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1. Introduction

The paper is devoted to classical solutions of the Dirichlet problem for the Darcy-Forchheimer-
Brinkman system
Vp—Av+Av+alvv+b(v-V)v=£f, V.v=0 inQ (1.1)

where Q C R is a bounded domain.

Boundary value problems for the Darcy-Forchheimer-Brinkman system have been extensively
studied in the recent years. This system describes flows through porous media saturated with viscous
incompressible fluids, where the inertia of such fluids is not negligible. The constants 4,5 > 0 are
determined by the physical properties of the porous medium. (For further details we refer the reader
to the book [1, p.17] and the references therein.)

M. Kohr et al. studied in [2] the transmission problem, where the Darcy-Forchheimer-Brinkman
system is considered in a bounded domain ©, C R? with connected Lipschitz boundary and the
Stokes system is given on its complementary domain €_.  Solutions belong to the space
H'(Q.) x L*(Q.), where H'(Q) = {u € L (QR);0;u; € L*(Q), (1 + x*)"?u;(x) € LX(Q)}. The
paper [3] is concerned with another transmission problem. A bounded domain Q c R™ with
connected Lipschitz boundary splits into two Lipschitz domains Q, and Q_. A solution is found
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satisfying the homogeneous Darcy-Forchheimer-Brinkman system is in _ and the homogeneous
Navier-Stokes system in Q,. The transmission condition on the interface dQ_ N 0€), is accompanied
by the Robin condition on 0€Q. The paper [4] investigates the Robin problem for the
Darcy-Forchheimer-Brinkman system (1.1) with » = 0 in the space H*(Q,R™) x H*"'(Q), where
1 <5 <3/2and Q C R™ is a bounded domain with connected Lipschitz boundary, m € {2,3}. The
mixed Dirichlet-Robin problem and the mixed Dirichlet-Neumann problem for the
Darcy-Forchheimer-Brinkman system (1.1) with b = 0 are studied in H*?(Q,R?) x H'/?(Q) (see [4]
and [5]). Here Q c R? is a bounded creased domain with connected Lipschitz boundary. M. Kohr et
al. discussed in [4] the problem of Navier’s type for the Darcy-Forchheimer-Brinkman system (1.1)
with b = 0 in H'(Q,R%) x L*(Q), where Q C R® is a bounded domain with connected Lipschitz
boundary.

Now we briefly sketch results concerning the Dirichlet problem for the
Darcy-Forchheimer-Brinkman system (1.1). It is supposed that  c R™ is a bounded domain with
Lipschitz boundary. For f = 0 and 2 < m < 3 solutions of the problem are looked for in
W2(Q,R™) x W 12(Q) with 1 < s < 3/2 (see [6], [7] and [8]). The paper [9] is devoted to similar
problems on compact Riemannian manifolds. [10] considers bounded solutions of the problem for
b = 0 and a domain € with Ljapunov boundary.

This paper begins with the study of classical solutions of the Dirichlet problem for the generalized
Brinkman system

Vp-Av+Av=f, V.v=0 inQ.

If Q ¢ R™ is a bounded open set with boundary of class C*% we prove the existence of a solution
(v,p) € Cke(Q; R™) x C1(Q). Unlike the previous papers we do not suppose that Q2 is connected.
Using the fixed point theorems give the existence of solutions of the Dirichlet problem for the Darcy-
Forchheimer-Brinkman system (1.1) in (v, p) € C**(Q; R™) x C*"1*(Q). Here A, a, b € C"*-202(Q).
If k£ < 3 then a can be arbitrary. If k£ > 3 then there exists v € Cw(ﬁ; R™) with V - v = 0 such that
|vlv ¢ Ck‘z"’(ﬁ; R™). (See Remark 3.3.) So, for kK > 3 we must suppose that a = 0.

2. Dirichlet problem for the Brinkman system

Before we investigate the Dirichlet problem for the Brinkman system we need the following
auxiliary lemma.

