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1. Introduction

For any variable x, the Fibonacci polynomials F,(x) and Lucas polynomials L,(x) are recursively
defined by F,11(x) = xF,(x)+ F,—1(x),n > 1 and L, ;1(x) = xL,(x)+L,_1(x), n > 1 with their respective
initial values Fy(x) = 0, F(x) = 1 and Ly(x) = 2, L;(x) = x. For x = 1, the Fibonacci polynomials
F,(x) and Lucas polynomials L,(x) are respectively the well known Fibonacci and Lucas numbers.
The closed form expressions for F,(x) and L,(x) are indeed

a,n_ﬁn
Va2 +4

where a = %(x + Vx?+4)and B = %(x — Vx? +4). Several authors studied extensively the Fibonacci
and Lucas polynomials and deduced various important properties for both these polynomials (e.g.,
see [4,8,13]).

For n-th Fibonacci number F, and n-th Lucas number L, the Fibonacci and Lucas zeta functions
are respectively defined as

F,(x) = and L,(x) = a" + ",

o 1 > 1
r()= ) —and{i(s) = ) —,
; F” n=1 L”

which have been studied extensively in various different aspects [1,5]. Many researchers considered
the infinite sums derived from the reciprocals of different number sequences such as Fibonacci, Pell,
balancing, Lucas-balancing sequence etc. and established several results concerning these
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sequences [2, 6, 14]. For instance, Ohtsuka and Nakamura [6] studied the partial infinite sums of
reciprocal Fibonacci numbers and derived the following results, where | .| denotes the floor function.

ii - | Fu, if nis even and n > 2;
F, | Fop—1, ifnisoddandn > 1.

k=n

Ki i)_1| B { F,F,_, -1, ifnisevenandn > 2;
£ F}% F,F,_, ifnisoddandn > 1.
Wu and Zhang [11] generalized the above identities by considering Fibonacci and Lucas polynomials.
Later on, Wu and Zhang [12] considered the sub-series of infinite sums of reciprocal of Fibonacci and
Lucas polynomials and derived various identities involving these sums.

Several authors [3,7,9, 10] studied the bounds for partial finite reciprocal sums involving terms
from Fibonacci and other number sequences. For example, Wang and Wen [7] considered the finite
reciprocal sums of Fibonacci numbers and established the following identities.

ii - | Fuo, if niseven (n > 2) and m > 3;
Fy | F,.o—1, ifnisodd (n>1)and m > 3.

k=n
ii - | FyF,e— 1, ifniseven (n>2)and m > 2,
e [ | F.F,, ifnisodd(n>1)and m > 2.

In the present study, we consider the partial finite sums of reciprocal of Fibonacci polynomials,
Lucas polynomials, square of Fibonacci polynomials and square of Lucas polynomials. We derive the
following results relating to the these sums that significantly improve the results of Wu and Zhang [11].

Theorem 1.1. For any positive integers x,n and m > 3,
f 1! | Fu(x) = Fpui (), ifnis even
- Fi(x) | Fu(x) = F,.1(x) =1, ifnisodd.
Theorem 1.2. For any integer x < 0 and any positive integers n > 2 and m > 3,
(2

Theorem 1.3. For any positive integers x,n and m > 3,

1 -1
Fk()C)) | = Fn(-x) - Fn—l(x)-

i R [ L(x)—L,.y(x) -1, ifnis evenandn >?2;
i Li(x) | Lu(x) = Ly (%), ifnisoddandn > 3.

Theorem 1.4. For any integer x < 0 and any positive integers n > 3 and m > 3,
(2
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1 -1
Lk()C)) | = Ln(-x) - Ln—l(x)-
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Theorem 1.5. For any integer x € Z — {0} and any positive integers n and m > 2,

i A | xFy(X)F,i(x) = 1, ifnis even;
F2(x) | xFu(x0)F,_ (%), ifnisodd .

k=n

Theorem 1.6. For any integer x € Z — {0, +1} and any positive integers n and m > 2,

{(f 1 )_ll_{ xLy,_1(x)+ 1, ifnis evenandn > 2 ;

- L,f(x) XLy, 1(x) =2, ifnisoddandn > 3.

2. Proof of theorems

The following two results are found in [13], which are used to prove our main theorems.
Lemma 2.1. For any positive integers x,m,n, F,,11(x) = F1(X)Fp1(x) + Fp(x)F,(x).
Lemma 2.2. For any positive integers x and n, F, . ((x)F,_1(x) — F ﬁ(x) =(-D".

