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1. Introduction

The paper is devoted to classical solutions of the Dirichlet problem for the Darcy-Forchheimer-
Brinkman system

∇p − ∆v + λv + a|v|v + b(v · ∇)v = f, ∇ · v = 0 in Ω (1.1)

where Ω ⊂ Rm is a bounded domain.
Boundary value problems for the Darcy-Forchheimer-Brinkman system have been extensively

studied in the recent years. This system describes flows through porous media saturated with viscous
incompressible fluids, where the inertia of such fluids is not negligible. The constants λ, b > 0 are
determined by the physical properties of the porous medium. (For further details we refer the reader
to the book [1, p.17] and the references therein.)

M. Kohr et al. studied in [2] the transmission problem, where the Darcy-Forchheimer-Brinkman
system is considered in a bounded domain Ω+ ⊂ R

3 with connected Lipschitz boundary and the
Stokes system is given on its complementary domain Ω−. Solutions belong to the space
H1(Ω±) × L2(Ω±), where H1(Ω) = {u ∈ L2

loc(Ω,R
3); ∂ jui ∈ L2(Ω), (1 + |x|2)−1/2u j(x) ∈ L2(Ω)}. The

paper [3] is concerned with another transmission problem. A bounded domain Ω ⊂ Rm with
connected Lipschitz boundary splits into two Lipschitz domains Ω+ and Ω−. A solution is found
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satisfying the homogeneous Darcy-Forchheimer-Brinkman system is in Ω− and the homogeneous
Navier-Stokes system in Ω+. The transmission condition on the interface ∂Ω− ∩ ∂Ω+ is accompanied
by the Robin condition on ∂Ω. The paper [4] investigates the Robin problem for the
Darcy-Forchheimer-Brinkman system (1.1) with b = 0 in the space H s(Ω,Rm) × H s−1(Ω), where
1 < s < 3/2 and Ω ⊂ Rm is a bounded domain with connected Lipschitz boundary, m ∈ {2, 3}. The
mixed Dirichlet-Robin problem and the mixed Dirichlet-Neumann problem for the
Darcy-Forchheimer-Brinkman system (1.1) with b = 0 are studied in H3/2(Ω,R3) × H1/2(Ω) (see [4]
and [5]). Here Ω ⊂ R3 is a bounded creased domain with connected Lipschitz boundary. M. Kohr et
al. discussed in [4] the problem of Navier’s type for the Darcy-Forchheimer-Brinkman system (1.1)
with b = 0 in H1(Ω,R3) × L2(Ω), where Ω ⊂ R3 is a bounded domain with connected Lipschitz
boundary.

Now we briefly sketch results concerning the Dirichlet problem for the
Darcy-Forchheimer-Brinkman system (1.1). It is supposed that Ω ⊂ Rm is a bounded domain with
Lipschitz boundary. For f ≡ 0 and 2 ≤ m ≤ 3 solutions of the problem are looked for in
W s,2(Ω,Rm) × W s−1,2(Ω) with 1 ≤ s < 3/2 (see [6], [7] and [8]). The paper [9] is devoted to similar
problems on compact Riemannian manifolds. [10] considers bounded solutions of the problem for
b = 0 and a domain Ω with Ljapunov boundary.

This paper begins with the study of classical solutions of the Dirichlet problem for the generalized
Brinkman system

∇p − ∆v + λv = f, ∇ · v = 0 in Ω.

If Ω ⊂ Rm is a bounded open set with boundary of class Ck,α we prove the existence of a solution
(v, p) ∈ Ck,α(Ω;Rm) × Ck−1,α(Ω). Unlike the previous papers we do not suppose that ∂Ω is connected.
Using the fixed point theorems give the existence of solutions of the Dirichlet problem for the Darcy-
Forchheimer-Brinkman system (1.1) in (v, p) ∈ Ck,α(Ω;Rm) × Ck−1,α(Ω). Here λ, a, b ∈ Cmax(k−2,0),α(Ω).
If k ≤ 3 then a can be arbitrary. If k > 3 then there exists v ∈ C∞(Ω;Rm) with ∇ · v = 0 such that
|v|v < Ck−2,α(Ω;Rm). (See Remark 3.3.) So, for k > 3 we must suppose that a ≡ 0.

2. Dirichlet problem for the Brinkman system

Before we investigate the Dirichlet problem for the Brinkman system we need the following
auxiliary lemma.

Lemma 2.1. Let Ω ⊂ Rm be a bounded open set, 0 < α < 1 and λ ∈ C0,α(Ω) be non-negative. If
f ∈ C0,α(Ω,Rm) then there exists a solution (v, p) ∈ C2,α(Ω;Rm) × C1,α(Ω) of

− ∆v + λv + ∇p = f, ∇ · v = 0 in Ω. (2.1)

Proof. Choose a bounded domain ω with smooth boundary such that Ω ⊂ ω. Then we can suppose
that f ∈ C0,α(ω,Rm) and λ ∈ C0,α(ω). (See [11, Theorem 1.8.3] or [12, Chapter VI, §2].) Choose
q such that m/(1 − α) < q < ∞. According to Lemma 3.6 in the Appendix there exists a solution
(v, p) ∈ W1,q(ω,Rm) × Lq(ω) of

−∆v + λv + ∇p = f, ∇ · v = 0 in ω, v = 0 on ∂ω.
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Put F = f − λv. Since v ∈ W1,q(ω) ↪→ C0,α(ω) by [11, Theorem 5.7.8], we infer that v,F ∈ C0,α(ω) by
Lemma 3.7 in the Appendix. Then

−∆v + ∇p = F, ∇ · v = 0 in ω.