Lemma 2.1. Let Q c R™ be a bounded open set, 0 < a < 1 and A € C*(Q) be non-negative. If
f € C*(Q,R™) then there exists a solution (v, p) € C**(Q;R™) x C*(Q) of

—Av+Av+Vp=f, V.v=0 inQ. 2.1
Proof. Choose a bounded domain w with smooth boundary such that Q C w. Then we can suppose
that f € C*(w,R™) and 1 € C*¥(w). (See [11, Theorem 1.8.3] or [12, Chapter VI, §2].) Choose
q such that m/(1 — a) < g < oo. According to Lemma 3.6 in the Appendix there exists a solution
(v, p) € Wh(w,R™) x LY(w) of
—Av+Av+Vp=f, V.v=0 ino, v=0 ondw.
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PutF = f — Av. Since v € W'(w) — C*¥(w) by [11, Theorem 5.7.8], we infer that v, F € C®*(w) by
Lemma 3.7 in the Appendix. Then

-Av+Vp=F, V.v=0 inw.

Choose bounded open sets w; and w, such that Qc w; C W) C w; C w; C w. Fix ¢ € C*(R™) such
that o = 1 on w; and ¢ = 0 on R” \ w,. Define F = ¢F inw and F = 0in R” \ w.
Forx e R"\ {O}and i, j € {1,2,...,m} define

1 6," XiX;
Eij(x)1=20_{ ! + j}, m>3

(m=2)x"2  |x|"

1 1 X,‘X'
E;i(x) := {(511 f} m=2,
! 20, | 7 1Al |

|x[*
1 x;
Qj(x) = ——=
T |x]™
where o, is the area of the unit sphere in R”™. Then E = {E;;}, O = (Q;, ..., Q) form a fundamental

tensor of the Stokes system, i.e.,
—AE;; + AE;; + 0;Q; = 600;j, 1< m,
OEj+-+0,E,; =0,
where 0y is the Dirac measure. (See for example [13].) Define v := E = F and pi=0=* F. Then
~-AV+Vp=F, V-¥=0 inR"™
Define »
ha(x) := { éz_llr;l){lf o, n’;:>22,

the fundamental solution for the Laplace equation. Since F; € C’?O"Z(Rm), [14, Theorem 3.14.2] gives
that A, * Fj € Clz(;f(R’") for j=1,...,m. Since Q; = d;hs, we infer

P =0i(hax FO)+ -+ 8u(hs x F,) € CIR™).

Since
-AV-V)+V(p-p)=F-F=0, V. (v-%¥)=0 inw,

we infer that
Ap-p)=V-Vp-p)=V-AvV-V)=AV-(v-9]=0 inw

in the sense of distributions. Thus p — p € Cz(a)l) by [14, Theorem 2.18.2]. Since j € C'*(w) we infer
that p € C]m (wy). Thus Av =Vp —F € Clm (w1; R™). According to [14, Proposition 3.18.1] we obtain
that v € (32 %(wi; R™). (We can prove that v € 6‘2 “%(w1; R™) also using results in [15].) O
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Theorem 2.2. Let 0 < B < a < 1. Suppose that Q C R"™ is a bounded domain with boundary of
class C* and A € C*P(Q) is non-negative. Let f € CP(Q,R™), g € C'¥(0Q,R™). Then there exist
v € CYP(Q; R™) N CHQ;R™) and p € C*(Q) N C(Q) solving

—Av+Av+Vp=1f, V.v=0 inQ, v=g onoQ (2.2)
if and only if
fn-ng':O. 2.3)
o0

A velocity v is unique and a pressure p is unique up to an additive constant. Moreover,

)

Proof. If v e CY(Q;R™) N CX(; R™), p € C*¥(Q) N C'(Q) solve (2.2) then (2.3) holds by the Green
formula. B B

Suppose now that (2.3) holds. According to Lemma 2.1 there exists (V, p) € C*(Q;R™) x C'#(Q)
such that

e+ Il < (W + el + | [
Q

—AV+AV+Vp=f, V-¥=0 inQ.

Put § := g — V. Then § € C'#(0Q,R™). Choose g such that m/(1 — ) < g < co. According to Lemma
3.6 there exists a solution (¥, p) € W(Q, R™) x LI(Q) of
AVFA4VH=0, V-¥=0 inQ  ¥=§ ondQ.