F.(x), ifnis odd,

Lemma 2.3. For any positive integers x and n, F,(—x) = { _F,(x), ifnis even

Proof. In order to prove the result, it suffices to show that Fy, (—x) = F,,_1(x) and
F,(—x) = —F,,(x) for any positive integer m > 1. We use induction on m. For m = 1,
Fi(=x) = 1 = Fi(x) and F,(—x) = —x = —F;(x). Let us assume the truth for m = k, that is,
Foy1(=x) = Fy_(x) and Fy(-x) = —Fxu(x) for some positive integer k. Now

Fogsn-1(=x) = Fop1(=x) = —xFyu(=x) + Fy_1(=x) = xFy(x) + Fy_1(x) = Fay1(x). Similarly,
Fz(k+1)(—x) = Foro(=x) = =xFop41(=%) + Fop(—=x) = —xFp41(x) — Fo3(x) = —Fp42(x). This ends the
proof the lemma. O

Using Lemma 2.3, one can easily check that the Lemmas 2.1 and 2.2 hold for any integer x < O.

We prove only Theorems 1.1, 1.2 and 1.5 and the remaining theorems can be proved analogously.
In order to prove these theorems, we need the following lemmas. For the sake of argument, let us
consider the following auxiliary functions for any positive integer x

A= o e R P = F e T @D
O e e e ey 22
A= =T R P = F =T 23
g1(m) = 1 1 1 2.4

XF,(OF,5(0) =1 F2(x)  xFun()F,(x) -1’
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1 1 1
XF()F, () F2(x)  xFpi(0)F,(x)

g2(n) = (2.5)

and
1 1 1
xF(0F, o1 (x)+ 1 F2(x)  xF(0)F,(x)+ 1

Lemma 2.4. [fn > 2 even, then fi(n) + fi(n+1) <O.
Proof. For n even, by (2.1) and Lemma 2.2,

Sin) + filn+ 1)

g3(n) =

(2.6)

( 1 1 ) B ( 1 N 1 )
Fy(x) = Fpoi(0) + 1 Fup(x)” “Fpa(x)  Frao(x) = Fra(x) + 1
Fooi(x) -1 Fra(x) + 1

Fux)(Fu(x) = Faet () + 1) Frt(0)(Fraa(x) = Fraa(x) + 1)

1 1

Fu(x) Fri(x)
F"(x)(Fn_mx)—l - 1) F"“(x)(l - Fn+z<'x>+1)

1 1
Frri(®F1()-(=D" - Froo(Fa(x)-(=1"
o1 —Fa(0) Fun () — =500
1 1
LBt QL — Fp(x)  Foa(v) — Doplfatad
1 1

el (-1 Fu0)+1
Fra(x) = Fo(x) + 22950 F () = F(x) + 280

A F)Hl(x) 1 F,,()C)-I—l

T~ TGl the result follows. O

Lemma 2.5. If m > 3, and n is even, then fi(n) + fi(n + 1) + fi(mn) + ————— < 0.

anH(x)_an(x)"']

Proof. For m > 3, with the help of (2.1), we get
1 _ an—l(x) -1 1

fl(mn) * an+1(X) - an()C) +1 B an(X)(an(X) - an—l(x) + 1) < F3n(x).
Therefore,
1
fin) + filn+ 1) + fi(mn) + Fome1 (X) = Fo(x) + 1
< Foa(x) = 1 ) Fro() + 1 !

+
Fu@(Fu) = Fuet )+ 1) Fut 0(Fuia@) = Faa () +1) - F3u0
Fua(®) + Fy(0)F,1(0) = (Frsa(0)F 1 (x) + Faa(0) + Fo(0) + F,a ()
+ .
FuF 11 (@)(Fu(0) = Fit(0) + 1)(Fuea(0) = Fun () + 1) Fau)

Using Lemmas 2.1 and 2.2, it can be easily verified that

F3,(0)(Fua(®) + Fu(0)F,21(X)) + Fu(F i (0)(Fu(x) = Fooi () + 1)
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(Fuea(®) = Fot () + 1) < F3y(0)( Fraa(0)F 1 () + Fa () + Fo(x) + F,a (),
and the result follows. O
Lemma 2.6. [fn > 2 even, then f,(n) + fo(n+1) > 0.