Choose bounded open sets ω1 and ω2 such that Ω ⊂ ω1 ⊂ ω1 ⊂ ω2 ⊂ ω2 ⊂ ω. Fix ϕ ∈ C∞(Rm) such
that ϕ = 1 on ω1 and ϕ = 0 on Rm \ ω2. Define F̃ = ϕF in ω and F̃ = 0 in Rm \ ω.

For x ∈ Rm \ {0} and i, j ∈ {1, 2, . . . ,m} define

Ei j(x) :=
1

2σm

{
δi j

(m − 2)|x|m−2 +
xix j

|x|m

}
, m ≥ 3

Ei j(x) :=
1

2σ2

{
δi j ln

1
|x|

+
xix j

|x|2

}
, m = 2,

Q j(x) :=
1
σm

x j

|x|m

where σm is the area of the unit sphere in Rm. Then E = {Ei j}, Q = (Q1, . . . ,Qm) form a fundamental
tensor of the Stokes system, i.e.,

−∆Ei j + λEi j + ∂iQ j = δ0δi j, i ≤ m,

∂1E1 j + · · · + ∂mEm j = 0,

where δ0 is the Dirac measure. (See for example [13].) Define ṽ := E ∗ F̃ and p̃ := Q ∗ F̃. Then

−∆ṽ + ∇ p̃ = F̃, ∇ · ṽ = 0 in Rm.

Define

h∆(x) :=
{
σ−1

2 ln |x|, m = 2,
(2 − m)−1σ−1

m |x|
2−m, m > 2

the fundamental solution for the Laplace equation. Since F j ∈ C
0,α
loc (Rm), [14, Theorem 3.14.2] gives

that h∆ ∗ F̃ j ∈ C
2,α
loc (Rm) for j = 1, . . . ,m. Since Q j = ∂ jh∆, we infer

p̃ = ∂1(h∆ ∗ F̃1) + · · · + ∂m(h∆ ∗ F̃m) ∈ C1,α
loc (Rm).

Since
−∆(v − ṽ) + ∇(p − p̃) = F − F̃ = 0, ∇ · (v − ṽ) = 0 in ω1,

we infer that

∆(p − p̃) = ∇ · ∇(p − p̃) = ∇ · ∆(v − ṽ) = ∆[∇ · (v − ṽ)] = 0 in ω1

in the sense of distributions. Thus p− p̃ ∈ C2(ω1) by [14, Theorem 2.18.2]. Since p̃ ∈ C1,α(ω) we infer
that p ∈ C1,α

loc (ω1). Thus ∆v = ∇p − F ∈ C0,α
loc (ω1;Rm). According to [14, Proposition 3.18.1] we obtain

that v ∈ C2,α
loc (ω1;Rm). (We can prove that v ∈ C2,α

loc (ω1;Rm) also using results in [15].) �
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Theorem 2.2. Let 0 < β < α < 1. Suppose that Ω ⊂ Rm is a bounded domain with boundary of
class C1,α and λ ∈ C0,β(Ω) is non-negative. Let f ∈ C0,β(Ω,Rm), g ∈ C1,β(∂Ω,Rm). Then there exist
v ∈ C1,β(Ω;Rm) ∩ C2(Ω;Rm) and p ∈ C0,β(Ω) ∩ C1(Ω) solving

− ∆v + λv + ∇p = f, ∇ · v = 0 in Ω, v = g on ∂Ω (2.2)

if and only if ∫
∂Ω

n · g dσ = 0. (2.3)

A velocity v is unique and a pressure p is unique up to an additive constant. Moreover,

‖v‖
C1,β(Ω) + ‖p‖

C0,β(Ω) ≤ C
(
‖f‖C0,β(Ω) + ‖g‖C1,β(∂Ω) +

∣∣∣∣∣∫
Ω

p dx
∣∣∣∣∣) .

Proof. If v ∈ C1,β(Ω;Rm) ∩ C2(Ω;Rm), p ∈ C0,β(Ω) ∩ C1(Ω) solve (2.2) then (2.3) holds by the Green
formula.

Suppose now that (2.3) holds. According to Lemma 2.1 there exists (ṽ, p̃) ∈ C2,β(Ω;Rm) × C1,β(Ω)
such that

−∆ṽ + λṽ + ∇ p̃ = f, ∇ · ṽ = 0 in Ω.

Put ĝ := g − ṽ. Then ĝ ∈ C1,β(∂Ω,Rm). Choose q such that m/(1 − β) < q < ∞. According to Lemma
3.6 there exists a solution (v̂, p̂) ∈ W1,q(Ω,Rm) × Lq(Ω) of

−∆v̂ + λv̂ + ∇ p̂ = 0, ∇ · v̂ = 0 in Ω, v̂ = ĝ on ∂Ω.

A velocity v̂ is unique and a pressure p̂ is unique up to an additive constant. Define v := ṽ + v̂,
p := p̃ + p̂. Then (v, p) is a solution of (2.2).