A velocity Vv is unique and a pressure p is unique up to an additive constant. Define v := Vv + ¥,
p = p+ p. Then (v, p) is a solution of (2.2).

If 2 = 0 then v € CY(Q;R™), p € C*¥(Q) by [16, Theorem 5.2]. Moreover, ¥ € C*(Q;R"),
p € C*(Q). (See for example [17, §1.2].) Thus v € C'#(Q; R™) N C*(Q;R™), p € C™P(Q) N C'(Q).

Let now A be general. Since v.e W'(Q) — C*(Q) by [11, Theorem 5.7.8], Lemma 3.7 in the
Appendix gives that Av € C*#(Q). Therefore

—AvV + Vp = (f — Av) € C™(Q; R™).

We have proved that v € C'#(Q; R™) N CX(Q;R™), p € C*¥(Q) N C'(Q).
Denote by Y the set of all g € W!=1/44(Q; R™) satisfying (2.3). Define X := {v € W"(Q;R™);V -
v=0inQ,Vv|sn € Y},

Uav,p) = —AV+/1V+Vp,V,fpdx].
Q

Then U, : X x LY(Q) — W (Q;R™) x ¥ x R! is an isomorphism by Lemma 3.6. Denote Z =
[XNC(Q; R™MIXCM(Q), W = C¥(Q, R™)X[YNCP(9Q, R™)]xR'. We have proved that U;' (W) C Z.
Since U;' : W — Z is closed, it is continuous by the Closed graph theorem. O

Theorem 2.3. Let 0 < a@ < 1 and k € Ny. Suppose that Q C R™ is a bounded domain with boundary of
class C¥>% and A € Ck"’(ﬁ) is non-negative. Let f € Ck’“(ﬁ, R™), g € CK2%(9Q, R™). Then there exists
a solution (v, p) € Ck+2’“(§; R™) x Ck“’“(ﬁ) of (2.2) if and only if (2.3) holds. A velocity v is unique
and a pressure p is unique up to an additive constant. Moreover,
f p dx ) .
Q
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Proof. (2.3) is a necessary condition for the solvability of the problem (2.2) by Theorem 2.2.
Denote by Y the set of all g € C¥>2(9Q; R™) satisfying (2.3). Define X := {v € CK*>%(Q; R™); V-v =
0Oin Q, V|(')Q S Y},

Uv,p) :=[-Av+ Av+ Vp,v, f pdol].
Q
Then Uy : X X C’k”’“(ﬁ) — Ck"’(ﬁ; R™ x Y xR!isan isoLnorphism by Theorem 2.2 and [18;The0rem
IV.7.1_]. Since u — Au is a bounded operator on C*?(, R™) by Lemma 3_.7 and C’“ﬁ“(Q, R™) —
CH*(Q,R™) is compact by [19, Lemma 6.36], the operator U,—Uy : XXC**'(Q) — C**(Q; R")xY xR!
is compact. Hence the operator U, : X X CK*1%(Q) — C**(Q;R™) x Y x R! is Fredholm with index 0.

The kernel of U, is trivial by Theorem 2.2. Therefore, U, : X X Ck“’“(ﬁ) - C’k"’(ﬁ; R™ x Y x R!is
an isomorphism. O

3. Darcy-Forchheimer-Brinkman system
We prove the existence of a classical solution of the Dirichlet problem for the Darcy-Forchheimer-

Brinkman system using fixed point theorems. The following two lemmas are crucial for it.