Proof. Since n > 2 is even, then by 2.2 and Lemma 2.2,

1 1 1
Fo(x) = Foi(x)  Fu(x)  Fp(x) - Fu(x)
Fn—l(x) 1

Fa)(Fu0) = Fua(n)  Fant (0 = F()
(-1
Fo(x)(Fu(x) = Fe1(0)(Fur (x) = Fu())

= ! > 0.

Fu()(Fu(x) = Fue1(0)(Fuia (0) = Fu())

fn) =

Continuing as in Lemma 2.4, it can be checked that f,(n) + fo(n + 1) is positive for all even values of
n. O

Lemma 2.7. [fn > | odd, then f(n) + f(n + 1) < 0.

Proof. When n is odd, f>(n) = = <0.
Fn(x)(Fn(x)_Fn—l(x))(Fn+l(X)_Fn(x))

Now,
1 1 1 1
M)+ fn+1) = - - +
? ? (mm—mxm nm)Q%M>FMm—mA&
_ Foi(x) ~ Frin(x)
Fu()(Fu(x) = Fust (0) - Fut(0)(Fuia(x) = Fra ()
~ 1 1
F "(x)(Fiﬁ)gc) - 1) F "+‘(x)(1 - iig)
_ 1 1
Lea WL O-CD! _ p (x)  Fypy (x) — Le2faloCIr
_ 1 1
T Fui@Fi (-1 - Frsa()F(0)-1
Tt (0 Fan(0) - =S
~ 1 1
Frn(0) = Fo(0) + 7= Fra(0) = F(0) + 7=
Since F+1(x) > m, which follows f>(n) + fo(n + 1) < 0. |

Lemma 2.8. For any positive integers n,m with n > 1 odd, m > 3 and mn odd, f,(n) + fr(n + 1) +
folmn) + ———— < 0.

Finn+1(X)=F ()

Proof. The proof of this result is similar to Lemma 2.5. O
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Lemma 2.9. For any odd positive integer n, f3(n) + f3(n+1) > 0.
Proof. The proof of this result is analogous to Lemma 2.4.

Lemma 2.10. For any even positive integer n, g1(n) + g1(n + 1) > 0.
Proof. From (2.4),

1 1 1
XF,()F, 1(x) =1 FXx) xFu(0F,(x) -1’

g1(n) =

Now, for even n,

1 1 1 1
XF,(0F, . (x) =1 F2(x) F2 (x) XFu(0)Fun(x) -1
_ Fn(-x)Fn—Z(-x) + 1 _ Fn+1(-x)Fn+3(x) - 1
P20 F(0)Fsi(x) = 1) F2 (x)(xFs2(xX)F 1 (x) = 1)

gim)+gin+1)=

Using Lemmas 2.1 and 2.2, it can be seen that

F2 () (F () Fya(x) + 1)(xF02(X) Frpr (x) = 1)
> Fa(X)(Fys1 () Fi3(x) = D)(XF,(X)F,oi(x) — 1),

and hence the result follows.
The following lemmas can be analogously proved and hence their proofs are omitted.
Lemma 2.11. For any even positive integer n, g,(n) + go(n+ 1) < 0.

Lemma 2.12. For any even integer n and any integer m > 2,

! <0
XF i1 (X) Fpp (X)

&)+ g(n+ 1) + go(mn) +

Lemma 2.13. For any odd positive integer n, g,(n) + g,(n + 1) > 0.
Lemma 2.14. For any odd integer n and any integer m > 2,

1

> 0.
XanH(x)an(x)

&(n) + g(n+ 1) + go(mn) +

Lemma 2.15. For any odd positive integer n, g;(n) + gs(n + 1) < 0.
Lemma 2.16. For any even integer n and any integer m > 2,

1
<0
XanH(X)an(-x) +1

g(n) +g(n+1)+

Lemma 2.17. For any even integer n and any integer m > 2,

1
<0
Xan+1(X)an(x) +1

g3(n) + gz(n + 1) + gz(mn) +
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Now, we are in a position to derive our main results.