If λ ≡ 0 then v̂ ∈ C1,β(Ω;Rm), p̂ ∈ C0,β(Ω) by [16, Theorem 5.2]. Moreover, v̂ ∈ C∞(Ω;Rm),
p̂ ∈ C∞(Ω). (See for example [17, §1.2].) Thus v ∈ C1,β(Ω;Rm) ∩ C2(Ω;Rm), p ∈ C0,β(Ω) ∩ C1(Ω).

Let now λ be general. Since v ∈ W1,q(Ω) ↪→ C0,β(Ω) by [11, Theorem 5.7.8], Lemma 3.7 in the
Appendix gives that λv ∈ C0,β(Ω). Therefore

−∆v + ∇p = (f − λv) ∈ C0,β(Ω;Rm).

We have proved that v ∈ C1,β(Ω;Rm) ∩ C2(Ω;Rm), p ∈ C0,β(Ω) ∩ C1(Ω).
Denote by Y the set of all g ∈ W1−1/q,q(∂Ω;Rm) satisfying (2.3). Define X := {v ∈ W1,q(Ω;Rm);∇ ·

v = 0 in Ω, v|∂Ω ∈ Y},

Uλ(v, p) :=
[
−∆v + λv + ∇p, v,

∫
Ω

p dx
]
.

Then Uλ : X × Lq(Ω) → W−1,q(Ω;Rm) × Y × R1 is an isomorphism by Lemma 3.6. Denote Z =

[X∩C1,β(Ω;Rm)]×C0,β(Ω), W = C0,β(Ω,Rm)×[Y∩C1,β(∂Ω,Rm)]×R1. We have proved that U−1
λ (W) ⊂ Z.

Since U−1
λ : W → Z is closed, it is continuous by the Closed graph theorem. �

Theorem 2.3. Let 0 < α < 1 and k ∈ N0. Suppose that Ω ⊂ Rm is a bounded domain with boundary of
class Ck+2,α and λ ∈ Ck,α(Ω) is non-negative. Let f ∈ Ck,α(Ω,Rm), g ∈ Ck+2,α(∂Ω,Rm). Then there exists
a solution (v, p) ∈ Ck+2,α(Ω;Rm) × Ck+1,α(Ω) of (2.2) if and only if (2.3) holds. A velocity v is unique
and a pressure p is unique up to an additive constant. Moreover,

‖v‖
Ck+2,α(Ω) + ‖p‖

Ck+1,α(Ω) ≤ C
(
‖f‖
Ck,α(Ω) + ‖g‖Ck+2,α(∂Ω) +

∣∣∣∣∣∫
Ω

p dx
∣∣∣∣∣) .
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Proof. (2.3) is a necessary condition for the solvability of the problem (2.2) by Theorem 2.2.
Denote by Y the set of all g ∈ Ck+2,α(∂Ω;Rm) satisfying (2.3). Define X := {v ∈ Ck+2,α(Ω;Rm);∇·v =

0 in Ω, v|∂Ω ∈ Y},

Uλ(v, p) := [−∆v + λv + ∇p, v,
∫

Ω

p dσ].

Then U0 : X ×Ck+1,α(Ω)→ Ck,α(Ω;Rm)×Y ×R1 is an isomorphism by Theorem 2.2 and [18, Theorem
IV.7.1]. Since u 7→ λu is a bounded operator on Ck,α(Ω,Rm) by Lemma 3.7 and Ck+2,α(Ω,Rm) ↪→
Ck,α(Ω,Rm) is compact by [19, Lemma 6.36], the operator Uλ−U0 : X×Ck+1,α(Ω)→ Ck,α(Ω;Rm)×Y×R1

is compact. Hence the operator Uλ : X × Ck+1,α(Ω)→ Ck,α(Ω;Rm) × Y × R1 is Fredholm with index 0.
The kernel of Uλ is trivial by Theorem 2.2. Therefore, Uλ : X × Ck+1,α(Ω) → Ck,α(Ω;Rm) × Y × R1 is
an isomorphism. �

3. Darcy-Forchheimer-Brinkman system

We prove the existence of a classical solution of the Dirichlet problem for the Darcy-Forchheimer-
Brinkman system using fixed point theorems. The following two lemmas are crucial for it.

Lemma 3.1. Let Ω ⊂ Rm be open, 0 < α ≤ 1 and k ∈ N. Put l = max(k − 2, 0). Let b ∈ Cl,α(Ω;R
m

).
Define

Lb(u, v) := b(u · ∇)v. (3.1)

Then there exists C1 ∈ (0,∞) such that if u, v ∈ Ck,α(Ω;Rm), then Lb(u, v) ∈ Cl,α(Ω;Rm) and

‖Lb(u, v)‖
Cl,α(Ω) ≤ C1‖u‖Ck,α(Ω)‖v‖Ck,α(Ω), (3.2)

‖Lb(u,u) − Lb(v, v)‖
Cl,α(Ω) ≤ C1‖u − v‖

Ck,α(Ω)

(
‖v‖

Ck,α(Ω) + ‖u‖
Ck,α(Ω)

)
. (3.3)

Proof. Lemma 3.7 in the Appendix forces that Lb(u, v) ∈ Cl,α(Ω;Rm) and the estimate (3.2) holds true.
Since