Lemma 3.1. Let Q C R" be open, 0 < @ < 1 and k € N. Put | = max(k — 2,0). Let b € C””‘(ﬁ; Rm).
Define
Ly,(u,v) :=b(u- V)v. (3.1

Then there exists C, € (0, o) such that if u,v € C**(Q;R™), then Ly(u, v) € C**(Q;R™) and
Lo, Wllgo@) < Crllllgea g Vllokn@)» (32)

1Ly, 0) = LoV, Wllgrag) < Cillt = Vilgeaig (Ml + Ml - (3.3)

Proof. Lemma 3.7 in the Appendix forces that L,(u, v) € C”“(ﬁ; R™) and the estimate (3.2) holds true.
Since
Ly(u,u) — Ly(v,v) = Ly(u - v,u) + Ly(V,u - v),

the estimate (3.3) is a consequence of the estimate (3.2). O

Lemma 3.2. Let Q C R" be a bounded domain with boundary of class Cand 0 < B < a < 1.
Suppose that a € C*(Q). For v € C(Q;R™) define

Auv = alvlv. 3.4)

1. Then there exists a constant Cy such that foru,v € C 1’O(ﬁ; R™) it holds

2
AaVllcosy < CHlIVIE, o (3.5)
A0V = Allosg) < Cillv = llgiog, [IVllio, + llgro, |- (3.6)

2. If a € C'P(Q), then there exists a positive constant Cy such that A, : C*°(Q;R™) — C"(Q;R™)
is a compact continuous mapping and

2
”Aavl |C1’ﬂ(§;]R’”) < C2||V| |C2-O(§;R’") . (37)
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Proof. Easy calculation yields that

1M leos@y < Mlos @sm-

So, according to Lemma 3.7 in the Appendix

2

”Aavl |C0ﬁ(§;]Rm) < 4| |Cl| |Coﬁ(§) | |V| |C0ﬁ(§;Rm) .

Since C(Q; R™) — C™(Q; R™) by [19, Lemma 6.36], we obtain the estimate (3.5).
Clearly

|A,v(x) = Agv(X)| < la(o)] V()] = @) [v(x)] + |a()l[a(x)][v(x) —u(x)].
Hence there exists a constant ¢; such that
1ALV = Agullgo g < cillV = Ullog (Mo + IMllo)) - (3.8)

We now calculate derivatives of Av. If x € Q and v(x) # 0 then

V() [v(x) - 9;v(x)]
Iv(x)l '

O [IVOIVe(0)] = [V(0)I0vie(x) + (3.9)

Hence
IVA V()] < (m + 1) ]v(x)| IVllcro)- (3.10)

Let now x € Q and v(x) = 0. Denote €; = (61j,...,0m;). Then

[v(x + te))|[vi(x + te;) — vi(x)]
t

O;[Iv(x) vk (x)] = 1,5’8 = [v(x)|0;vi(x) = 0

and (3.10) holds too. Suppose now that x € dQ. If v(x) # 0 then d;[|v(x)[vi(x)] can be continuously
extended to x by (3.9). If v(x) = 0 then (3.10) gives that VA;v can be continuously extended to x by
VAv(x) = 0. The estimates (3.5) and (3.10) give that there exists a constant ¢, such that

2
1AVl < C2IVIE, o 3.11)

Suppose that u, v € C°(Q; R™). Let x € Q. Suppose first that u(x) = 0. Since VAu(x) = 0, (3.10)
gives
IVAv(x) = VAju(x)| = [VA V()| < (m + 1*v(x) = u(0)] [Vllgrogg)- (3.12)

Let now |v(x)| > [u(x)| > 0. According to (3.9)

10;[IV()vi(x)] = 9;[la(0)|ur ()] < [v(x) — w(0)||0vi(x)] + [a(0)|0jvi(x) — 0 jur(x)]

N la(x)[[vi(x) = w0V (x) - 9;v(x)] + [a(x)[[ur(0)][v(x) — u(x)]|d;v(x)]
V()| a(x)l
N e (O[]0, v(x) — d;u(x)] + [u(x) — V()i (x)|[u(x) - 9 u(x)|
V()] Ju(x)] '
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< 6llu = Vllgiog) (IVlcrog, + llcio)) -

This inequality, (3.12) and (3.8) give that there exists a constant c3 such that
A = AVligiog < el = Vi, (Vo) + llgiog)) -
Since C l’O(ﬁ; R™) — Co’ﬁ(ﬁ; R™) by [19, Lemma 6.36], there exists a constant ¢4 such that

