tα2tβtα2)
)
, in the case (iii)(

2, (tδ1)
2(tα1tα2tβtα1tα2tβtα2)

)
, in the case (iv)(

4, tδ1tδ3(tα1tα2tα3tβtα2tα3 tβ)
)
, in the case (v)(

4, tδ1tδ2(tα1tα2tβtα1tα2tβtα2)
)
, in the case (vi)(

3, (tδ1)
2tδ3(tα1tα3tβtα2tα3tβ)

)
, in the case (vii)(

5, tδ1tδ2tδ3tδ5(tα1tα3tβtα2tα3tβ)
)
, in the case (viii).

Proof. Case 1: b > 2.
(i) Following the steps in the construction of the open book, choosing m = (1, 1, 1, 1, 1, 1, 1, 1), we

get n = (1, 0, 0, 0, b − 3, 0, 1, 1). Since mi = 1 for all i, the surface Fi at the vertex Ai is a sphere with
vi + ni boundary components. We connect these spheres Fi and F j with an annulus if the vertices Ai

and A j are connected by an edge. It follows that the page of the open book is a sphere with b boundary
components (cf. Figure 17(i)). The monodromy of the open book is calculated by gluing the maps
below:

φ = (φ|U1
1
)
(
φ|U1,2

1
· · · φ|U6,7

1

)
(φ|U7

1
)(φ|U8

1
)(φ|U5,8

1
)
(
φ|U5

1
· · · φ|U5

b−3

)
.

The monodromy φ restricted to each of these annuli is given by

• φ|U1
1

= tδ1
1
,

• φ|U5
j

= tδ5
j
, for j = 1, . . . , b − 3,
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• φ|U7
1

= tδ7
1
,

• φ|U8
1

= tδ8
1
,

• φ|U i,i+1
1

= tci , for i = 1, . . . , 6, and
• φ|U5,8

1
= tc7 .

Note that the curves c1, c2, c3, c4 are isotopic to δ1
1; c5, c6 are isotopic to δ7

1; and c7 is isotopic to δ8
1.

Hence the monodromy is

φ = (tδ1
1
)5(tδ7

1
)3(tδ8

1
)2(tδ5

1
· · · tδ5

b−3
).

In order to prove the other parts, we follow the construction steps given in Section 3. Taking m and
n as in the table below, one can get the desired open book.

Part m n
(ii) (1, 1, 1, 1, 1, 1) (2, 0, b − 3, 0, 1, 1)
(iii) (1, 1, 1, 1, 1, 1, 1) (1, 0, 0, 0, b − 3, 2, 1)
(iv) (1, 1, 1, 1, 1, 1) (1, 1, b − 3, 0, 1, 1)
(v) (1, 1, 1, 1, 1) (2, 0, b − 3, 2, 1)
(vi) (1, 1, 1, 1, 1) (4, b − 3, 0, 1, 1)
(vii) (1, 1, 1, 1, 1) (1, 1, b − 3, 2, 1)
(viii) (1, 1, 1, 1) (4, b − 3, 2, 1)

Case 2: b = 2.
(i) The intersection matrix I(Γ) of this singularity is

−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 1
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 0
0 0 0 0 1 0 0 −2


.

In this case, we take m = (2, 3, 4, 5, 6, 4, 2, 3). From equation (3.1), we find that n = (1, 0, 0, 0, 0, 0, 0, 0).
The page Σ of the open book associated to m is a torus with two boundary components, built up as the
union of five spheres with two boundary components, two spheres with one boundary component, a
torus with three boundary components and eight annuli (see Figure 18(i)). The monodromy restricted
to each annulus is computed to be

• (φ|U1
1
)2 = tδ1

1
,

• (φ|U1,2
1

)6 = tc1 ,
• (φ|U2,3

1
)12 = tc2 ,

• (φ|U3,4
1

)20 = tc3 ,
• (φ|U4,5

1
)30 = tc4 .
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We get the monodromy φ of the open book by gluing these maps:

φ = (φ|U1
1
)(φ|U1,2

1
)(φ|U2,3

1
)(φ|U3,4

1
)(φ|U4,5

1
).

The curves c1, c2, c3 and c4 are isotopic to δ1
1, and by using the above five equations, we may write

(φ)6 = ((φ|U1
1
)(φ|U1,2

1
)(φ|U2,3

1
)(φ|U6

1
)(φ|U3,6

1
))6 =

(
tδ1

1

)5
.

Using the one–holed torus relation (2.1), we obtain

(φ)6 =
(
tδ1

1

)5
=

(
tαtβ

)30
.

It follows now from Theorem 4 that the monodromy φ of the open book is

φ =
(
tαtβ

)5
.

The rest of the proof is same as the part (i). Choosing m and n as in table below, gives the open
book decomposition stated in Proposition 9.