Lb(u,u) − Lb(v, v) = Lb(u − v,u) + Lb(v,u − v),

the estimate (3.3) is a consequence of the estimate (3.2). �

Lemma 3.2. Let Ω ⊂ Rm be a bounded domain with boundary of class C1,α and 0 < β ≤ α < 1.
Suppose that a ∈ C0,β(Ω). For v ∈ C(Ω;Rm) define

Aav := a|v|v. (3.4)

1. Then there exists a constant C1 such that for u, v ∈ C1,0(Ω;Rm) it holds

‖Aav‖
C0,β(Ω) ≤ C1‖v‖2

C1,0(Ω)
, (3.5)

‖Aav − Aau‖
C0,β(Ω) ≤ C1‖v − u‖

C1,0(Ω)

[
‖v‖

C1,0(Ω) + ‖u‖
C1,0(Ω)

]
. (3.6)

2. If a ∈ C1,β(Ω), then there exists a positive constant C2 such that Aa : C2,0(Ω;Rm) → C1,β(Ω;Rm)
is a compact continuous mapping and

‖Aav‖
C1,β(Ω;Rm) ≤ C2‖v‖2

C2,0(Ω;Rm)
. (3.7)
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Proof. Easy calculation yields that

‖ |v| ‖
C0,β(Ω) ≤ ‖v‖C0,β(Ω;Rm).

So, according to Lemma 3.7 in the Appendix

‖Aav‖
C0,β(Ω;Rm) ≤ 4‖a‖

C0,β(Ω)‖v‖
2
C0,β(Ω;Rm)

.

Since C1,0(Ω;Rm) ↪→ C0,β(Ω;Rm) by [19, Lemma 6.36], we obtain the estimate (3.5).
Clearly

|Aav(x) − Aav(x)| ≤ |a(x)| ||v(x)| − |u(x)|| |v(x)| + |a(x)||u(x)||v(x) − u(x)|.

Hence there exists a constant c1 such that

‖Aav − Aau‖
C0(Ω) ≤ c1‖v − u‖

C0(Ω)

(
‖v‖

C0(Ω) + ‖u‖
C0(Ω)

)
. (3.8)

We now calculate derivatives of A1v. If x ∈ Ω and v(x) , 0 then

∂ j[|v(x)|vk(x)] = |v(x)|∂ jvk(x) +
vk(x)[v(x) · ∂ jv(x)]

|v(x)|
. (3.9)

Hence
|∇A1v(x)| ≤ (m + 1)2|v(x)| ‖v‖

C1,0(Ω). (3.10)

Let now x ∈ Ω and v(x) = 0. Denote e j = (δ1 j, . . . , δm j). Then

∂ j[|v(x)|vk(x)] = lim
t→0

|v(x + te j)|[vk(x + te j) − vk(x)]
t

= |v(x)|∂ jvk(x) = 0

and (3.10) holds too. Suppose now that x ∈ ∂Ω. If v(x) , 0 then ∂ j[|v(x)|vk(x)] can be continuously
extended to x by (3.9). If v(x) = 0 then (3.10) gives that ∇A1v can be continuously extended to x by
∇A1v(x) = 0. The estimates (3.5) and (3.10) give that there exists a constant c2 such that

‖A1v‖
C1,0(Ω) ≤ c2‖v‖2

C1,0(Ω)
. (3.11)

Suppose that u, v ∈ C1,0(Ω;Rm). Let x ∈ Ω. Suppose first that u(x) = 0. Since ∇A1u(x) = 0, (3.10)
gives

|∇A1v(x) − ∇A1u(x)| = |∇A1v(x)| ≤ (m + 1)2|v(x) − u(x)| ‖v‖
C1,0(Ω). (3.12)

Let now |v(x)| ≥ |u(x)| > 0. According to (3.9)

|∂ j[|v(x)|vk(x)] − ∂ j[|u(x)|uk(x)]| ≤ |v(x) − u(x)||∂ jvk(x)| + |u(x)||∂ jvk(x) − ∂ juk(x)|

+
|u(x)||vk(x) − uk(x)||v(x) · ∂ jv(x)| + |u(x)||uk(x)||v(x) − u(x)||∂ jv(x)|

|v(x)| |u(x)|

+
|uk(x)||u(x)|2|∂ jv(x) − ∂ ju(x)| + |u(x) − v(x)||uk(x)||u(x) · ∂ ju(x)|

|v(x)| |u(x)|
.

AIMS Mathematics Volume 4, Issue 6, 1540–1553.



1546

≤ 6‖u − v‖
C1,0(Ω)

(
‖v‖

C1,0(Ω) + ‖u‖
C1,0(Ω)

)
.

This inequality, (3.12) and (3.8) give that there exists a constant c3 such that

‖A1u − A1v‖
C1,0(Ω) ≤ c3‖u − v‖

C1,0(Ω)

(
‖v‖

C1,0(Ω) + ‖u‖
C1,0(Ω)

)
.

Since C1,0(Ω;Rm) ↪→ C0,β(Ω;Rm) by [19, Lemma 6.36], there exists a constant c4 such that

‖A1u − A1v‖
C0,β(Ω) ≤ c4‖u − v‖

C1,0(Ω)

(
‖v‖

C1,0(Ω) + ‖u‖
C1,0(Ω)

)
.