A1 = AVllgos g < callt = Vil (Wl + llgrog)) -

Since A,V = aAv, Le_mma 3.7 gives that there exists a constant C; such that (3.6) holds.
Let now v € C*9(Q;R™). We are going to calculate V?Av. If x € Q and v(x) # 0, then we obtain
from (3.9)

O vi(x)[v(x) - ;v(x)]

0,0,[Iv(xX)vi(x)] = [V(x)|0,0vi(x) + VOO (3.13)

+6zvk(X) [v(x) - ;¥(x0)] + vi()[0v(x) - ;¥(x)] + vi(X)[V(x) - 8,0;v(x)]

[v(x)l
V() - 9 v(0)]IV(x) - dv(x)]
v(x)P '
So,

10,0 [IV(0) Vi (0)]] < 6||V|Iéz,0@- (3.14)
Now we calculate 0,d,[|v(x)[vi(x)] in the sense of distributions. For € > 0 denote Q(e) := {x €

Q; [v(x)| > €}, V(e) := Q\ Q(e). Suppose that ¢ € C*(R™) has compact support in Q. We have proved
that if v(x) = 0, then 9;[|v(x)|[vi(x)] = 0. Thus

0i0lIvivie], ) = - f [01(x)10,[Iv(0)Ivi(x)] dx
Q

= —lim [01p(xX)10;[Iv(x)Ivi(x)] dx.
€l0 Q(e)

According to the Green formula

©0,0[|v|ve] dx — f en0[|vlvi] dcr]-

0Q(€)

(010[IVIvi], ) = lim [ f
€l0 Qo)

If x € 0Q(e) N Q then |v(x)| = €. If x € 0Q(€) \ Q then ¢(x) = 0. Thus we obtain by (3.14) and (3.9)

) VeV - 0;v
@0l e) = [ eodilivivd ~tim | omfedm + (3.15)
Q(0) €l0 Jaae)
According to the Green formula
. f [8 vkv.ajV] <1 f S d ‘
im ony| €0vy + <lim|e on0;vy do
elo Jane / € €l0 aQ(e) ’

AIMS Mathematics Volume 4, Issue 6, 1540-1553.



1547

) AR )
+ lim on; do| = lime Oilpdjvi] dx
€l0 1 Jov(e) € €l0 Q(e)
1
+ lilr(r)l f —[01pviv - OV + @OV - OV + @viOpV - OV + @iV - 0,0v] dx
€ Vie) €
<0+ lim el e VI, = dx = 0.
0 Jyowve  CPC@

This and (3.15) give
(010[IvIvi], @) = f ©0,0;[|v|ve].
Q(0)
So, if we define 9;0,[|v|vi](x) by (3.13) for v(x) # 0, and 9,0,[|v[v¢](x) = O for v(x) = O, then this
function is 8,0,[|v|v¢] in sense of distributions. (3.14) forces A;v € W2*(Q; R™) and

2

1A V|lw2eq) < Cs||V||C2,O@-

W22(Q) — C'"#(Q) compactly by [20, Theorem 6.3]. So,

1A Vllgra) < CollVIge g (3.16)
Since A; maps bounded subsets of Cz’o(ﬁ;iRm) to bounded subsets of W>*(Q;R") and W>*(Q) —
C'#(Q) compactly, the mapping A, : C*°(Q;R") — C'#(Q;R™) is compact. We now show that the

mapping A; : C2°(Q;R™) — C'"P(Q;R™) is continuous. Suppose the opposite. Then there exist
{vi} ¢ C*(Q:R™) and € > 0 such that v, — v in C**(Q:R") and [|A;v; — AV]|gisq > €. Since
A; 1 CP(Q;R™) — CYP(Q;R™) is compact, there exists a sub-sequence {Vi(,} of {v;} and w € C'#(Q)
such that A,v,,, — w in C'#(Q). Since A, : C**(Q;R™) — C*#(Q;R™) is continuous, it must be
w = A,v. That is a contradiction.