Proof of Theorem 1.1. We first consider the case where n is even. Taking summation over k from n
to mn in (2.1) and using the Lemmas 2.4 and 2.5, we obtain

mn

mn 1 1
kzz,; F) ;(Fk(x)—Fk_l(x)+l C Frn(x) - Fk(x)+1 Zfl(k)

! 1
B F”(x) - Fn—l(x) + 1 - an+1(-x) - an(X) + 1 - ;fl(k)

1
B Fo(x) = F,(x) + 1 B (fl(n) + fl(n +1)+ f](ml’l)
1 mn—1
+an+1(x) — Fon(x) + 1) - kzZlJrzfl(k)

1
Fn(x) - Fn—l(x) + 1
On the other hand, using (2.2) and Lemma 2.6, we get

mn 1

= k
£ Fy(x) ;(Fku)—Fk_l(x) Fk+1<x> Fk<> Zfz”

1 1
T Fu®) = Furi(®) Funt () = Fu(3) kZ S0
1
Fu(x) = Froa (%)
In order prove the theorem for odd n, we proceed as follows. With the help of (2.2), we have

mn 1

= k
£ Fy(x) ;(Fku)—n_l(x) Fk+1<x> Fk<x> Zfz”

1 1
) - k
Fo(x) = Fost(x) Fppi1 (%) = Fppp(%) Z fa(k).

For odd mn, by virtue of Lemmas 2.7 and 2.8, we get

mn 1 1 1
= - - k
kzzr; Fk(X) Fn(x) - Fn—l(x) an+1(X) - an(X) kzzr; f2( )

1
= @ Fog Ve s D+ o) + )
mn—1 1
— k) >
,;zﬁ( " RO P

For even mn, using Lemma 2.7, we obtain

1 1
- = - - k
; Fk()C) Fn(X) - Fn—l(x) an+1(x) - an(-x) ; f2( )
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1 1

" R Pt O R D )
mn 1
— k )
k;2f2( > Fu(x) = Fp1 (%)

On the other hand, using (2.3), we get

mn 1 1 . -
Z Fk(x) - Fn(.X) - Fn—l(x) -1 - an+1(x) - an(.X) -1 - ;ﬁ(k)

k=n

For even mn, from Lemma 2.9, we conclude ;" f3(k) > 0 and therefore

mn 1 1
2. Fo0) ~ Fu) = Faa(@) = 1

k=n

For odd mn, using Lemma 2.9, we obtain

. 1 1 1 mn—1
kZ A0 - FOFa@o1 Bt e il ; A0
1 an—l(x) + 1 mn—1
- - - k
Fi0 = Fa® =1 By Fonos) — F— 1) kZ £k

1
Fn(x) - Fn—l(-x) - 1

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Since x < 0 is an integer, let x = —y, y € Z.(. Thus, the theorem is equivalent

to
1 mn 1 1

S L .
Fio) — Far () + 1 - L F(—y) ~ Fu(oy) — Farr ()

Let us consider

1 1 1
) = S T+ 1 Fu) Fon() P+ 1 @7
and
1 1 1
L) = ) T ) Fi) Fon(o)— Fu) (2:8)
Using Lemmas 2.2 and 2.3,
) 1 1 1
O = ) TR 1 Fuly)  Fan(y) = Pl + 1
Fi(-y) -1 1

Fo(-)(Fal=y) = Fua(=) + 1) Fran(29) = Ful=)
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(1) = 1 = (Fua (=) = Foea () |
Fu(=y)(Fa(=y) = Fuci (=) + 1)(Foua(=3) = Fa(=y) + 1)

When # is even, using Lemma 2.3,

£ = ~(Frn () = Farr0)) o 09

Fu0)(Fa) + Fut ) = 1)(Frcr0) + Fa () + 1)

and when n > 1 is odd, using Lemma 2.3,

—(Fp1 () = Foei () + 2

fi(n) =
Fy0)(Fa) + Fart ) + 1)(Fraa 0) + Fo(3) = 1)

<0. (2.10)

Similarly, using (2.8), Lemmas 2.2 and 2.3, we have

(-1)"
Fos-3)(Fal=y) = Fuct(=9)(Fut (=) = Fu(=3))

AW

For any positive integer n, using Lemma 2.3,

fim) = ! > 0. 2.11)

Fu0)(Fa) + Fat ) (Faa1 ) + Fo(3)

Taking summation over k from » to mn in (2.7), we obtain

mn

1
= k
£ F(—y) g%mﬂ%m4w+1quonumw Zﬁ”

1 1
= k
Fﬂ(_y) - Fn—l(_y) + 1 mn+1( y) an(_y) +1 Zfl( )

1 % % %
e e GCREARAR L

1 mn—1

+ - ()
an+1(_y) - an(—)’) + 1) k;Zfl
1
> ,
Fu(=y) = Fpa(=y) + 1
since f'(n) + f{(n+ 1) + f{(mn) + % pova) 1 ol < 0 for m > 3, which can be easily checked by using

(2.9), (2.10) and Lemma 2.3 as similar process to Lemma 2.5. On the other hand, using (2.8), we get

mn 1 mn 1
D ree S Cormee oy oy il w =) 215()

! 1
- Fn(_y) - Fn—l(_y) - an+1(—)’) - an(—)’) - ;fZ( )
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For even mn, by virtue of (2.11) and Lemma 2.3, we get

— 1 1 1
= - - *(k
ZHH) Fu(=Y) = Fut(=Y)  Fune1 ) + Foun() ;M)

k=n

Fn(_y) - Fn—l(_y).