Since Aav = aA1v, Lemma 3.7 gives that there exists a constant C1 such that (3.6) holds.
Let now v ∈ C2,0(Ω;Rm). We are going to calculate ∇2A1v. If x ∈ Ω and v(x) , 0, then we obtain

from (3.9)

∂l∂ j[|v(x)|vk(x)] = |v(x)|∂l∂ jvk(x) +
∂ jvk(x)[v(x) · ∂lv(x)]

|v(x)|
(3.13)

+
∂lvk(x)[v(x) · ∂ jv(x)] + vk(x)[∂lv(x) · ∂ jv(x)] + vk(x)[v(x) · ∂l∂ jv(x)]

|v(x)|

−
vk(x)[v(x) · ∂ jv(x)][v(x) · ∂lv(x)]

|v(x)|3
.

So,
|∂l∂ j[|v(x)|vk(x)]| ≤ 6‖v‖2

C2,0(Ω)
. (3.14)

Now we calculate ∂l∂ j[|v(x)|vk(x)] in the sense of distributions. For ε ≥ 0 denote Ω(ε) := {x ∈
Ω; |v(x)| > ε}, V(ε) := Ω \ Ω(ε). Suppose that ϕ ∈ C∞(Rm) has compact support in Ω. We have proved
that if v(x) = 0, then ∂ j[|v(x)|vk(x)] = 0. Thus

〈∂l∂ j[|v|vk], ϕ〉 = −

∫
Ω

[∂lϕ(x)]∂ j[|v(x)|vk(x)] dx

= − lim
ε↓0

∫
Ω(ε)

[∂lϕ(x)]∂ j[|v(x)|vk(x)] dx.

According to the Green formula

〈∂l∂ j[|v|vk], ϕ〉 = lim
ε↓0

[∫
Ω(ε)

ϕ∂l∂ j[|v|vk] dx −
∫
∂Ω(ε)

ϕnl∂ j[|v|vk] dσ
]
.

If x ∈ ∂Ω(ε) ∩Ω then |v(x)| = ε. If x ∈ ∂Ω(ε) \Ω then ϕ(x) = 0. Thus we obtain by (3.14) and (3.9)

〈∂l∂ j[|v|vk], ϕ〉 =

∫
Ω(0)

ϕ∂l∂ j[|v|vk] − lim
ε↓0

∫
∂Ω(ε)

ϕnl

[
ε∂ jvk +

vkv · ∂ jv
ε

]
. (3.15)

According to the Green formula∣∣∣∣∣ limε↓0
∫
∂Ω(ε)

ϕnl

[
ε∂ jvk +

vkv · ∂ jv
ε

]∣∣∣∣∣ ≤ lim
ε↓0

∣∣∣∣∣ε ∫
∂Ω(ε)

ϕnl∂ jvk dσ
∣∣∣∣∣
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+ lim
ε↓0

∣∣∣∣∣ ∫
∂V(ε)

ϕnl
vkv · ∂ jv

ε
dσ

∣∣∣∣∣ = lim
ε↓0

ε

∣∣∣∣∣ ∫
Ω(ε)

∂l[ϕ∂ jvk] dx
∣∣∣∣∣

+ lim
ε↓0

∣∣∣∣∣ ∫
V(ε)

1
ε

[∂lϕvkv · ∂ jv + ϕ∂lvkv · ∂ jv + ϕvk∂lv · ∂ jv + ϕvkv · ∂l∂ jv] dx
∣∣∣∣∣

≤ 0 + lim
ε↓0

∫
V(ε)\V(0)

‖ϕ‖
C1(Ω)‖v‖

2
C2(Ω)

dx = 0.

This and (3.15) give

〈∂l∂ j[|v|vk], ϕ〉 =

∫
Ω(0)

ϕ∂l∂ j[|v|vk].

So, if we define ∂l∂ j[|v|vk](x) by (3.13) for v(x) , 0, and ∂l∂ j[|v|vk](x) = 0 for v(x) = 0, then this
function is ∂l∂ j[|v|vk] in sense of distributions. (3.14) forces A1v ∈ W2,∞(Ω;Rm) and

‖A1v‖W2,∞(Ω) ≤ c5‖v‖2
C2,0(Ω)

.

W2,∞(Ω) ↪→ C1,β(Ω) compactly by [20, Theorem 6.3]. So,

‖A1v‖
C1,β(Ω) ≤ c6‖v‖2

C2,0(Ω)
. (3.16)

Since A1 maps bounded subsets of C2,0(Ω;Rm) to bounded subsets of W2,∞(Ω;Rm) and W2,∞(Ω) ↪→
C1,β(Ω) compactly, the mapping A1 : C2,0(Ω;Rm) → C1,β(Ω;Rm) is compact. We now show that the
mapping A1 : C2,0(Ω;Rm) → C1,β(Ω;Rm) is continuous. Suppose the opposite. Then there exist
{vk} ⊂ C

2,0(Ω;Rm) and ε > 0 such that vk → v in C2,0(Ω;Rm) and ‖A1vk − A1v‖
C1,β(Ω) > ε. Since

A1 : C2,0(Ω;Rm) → C1,β(Ω;Rm) is compact, there exists a sub-sequence {vk(n)} of {vk} and w ∈ C1,β(Ω)
such that A1vk(n) → w in C1,β(Ω). Since A1 : C2,0(Ω;Rm) → C0,β(Ω;Rm) is continuous, it must be
w = A1v. That is a contradiction.