Since A,v = aA,v, Lemma 3.7 and (3.16) give that A, : C*°(Q;R") — C'#(Q;R™) is a compact

continuous mapping and (3.7) holds. O

Remar& 3.3. Let A, be from Lemma 3.2 with a € C“(ﬁ). We cannot show that A, : Ck’B(ﬁ; R™) —
C2B8(Q; R™) for k > 4 as shows the following example. Fix z € Q and define v(x) := (x, — 25,0, ...,0).
Then v € C*(R™; R™) but |v]v ¢ C*(Q; R™).

Theorem 3.4. Let 0 < < a < 1landk € N. Ifk = 1 suppose that B < a. Put | = max(k —2,0). Let
Q c R™ be a bounded domain with boundary of class C**. Let a,b,1 € C*(Q) and A > 0. If k > 3
suppose that a = 0. Then there exist 6, €, C € (0, 00) such that the following holds: If g € C**(0Q; R™)
satisfying (2.3), F € C*(Q; R™) and

lIgllcksan) + ||F||Cm(§) <o, (3.17)

then there exists a unique solution (u, p) € [C*(Q;R™) N CXQ;R™)] x [C*(Q) N CY(Q)] of the
Dirichlet problem for the Darcy-Forchheimer-Brinkman system

Vp—-Au+Adu+auju+bu-Vyu=F, V.-u=0 inQ, (3.18a)

u=g onodQ (3.18b)
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such that
f pdx=0 (3.19)
Q
and
lallgisg, < €. (3.20)
Moreover,
Il ges @, + 1Pllors@ < C (llgllewsen + 1Fllw)) - (3.21)

If§ € CH(OQ;R™), F € CH(Q;R™), i € CFF(Q; R™) N CX(Q; R™) and p € CF#(Q) N CY(Q),

Vp—-Ad+aliijd+ i +b@-VYi=F, V-i=0 inQ, (3.22a)
u=g on 09, Lﬁ dx=0 (3.22b)

and ||ﬁ||Ckﬁ@ < € then
o~ @l geas, + 1P~ Blloscrag) < C (Ilg ~ Ellcrsany + IF ~ Flloug)) (3.23)

Proof. Let L, be defined by (3.1), A, be given by (3.4). Put D,u := L,(u,u) + A,u. According to
Lemma 3.1 and Lemma 3.2 there exists a constant C; such that

2
IDapVlicis@) < CillViliis g (3.24)
”Dabv - Dab“”clﬁ(ﬁ) < Cl ”V - u”ckﬁ(ﬁ) [”V”(;kﬁ(ﬁ) + ”uH(;kﬁ(ﬁ)] . (325)

By Theorem 2.2 and Theorem 2.3 there exists a constant C; such that for each g € CH(6Q; R™)
satisfyin_g (2.3) and f € C"(Q;R™) there exists a unique solution (u, p) € [C*¥(Q; R™) N C*(Q; R™)] x
[CH18(Q) N C'(Q)] of the Dirichlet problem (2.2), (3.19). Moreover,

”uHCkﬁ(ﬁ) + ”pllck—l.ﬁ(ﬁ) < C2 (||g||ckﬁ(ag) + ”f”(;lﬁ(ﬁ))- (326)

Remark that (u, p) is a solution of (3.18) if (u, p) is a solution of (2.2) with f = F — D,,u. Put

1 €
= , 0= ——.
CTAHC, + DG+ D) 2C, + 1)

If (u, p), (@, p) € [CFP(Q;R™) N CH:;R™)] x [CF#(Q) N C'(Q)] are solutions of (3.18), (3.19) and
(3.22) with (3.20) and ||ﬁ||ckﬁ(ﬁ) < €, then

Il = @llgeag + 1 = Pllocrs < Colllg = Bl + IF = Fllsg,

HIDap(u, w) = Dop(@, W)l i) | < Calllg — Bllcrsany
+||F — F”Cl,ﬁ@) +2eCllu - ﬁ”ckﬁ(ﬁ)]'

Since 2C;C,€ < 1/2 we get subtracting 2eC,C|lu — ﬁllckﬁ@ from the both sides
It = @l + 1P = Bllora < 2Callg — Bllorswn + IF — Fllsg)
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Therefore a solution of (3.18) satisfying (3.19) and (3.20) is unique. Putting p = 0, it = 0, F =0and
g = 0, we obtain (3.21) with C = 2C,.