Using (2.11) and Lemma 2.3, it can be easily verified that
L)+ fS(n+ 1)+ f(mn) + W > ( for even mn, m > 3. Therefore, using (2.11), we obtain

T 1 1
= — — * k
Z Fk(_y) Fn(_y) - Fn—l(_y) an+1(_y) - an(_y) ;fZ( )

k=n

1
- OO (fox )+ fox (n+ 1) + f5 ()
1 mn
+an+1(—y) - an(—y)) k;gfz k) < Fo(=y) = Fo1(-y)

This finishes the proof of Theorem 1.2.

Proof of Theorem 1.5. First we consider the case when n is even. For this case, the theorem is

equivalent to

mn

1

; < Z ! <
XF,(0)F,1(X) & FX(x)  xFy(0)F,(x) = 1’

Taking summation over k from n to mn in (2.4), we obtain

mn 1 mn 1 .
; R ;(XFk(x)Fk—l(x)—l T XF (0 F(x) — 1)_;&(")

1 1 mn—1
= — + - k
=T ™ 1)~ 28 )
_ 1 Foun(X)F (%) + 1 %ﬂw
= - - 1 .
MEE (0 =1 B2 ()(xF () F (0= 1) 15
mn—1
From Lemma 2.10, it follows that Z g1(k) > 0 and therefore,
k=n
mn 1 1

>« .
k=n Fk(x) XFn(X)Fn—l(x) -1

Using (2.5) and Lemmas 2.11 and 2.12, we get

mn 1 mn 1
;Ff(x) - ;(XFk(x)Fk_l(x) ka+1(x)Fk(x) ZgZ(k)

Volume 4, Issue 6, 1569-1581.
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1 1
i XE (0 F -1 (%) B XE 1 (O F p(X) B ;gz(k)

1 1
= R 8 kDt gl + |
mn—1 1
_,;2 &0 > OFA

This completes the proof of the theorem for even n. Now, it remains to prove the case when n is odd.

In order to prove this case, it suffices to show that

1 B i 1 3 1
XF,(0)F, () + 1 & Fi(x)  xFu(0)F,(x)

Using (2.5), we obtain

; FI%(X) ) XFn(x)Fn—l(x) B XanH(x)an(X) - ;gz(k)

mn
For even mn, from Lemma 2.13, it is clear that Z g2(k) is positive and therefore,
k=n

i 1 B 1
k=n F/%(x) XFn(x)Fn—l(x).

For odd mn, using Lemmas 2.13 and 2.14, we get

1 1 1
,Z FG)  xF.0F, () [s:00 % 20+ 1)+ ot + s
mn—1
- 200 < ErE

k=n+2

On the other hand, taking summation over k from n to mn in (2.6), we obtain

mn 1 1 1
kzzr; Flz(x) B xF,(x)F,_1(x) + 1 B XF i1 () F (%) + 1 - ;g3(k)-

For even mn, we can write

mn 1 1
kz:,; FX(x)  xFy(0)F,1(x)+1 - [83(”) +g3(n+1)

Xan+1(X)an(x) + 1 Z g3 (k).

k=n+2

AIMS Mathematics Volume 4, Issue 6, 1569-1581.
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Using Lemmas 2.15 and 2.16, from the above equation, we conclude

> .
;F%jxﬂmﬂﬂmﬂ

mn—1
For odd mn, clearly Z g3(k) < 0 from Lemma 2.15. Now, we can write
k=n+2

mn 1 1
L4 F2(x)  xF,(0)F,1(x) + 1

[g3(n) + g3(n + 1) + g3(mn)

mn—1

1
X 1 () F() + 1] - 2, sib,

k=n+2

From the above equation and Lemma 2.17, it follows that

> .
; Fl%(x) XFn(x)Fn_l(x) +1

Using Lemma 2.3, it is cleared that F2(—x) = F2(x). Therefore the theorem also holds for any integer
x < 0. This ends the proof of Theorem 1.5.
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