Since Aav = aA1v, Lemma 3.7 and (3.16) give that Aa : C2,0(Ω;Rm) → C1,β(Ω;Rm) is a compact
continuous mapping and (3.7) holds. �

Remark 3.3. Let Aa be from Lemma 3.2 with a ∈ C∞(Ω). We cannot show that Aa : Ck,β(Ω;Rm) →
Ck−2,β(Ω;Rm) for k ≥ 4 as shows the following example. Fix z ∈ Ω and define v(x) := (x2−z2, 0, . . . , 0).
Then v ∈ C∞(Rm; Rm) but |v|v < C2(Ω; Rm).

Theorem 3.4. Let 0 < β ≤ α < 1 and k ∈ N. If k = 1 suppose that β < α. Put l = max(k − 2, 0). Let
Ω ⊂ Rm be a bounded domain with boundary of class Ck,α. Let a, b, λ ∈ Cl,β(Ω) and λ ≥ 0. If k ≥ 3
suppose that a ≡ 0. Then there exist δ, ε,C ∈ (0,∞) such that the following holds: If g ∈ Ck,β(∂Ω;Rm)
satisfying (2.3), F ∈ Cl,β(Ω;Rm) and

‖g‖Ck,β(∂Ω) + ‖F‖
Cl,β(Ω) < δ, (3.17)

then there exists a unique solution (u, p) ∈ [Ck,β(Ω;Rm) ∩ C2(Ω;Rm)] × [Ck−1,β(Ω) ∩ C1(Ω)] of the
Dirichlet problem for the Darcy-Forchheimer-Brinkman system

∇p − ∆u + λu + a|u|u + b(u · ∇)u = F, ∇ · u = 0 in Ω, (3.18a)

u = g on ∂Ω (3.18b)
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such that ∫
Ω

p dx = 0 (3.19)

and
‖u‖

Ck,β(Ω) < ε. (3.20)

Moreover,
‖u‖

Ck,β(Ω) + ‖p‖
Ck−1,β(Ω) ≤ C

(
‖g‖Ck,β(∂Ω) + ‖F‖

Cl,β(Ω)

)
. (3.21)

If g̃ ∈ Ck,β(∂Ω;Rm), F̃ ∈ Cl,β(Ω;Rm), ũ ∈ Ck,β(Ω;Rm) ∩ C2(Ω;Rm) and p̃ ∈ Ck−1,β(Ω) ∩ C1(Ω),

∇ p̃ − ∆ũ + a|ũ|ũ + λũ + b(ũ · ∇)ũ = F̃, ∇ · ũ = 0 in Ω, (3.22a)

ũ = g̃ on ∂Ω,

∫
Ω

p̃ dx = 0 (3.22b)

and ‖ũ‖
Ck,β(Ω) < ε, then

‖u − ũ‖
Ck,β(Ω) + ‖p − p̃‖

Ck−1,β(Ω) ≤ C
(
‖g − g̃‖Ck,β(∂Ω) + ‖F − F̃‖

Cl,β(Ω)

)
. (3.23)

Proof. Let Lb be defined by (3.1), Aa be given by (3.4). Put Dabu := Lb(u,u) + Aau. According to
Lemma 3.1 and Lemma 3.2 there exists a constant C1 such that

‖Dabv‖
Cl,β(Ω) ≤ C1‖v‖2

Ck,β(Ω)
, (3.24)

‖Dabv − Dabu‖
Cl,β(Ω) ≤ C1‖v − u‖

Ck,β(Ω)

[
‖v‖

Ck,β(Ω) + ‖u‖
Ck,β(Ω)

]
. (3.25)

By Theorem 2.2 and Theorem 2.3 there exists a constant C2 such that for each g ∈ Ck,β(∂Ω;Rm)
satisfying (2.3) and f ∈ Cl,β(Ω;Rm) there exists a unique solution (u, p) ∈ [Ck,β(Ω;Rm) ∩ C2(Ω;Rm)] ×
[Ck−1,β(Ω) ∩ C1(Ω)] of the Dirichlet problem (2.2), (3.19). Moreover,

‖u‖
Ck,β(Ω) + ‖p‖

Ck−1,β(Ω) ≤ C2

(
‖g‖Ck,β(∂Ω) + ‖f‖

Cl,β(Ω)

)
. (3.26)

Remark that (u, p) is a solution of (3.18) if (u, p) is a solution of (2.2) with f = F − Dabu. Put

ε :=
1

4(C1 + 1)(C2 + 1)
, δ :=

ε

2(C2 + 1)
.

If (u, p), (ũ, p̃) ∈ [Ck,β(Ω;Rm) ∩ C2(Ω;Rm)] × [Ck−1,β(Ω) ∩ C1(Ω)] are solutions of (3.18), (3.19) and
(3.22) with (3.20) and ‖ũ‖

Ck,β(Ω) < ε, then

‖u − ũ‖
Ck,β(Ω) + ‖p − p̃‖

Ck−1,β(Ω) ≤ C2
[
‖g − g̃‖Ck,β(∂Ω) + ‖F − F̃‖

Cl,β(Ω)

+‖Dab(u,u) − Dab(ũ, ũ)‖
Cl,β(Ω)

]
≤ C2

[
‖g − g̃‖Ck,β(∂Ω)

+‖F − F̃‖
Cl,β(Ω) + 2εC1‖u − ũ‖

Ck,β(Ω)
]
.