Denote X := {v € C*¥(Q, R™); IVllgis < €). Fix g € CY¥(0Q;R™) and F € CH(Q; R™) satisfying
(2.3) and (3.17). For v € X there exists a unique solution (u*, p¥) € [Ck’ﬁ(ﬁ; R™ N C*(Q; R™M)] x
[Ck‘l"g(ﬁ) N C1(Q)] of the Dirichlet problem (2.2), (3.19) with f = F — D,,v. Remember that (u", p¥)
is a solution of (3.18) if and only if u¥ = v. According to (3.26), (3.17) and (3.24)

2
”uv”Ckﬁ(ﬁ) < CZ [”g”C"ﬁ(ﬂQ) + ”F”Clﬁ(ﬁ) + ”DabV”Clﬁ(ﬁ)] < C25 + C2C1€ .
As Cy6 + C,C €% < €, we inferu¥ € X. If w € X then
”uv - uwllcfcﬁ(ﬁ) < CZHDabV - DabW”Clﬁ(ﬁ) < C2C126”W - V”ckﬁ(ﬁ)

by (3.26) and (3.25). Since C,C,2¢ < 1, the Fixed point theorem ( [21, Satz 1.24]) gives that there
exists vexX such that u¥ = v. So, (u", p¥) is a solution of (3.18), (3.19) in [C**(Q; R™) N C*(Q; R™)] x
[CH18(Q) N C'(Q)] satisfying (3.20). o

In Theorem 3.4 we suppose that a = 0 for k > 3. This assumption cannot be removed for k > 3 as
Remark 3.3 shows. The following theorem is devoted to the case k = 3.

Theorem 3.5. Let 0 < B8 < a < 1 and Q C R™ be a bounded domain with boundary of class c3e,
Let a,b,A € C'*(Q) and 1 > 0. Then _there exist 9, € (0,00) such that the following holds: If
g € CP(0Q; R™) satisfies (2.3), F € C'*(Q;R™) and

llgllcssaa) + Fllgisg, < 0 (3.27)

then there exists a unique solution (u, p) € C3ﬁ(§; R™) x C2’ﬁ(ﬁ) of the Dirichlet problem for the
Darcy-Forchheimer-Brinkman system (3.18), (3.19) such that

”u“(;w(ﬁ) <E€. (328)

Proof. Let L, be defined by (3.1), A, be given by (3.4). We conclude from Lemma 3.1 and Lemma 3.2
that there exists a constant C; such that

2
1LV Vs + IAaVllgis@) < CHlIVIE (3.29)
||Lb(V, V) - Lb(u’ u)llclﬁ(ﬁ) <(C ”V - u”(;&ﬁ(ﬁ) [”V”C&ﬁ(ﬁ) + ||u||(;3,ﬁ(§)] . (330)

According to Theorem 2.3 there exists a constant C, such that for each g € Cc34 (0Q; R™) satisfying
(2.3) and f € C'#(Q;R™) there exists a unique solution (u, p) € C**(Q;R™) x C*#(Q) of the Dirichlet
problem (2.2), (3.19). Moreover,

Mlless, + 1Plcs@ < Ca (lgllceny + fllerag) - (3.31)
Suppose now that
1 €
O<e< , 0<0<———. 3.32
€ 4C+ 1)(Cy+ 1) 2(C,+ 1) (3-32)
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Put X, := {v € C3’ﬂ(§,Rm);|IVIIC3ﬁ(§) < €}. Fix g € C*¥OQR™) and F € C"¥(Q;R™) satisfying
(2.3) and (3.27). For v € X, there exists a unique solution (u', p¥) € C3’ﬁ(§; R™) x Cz’ﬁ(ﬁ) of the

DiricElet problem Q.2), (3.19) with f = F — L,(v,v). Moreover, there is a unique solution (@i", p¥) €
CH(Q; R™) x C*P(Q) of