Part m n
(ii) (1, 2, 3, 2, 1, 2) (1, 0, 0, 0, 0, 1)
(iii) (1, 2, 2, 2, 2, 1, 1) (0, 1, 0, 0, 0, 1, 0)
(iv) (1, 1, 2, 2, 1, 1) (1, 0, 0, 1, 0, 0)
(v) (1, 2, 2, 1, 1) (1, 1, 0, 1, 0)
(vi) (1, 2, 2, 1, 1) (3, 0, 1, 0, 0)
(vii) (1, 1, 2, 1, 1) (1, 0, 1, 1, 0)
(viii) (1, 2, 1, 1) (3, 1, 1, 0)

�

5. Proof of theorem 1

In Section 4 we have found the Milnor open book decompositions on the links of quotient surface
singularities supporting the natural contact structure. Hence, we are able to say the following: The
Milnor fillable contact structure on the link of a cyclic quotient surface singularity is supported by a
planar open book (cf. Proposition 5). Similarly, the natural contact structure on the links of other
singularities in the case b > 2 are all supported by planar open books (cf. Propositions 6-7-8-9).
Therefore, the support genus is the same as Milnor genus, which is zero, for these types.

In order to prove Theorem 1, we show that the unique Milnor fillable contact structure on the
link of the quotient surface singularity cannot be supported by a planar open book for the following
singularities: tetrahedral part (i) for b = 2; octahedral part (i) for b = 2, icosahedral part (i) and (ii)
for b = 2. These singularities have Milnor genus-1 open book decompositions, as shown in Section 4.
Therefore, the Milnor genus is equal to the support genus for these types.
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Figure 17. The page for icosahedral singularities for b > 2.

If X is a symplectic filling of a contact 3-manifold (M, ξ) and ξ is supported by a planar open book,
then X can be embedded in #nCP

2
, connected sum of n copies of CP

2
by (the proof of) Theorem 1.2

of [9]. Hence, in order to show that the support genus of a symplectically fillable contact structure is
positive, it suffices to show that their symplectic fillings cannot be embedded in #nCP

2
.

Let v1, v2, v3, v4 be the standard generators of the intersection lattice (Z4,D4) shown in Figure 19,
vertices having self-intersection −2, and e1, . . . , en be the standard generators of (Zn,Dn = ⊕n 〈−1〉)
diagonal intersection lattice with self-intersection −1. By Lemma 3.1 in [13] (see also the proof of
Theorem 4.2 in [14]), there exists only one, up to composing with an automorphism of (Zn,Dn),
isometric embedding from (Z4,D4) to (Zn,Dn), which sends v1 to e1 + e2, v2 to −e2 + e3, v3 to −e1 + e4

and v4 to −e2 − e3. The proof follows from the fact that, each vi has self-intersection −2, so that the
image of vi under an isometric embedding must be of the form e j + ek. From the intersection form of
D4, one can only get the above embedding (up to sign changes and permutations of generators of
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Figure 18. The page for icosahedral singularities for b = 2.

(Zn,Dn)).
Let L be any intersection lattice containing the sublattice with vertices v1, . . . , v6 as shown in

Figure 20, where v1, v2, v3, v4 have self-intersection −2. We prove for any n ≥ 1, there exists no
isometric embedding from L into (Zn,Dn).

Suppose there exists such an isometric embedding ϕ. By the above discussion, we may assume that

• ϕ(v1) = e1 + e2,
• ϕ(v2) = −e2 + e3,
• ϕ(v3) = −e1 + e4, and
• ϕ(v4) = −e2 − e3.

From the intersection form of L one can see, that v5 has an intersection with v4. On the otherhand v5

does not intersect v2. Then one can get the equalities below:

1 = ϕ(v5 · v4) = ϕ(v5) · ϕ(v4) = ϕ(v5) · (−e2 − e3) and
0 = ϕ(v5 · v2) = ϕ(v5) · ϕ(v2) = ϕ(v5) · (−e2 + e3).

Hence we obtain

1 = ϕ(v5) · (−2e2),
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Figure 19. The intersection lattice (Z4,D4).
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Figure 20. The sublattice.

which is impossible.
Therefore, if one considers the intersection lattice L as stated above and the natural contact structure

on the link of that plumbing, then its symplectic filling cannot be embedded in #nCP
2
. So that contact

structure cannot be supported by a planar open book decomposition. Therefore the unique Milnor
fillable contact structures on the links of quotient surface singularities of tetrahedral part (i) for b = 2;
octahedral part (i) for b = 2, icosahedral part (i) and (ii) for b = 2 cannot be supported by planar open
book decompositions. These contact structures have support genus one. For the remaining cases, we
constructed minimal page-genus Milnor open books, and the pages are all genus one surfaces. Hence,
we conclude that support genus is at most one for the corresponding contact structures. �

Remark 10. This method we used above, to prove the contact structures cannot be supported by
planar open book decompositions, can be used to prove for some other symplectically fillable contact
structures on different types of singularities/plumbings.

Remark 11. Quotient surface singularities are rational surface singularities and the links of rational
surface singularities are L-spaces. Hence we cannot use the obstructions in [16] for being supported
by a planar open book decomposition.

Remark 12. In this paper, we only investigate the Milnor open book decompositions supporting the
canonical contact structure on the links of quotient surface singularities and the relation between the
Milnor genus and the support genus. The relation between the binding number and support norm for
this type of singularities could be understood with help of these Milnor open book decompositions.
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