Since 2C1C2ε < 1/2 we get subtracting 2εC1C2‖u − ũ‖
Ck,β(Ω) from the both sides

‖u − ũ‖
Ck,β(Ω) + ‖p − p̃‖

Ck−1,β(Ω) ≤ 2C2
[
‖g − g̃‖Ck,β(∂Ω) + ‖F − F̃‖

Cl,β(Ω)
]
.
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Therefore a solution of (3.18) satisfying (3.19) and (3.20) is unique. Putting p̃ ≡ 0, ũ ≡ 0, F̃ ≡ 0 and
g̃ ≡ 0, we obtain (3.21) with C = 2C2.

Denote X := {v ∈ Ck,β(Ω,Rm); ‖v‖
Ck,β(Ω) ≤ ε}. Fix g ∈ Ck,β(∂Ω;Rm) and F ∈ Cl,β(Ω;Rm) satisfying

(2.3) and (3.17). For v ∈ X there exists a unique solution (uv, pv) ∈ [Ck,β(Ω;Rm) ∩ C2(Ω;Rm)] ×
[Ck−1,β(Ω) ∩ C1(Ω)] of the Dirichlet problem (2.2), (3.19) with f = F − Dabv. Remember that (uv, pv)
is a solution of (3.18) if and only if uv = v. According to (3.26), (3.17) and (3.24)

‖uv‖
Ck,β(Ω) ≤ C2

[
‖g‖Ck,β(∂Ω) + ‖F‖

Cl,β(Ω) + ‖Dabv‖
Cl,β(Ω)

]
≤ C2δ + C2C1ε

2.

As C2δ + C2C1ε
2 < ε, we infer uv ∈ X. If w ∈ X then

‖uv − uw‖
Ck,β(Ω) ≤ C2‖Dabv − Dabw‖

Cl,β(Ω) ≤ C2C12ε‖w − v‖
Ck,β(Ω)

by (3.26) and (3.25). Since C2C12ε < 1, the Fixed point theorem ( [21, Satz 1.24]) gives that there
exists v ∈ X such that uv = v. So, (uv, pv) is a solution of (3.18), (3.19) in [Ck,β(Ω;Rm) ∩ C2(Ω;Rm)] ×
[Ck−1,β(Ω) ∩ C1(Ω)] satisfying (3.20). �

In Theorem 3.4 we suppose that a ≡ 0 for k ≥ 3. This assumption cannot be removed for k > 3 as
Remark 3.3 shows. The following theorem is devoted to the case k = 3.

Theorem 3.5. Let 0 < β ≤ α < 1 and Ω ⊂ Rm be a bounded domain with boundary of class C3,α.
Let a, b, λ ∈ C1,β(Ω) and λ ≥ 0. Then there exist δ, ε ∈ (0,∞) such that the following holds: If
g ∈ C3,β(∂Ω;Rm) satisfies (2.3), F ∈ C1,β(Ω;Rm) and

‖g‖C3,β(∂Ω) + ‖F‖
C1,β(Ω) < δ, (3.27)

then there exists a unique solution (u, p) ∈ C3,β(Ω;Rm) × C2,β(Ω) of the Dirichlet problem for the
Darcy-Forchheimer-Brinkman system (3.18), (3.19) such that

‖u‖
C3,β(Ω) < ε. (3.28)

Proof. Let Lb be defined by (3.1), Aa be given by (3.4). We conclude from Lemma 3.1 and Lemma 3.2
that there exists a constant C1 such that

‖Lb(v, v)‖
C1,β(Ω) + ‖Aav‖

C1,β(Ω) ≤ C1‖v‖2
C3,β(Ω)

, (3.29)

‖Lb(v, v) − Lb(u,u)‖
C1,β(Ω) ≤ C1‖v − u‖

C3,β(Ω)

[
‖v‖

C3,β(Ω) + ‖u‖
C3,β(Ω)

]
. (3.30)

According to Theorem 2.3 there exists a constant C2 such that for each g ∈ C3,β(∂Ω;Rm) satisfying
(2.3) and f ∈ C1,β(Ω;Rm) there exists a unique solution (u, p) ∈ C3,β(Ω;Rm) × C2,β(Ω) of the Dirichlet
problem (2.2), (3.19). Moreover,

‖u‖
C3,β(Ω) + ‖p‖

C2,β(Ω) ≤ C2

(
‖g‖C3,β(∂Ω) + ‖f‖

C1,β(Ω)

)
. (3.31)

Suppose now that

0 < ε <
1

4(C1 + 1)(C2 + 1)
, 0 < δ <

ε

2(C2 + 1)
. (3.32)
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Put Xε := {v ∈ C3,β(Ω,Rm); ‖v‖
C3,β(Ω) ≤ ε}. Fix g ∈ C3,β(∂Ω;Rm) and F ∈ C1,β(Ω;Rm) satisfying

(2.3) and (3.27). For v ∈ Xε there exists a unique solution (uv, pv) ∈ C3,β(Ω;Rm) × C2,β(Ω) of the
Dirichlet problem (2.2), (3.19) with f = F − Lb(v, v). Moreover, there is a unique solution (ũv, p̃v) ∈
C3,β(Ω;Rm) × C2,β(Ω) of

∇ p̃v − ∆ũv + λũv = −a|v|v, ∇ · ũv = 0 in Ω,

ũv = 0 on ∂Ω,

∫
Ω

p̃v dx = 0.