Vp' — AR + 0" = —alvlvy, V-a*'=0 inQ,

a'=0 on 09, fﬁv dx =0.
Q
If u¥ + @¥ = v then (v, p¥ + p¥) is a solution of the problem (3.18), (3.19). If w € X, then
0¥ llgss@ + 10l < Calllgllessony + IFllgieg, + 1Ls(V Vllcis@,

2 2
+HIAGWllgisg) < Ca(6 + Cillvl| o c1||w||cw@) <e

by (3.31), (3.27), (3.29) and (3.32). So, u¥ + u" € X,. According to (3.31), (3.30) and (3.32)

v

0" = 0™l s < CollLp(V, V) = Ly(W, Wlloisg)

1
< CICZHV - W”c3ﬂ(§)[|lvllc3,/3(ﬁ) + ”Wllclﬁ(ﬁ)] < EHV - W”cBﬁ(ﬁ)'

So v - u' is a contractive mapping on X.. Since A, : C**(Q;R™) — C'"A(Q;R™) is a compact
continuous mapping by Lemma 3.2, the mapping v — @' is a compact continuous mapping on X,.
Lemma 3.8 forces that there exists v € X, such that u¥ + @¥ = v. Hence (v, p¥ + p") is a solution of the
problem (3.18), (3.19), (3.28) in C*#(Q; R™) x C'#(Q). By Theorem 3.4, for sufficiently small € and &
there exists at most one solution of the problem (3.18), (3.19), (3.28) in C*#(Q; R™) X C4(Q) . o
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Appendix

Lemma 3.6. Let Q C R" be a bounded domain with boundary of class C'. Let 1 € L*(Q) be non-
negative and 1 < g < oo. If f € WM (Q,R™) and g € W'=144(9Q, R™), then there exists a solution
(v, p) € WH(Q,R™) x LY(Q) of (2.2) if and only if (2.3) holds. A velocity v is unique and a pressure p
is unique up to an additive constant. Moreover,
f p dx ) .
Q

Proof. If (v, p) € WH(Q,R™) x L4(Q) is a solution of (2.2), then (2.3) holds by Green’s formula.
Denote by Y, the set of all g € W!~1/44(9Q; R™) satisfying (2.3). Define X, := {v e WH(Q;R™); V -
v=0inQ,v[pn € Y},

IVllwiay + 1Pllay < C (||f||w-1»f/(g) + ||g||W'—1/q,q(aQ) +

Ua(v,p) = —AV+/1V+Vp,V,fpdx].
Q

Then Uy : X, X L1(Q) —» W (Q;R™) X ¥, x R is an isomorphism by [22, Theorem 2.1]. Since
Ui—Up : X,XLYQ) - W H(Q; R™)x Y, xR is compact, U, : X,XL(Q) - W (Q;R™)xY,xR'isa
Fredholm operator with index 0. Let now U,(v, p) = 0. Since U, : X, XxL*(Q) — W=2(Q; R™)x Y, xR!
is a Fredholm operator with index 0, [23, Lemma 11.9.21] gives (v, p) € X, x L*(Q). Since —~Av+Vp =

—Av, Green’s formula forces
fVV-V(I)dxz—f/lV-CI)dx
Q Q

forall ® € C(€2; R™) with V- @ = 0. As v is in the closure of the space of such ® by [24, Theorem
2.9], we infer

f[Vv-VV+/lv-v]dx:0.
Q

Vv = 0 and therefore the velocity v is constant. We have v = 0, because v = 0 on 0€). Moreover,
Vp = Av — Av = 0 forces that p is constant. The equality fQ p dx = 0 gives that p = 0. Therefore
Ui : X, x LY(Q) » W (Q;R™) x Y, x R! is an isomorphism. i

Lemma 3.7. Let Q C R™ be open and 0 < a < 1. If f, g € C**(Q) then fg € C**(Q) and

(See [14, Lemma 1.16.8].)

Lemma 3.8. Let Z be a closed convex non-empty subset of a Banach space X. Suppose that A and B
map Z into X and that
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e Ax+ByeZforall x,y € Z,
e A is a contraction mapping,
e B is compact and continuous.
Then there exists z € Z such that Az + Bz = z.
(See [25, Theorem 4.4.1].)
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