If uv + ũv = v then (v, pv + p̃v) is a solution of the problem (3.18), (3.19). If w ∈ Xε then

‖uv‖
C3,β(Ω) + ‖ũw‖

C3,β(Ω) ≤ C2
(
‖g‖C3,β(∂Ω) + ‖F‖

C1,β(Ω) + ‖Lb(v, v)‖
C1,β(Ω)

+‖Aaw‖
C1,β(Ω)

)
≤ C2

(
δ + C1‖v‖2

C3,β(Ω)
+ C1‖w‖2

C3,β(Ω)

)
< ε

by (3.31), (3.27), (3.29) and (3.32). So, uv + ũw ∈ Xε . According to (3.31), (3.30) and (3.32)

‖uv − uw‖
C3,β(Ω) ≤ C2‖Lb(v, v) − Lb(w,w)‖

C1,β(Ω)

≤ C1C2‖v − w‖
C3,β(Ω)

[
‖v‖

C3,β(Ω) + ‖w‖
C3,β(Ω)

]
<

1
2
‖v − w‖

C3,β(Ω).

So v 7→ uv is a contractive mapping on Xε . Since Aa : C3,β(Ω;Rm) → C1,β(Ω;Rm) is a compact
continuous mapping by Lemma 3.2, the mapping v 7→ ũv is a compact continuous mapping on Xε .
Lemma 3.8 forces that there exists v ∈ Xε such that uv + ũv = v. Hence (v, pv + p̃v) is a solution of the
problem (3.18), (3.19), (3.28) in C3,β(Ω;Rm) × C1,β(Ω). By Theorem 3.4, for sufficiently small ε and δ
there exists at most one solution of the problem (3.18), (3.19), (3.28) in C3,β(Ω;Rm) × C1,β(Ω) . �
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Appendix

Lemma 3.6. Let Ω ⊂ Rm be a bounded domain with boundary of class C1. Let λ ∈ L∞(Ω) be non-
negative and 1 < q < ∞. If f ∈ W−1,q(Ω,Rm) and g ∈ W1−1/q,q(∂Ω,Rm), then there exists a solution
(v, p) ∈ W1,q(Ω,Rm)× Lq(Ω) of (2.2) if and only if (2.3) holds. A velocity v is unique and a pressure p
is unique up to an additive constant. Moreover,

‖v‖W1,q(Ω) + ‖p‖Lq(Ω) ≤ C
(
‖f‖W−1,q(Ω) + ‖g‖W1−1/q,q(∂Ω) +

∣∣∣∣∣∫
Ω

p dx
∣∣∣∣∣) .

Proof. If (v, p) ∈ W1,q(Ω,Rm) × Lq(Ω) is a solution of (2.2), then (2.3) holds by Green’s formula.
Denote by Yq the set of all g ∈ W1−1/q,q(∂Ω;Rm) satisfying (2.3). Define Xq := {v ∈ W1,q(Ω;Rm);∇ ·

v = 0 in Ω, v|∂Ω ∈ Yq},

Uλ(v, p) :=
[
−∆v + λv + ∇p, v,

∫
Ω

p dx
]
.

Then U0 : Xq × Lq(Ω) → W−1,q(Ω;Rm) × Yq × R
1 is an isomorphism by [22, Theorem 2.1]. Since

Uλ−U0 : Xq×Lq(Ω)→ W−1,q(Ω;Rm)×Yq×R
1 is compact, Uλ : Xq×Lq(Ω)→ W−1,q(Ω;Rm)×Yq×R

1 is a
Fredholm operator with index 0. Let now Uλ(v, p) = 0. Since Uλ : X2×L2(Ω)→ W−1,2(Ω;Rm)×Y2×R

1

is a Fredholm operator with index 0, [23, Lemma 11.9.21] gives (v, p) ∈ X2×L2(Ω). Since −∆v+∇p =

−λv, Green’s formula forces ∫
Ω

∇v · ∇Φ dx = −

∫
Ω

λv ·Φ dx

for all Φ ∈ C∞c (Ω;Rm) with ∇ ·Φ = 0. As v is in the closure of the space of such Φ by [24, Theorem
2.9], we infer ∫

Ω

[∇v · ∇v + λv · v] dx = 0.

∇v ≡ 0 and therefore the velocity v is constant. We have v ≡ 0, because v = 0 on ∂Ω. Moreover,
∇p = ∆v − λv ≡ 0 forces that p is constant. The equality

∫
Ω

p dx = 0 gives that p ≡ 0. Therefore
Uλ : Xq × Lq(Ω)→ W−1,q(Ω;Rm) × Yq × R

1 is an isomorphism. �

Lemma 3.7. Let Ω ⊂ Rm be open and 0 < α ≤ 1. If f , g ∈ C0,α(Ω) then f g ∈ C0,α(Ω) and

‖ f g‖
C0,α(Ω) ≤ 2‖ f ‖

C0,α(Ω)‖g‖C0,α(Ω).

(See [14, Lemma 1.16.8].)

Lemma 3.8. Let Z be a closed convex non-empty subset of a Banach space X. Suppose that A and B
map Z into X and that
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• Ax + By ∈ Z for all x, y ∈ Z,

• A is a contraction mapping,

• B is compact and continuous.

Then there exists z ∈ Z such that Az + Bz = z.

(See [25, Theorem 4.4.1].)
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