Mathematics

Research article

Classical solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system

Dagmar Medková*
Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic

* Correspondence: Email: medkova@math.cas.cz; Tel: +420222090735; Fax: +420222090701.

Abstract

We study solutions of the Dirichlet problem for the Brinkman system and for the Darcy-Forchheimer-Brinkman system in the spaces of functions $C^{k, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{k-1, \alpha}(\bar{\Omega})$, where $\Omega \subset \mathbb{R}^{m}$ is a bounded domain.

Keywords: Brinkman system; Darcy-Forchheimer-Brinkman system; Dirichlet problem; classical solution; regularity
Mathematics Subject Classification: 35Q35

1. Introduction

The paper is devoted to classical solutions of the Dirichlet problem for the Darcy-ForchheimerBrinkman system

$$
\begin{equation*}
\nabla p-\Delta \mathbf{v}+\lambda \mathbf{v}+a|\mathbf{v}| \mathbf{v}+b(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}, \quad \nabla \cdot \mathbf{v}=0 \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

where $\Omega \subset R^{m}$ is a bounded domain.
Boundary value problems for the Darcy-Forchheimer-Brinkman system have been extensively studied in the recent years. This system describes flows through porous media saturated with viscous incompressible fluids, where the inertia of such fluids is not negligible. The constants $\lambda, b>0$ are determined by the physical properties of the porous medium. (For further details we refer the reader to the book [1, p.17] and the references therein.)
M. Kohr et al. studied in [2] the transmission problem, where the Darcy-Forchheimer-Brinkman system is considered in a bounded domain $\Omega_{+} \subset \mathbb{R}^{3}$ with connected Lipschitz boundary and the Stokes system is given on its complementary domain Ω_{-}. Solutions belong to the space $\mathcal{H}^{1}\left(\Omega_{ \pm}\right) \times L^{2}\left(\Omega_{ \pm}\right)$, where $\mathcal{H}^{1}(\Omega)=\left\{\mathbf{u} \in L_{\text {loc }}^{2}\left(\Omega, \mathbb{R}^{3}\right) ; \partial_{j} u_{i} \in L^{2}(\Omega),\left(1+|\mathbf{x}|^{2}\right)^{-1 / 2} u_{j}(\mathbf{x}) \in L^{2}(\Omega)\right\}$. The paper [3] is concerned with another transmission problem. A bounded domain $\Omega \subset \mathbb{R}^{m}$ with connected Lipschitz boundary splits into two Lipschitz domains Ω_{+}and Ω_{-}. A solution is found
satisfying the homogeneous Darcy-Forchheimer-Brinkman system is in $\Omega_{\text {_ }}$ and the homogeneous Navier-Stokes system in Ω_{+}. The transmission condition on the interface $\partial \Omega_{-} \cap \partial \Omega_{+}$is accompanied by the Robin condition on $\partial \Omega$. The paper [4] investigates the Robin problem for the Darcy-Forchheimer-Brinkman system (1.1) with $b=0$ in the space $H^{s}\left(\Omega, \mathbb{R}^{m}\right) \times H^{s-1}(\Omega)$, where $1<s<3 / 2$ and $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with connected Lipschitz boundary, $m \in\{2,3\}$. The mixed Dirichlet-Robin problem and the mixed Dirichlet-Neumann problem for the Darcy-Forchheimer-Brinkman system (1.1) with $b=0$ are studied in $H^{3 / 2}\left(\Omega, \mathbb{R}^{3}\right) \times H^{1 / 2}(\Omega)$ (see [4] and [5]). Here $\Omega \subset \mathbb{R}^{3}$ is a bounded creased domain with connected Lipschitz boundary. M. Kohr et al. discussed in [4] the problem of Navier's type for the Darcy-Forchheimer-Brinkman system (1.1) with $b=0$ in $H^{1}\left(\Omega, \mathbb{R}^{3}\right) \times L^{2}(\Omega)$, where $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with connected Lipschitz boundary.

Now we briefly sketch results concerning the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1). It is supposed that $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with Lipschitz boundary. For $\mathbf{f} \equiv 0$ and $2 \leq m \leq 3$ solutions of the problem are looked for in $W^{s, 2}\left(\Omega, \mathbb{R}^{m}\right) \times W^{s-1,2}(\Omega)$ with $1 \leq s<3 / 2$ (see [6], [7] and [8]). The paper [9] is devoted to similar problems on compact Riemannian manifolds. [10] considers bounded solutions of the problem for $b=0$ and a domain Ω with Ljapunov boundary.

This paper begins with the study of classical solutions of the Dirichlet problem for the generalized Brinkman system

$$
\nabla p-\Delta \mathbf{v}+\lambda \mathbf{v}=\mathbf{f}, \quad \nabla \cdot \mathbf{v}=0 \quad \text { in } \Omega .
$$

If $\Omega \subset \mathbb{R}^{m}$ is a bounded open set with boundary of class $C^{k, \alpha}$ we prove the existence of a solution $(\mathbf{v}, p) \in C^{k, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{k-1, \alpha}(\bar{\Omega})$. Unlike the previous papers we do not suppose that $\partial \Omega$ is connected. Using the fixed point theorems give the existence of solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) in $(\mathbf{v}, p) \in C^{k, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{k-1, \alpha}(\overline{\bar{\Omega}})$. Here $\lambda, a, b \in C^{\max (k-2,0), \alpha}(\bar{\Omega})$. If $k \leq 3$ then a can be arbitrary. If $k>3$ then there exists $\mathbf{v} \in C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ with $\nabla \cdot \mathbf{v}=0$ such that $|\mathbf{v}| \mathbf{v} \notin C^{k-2, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$. (See Remark 3.3.) So, for $k>3$ we must suppose that $a \equiv 0$.

2. Dirichlet problem for the Brinkman system

Before we investigate the Dirichlet problem for the Brinkman system we need the following auxiliary lemma.

Lemma 2.1. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded open set, $0<\alpha<1$ and $\lambda \in C^{0, \alpha}(\bar{\Omega})$ be non-negative. If $\mathbf{f} \in C^{0, \alpha}\left(\bar{\Omega}, \mathbb{R}^{m}\right)$ then there exists a solution $(\mathbf{v}, p) \in C^{2, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{1, \alpha}(\bar{\Omega})$ of

$$
\begin{equation*}
-\Delta \mathbf{v}+\lambda \mathbf{v}+\nabla p=\mathbf{f}, \quad \nabla \cdot \mathbf{v}=0 \quad \text { in } \Omega \tag{2.1}
\end{equation*}
$$

Proof. Choose a bounded domain ω with smooth boundary such that $\bar{\Omega} \subset \omega$. Then we can suppose that $\mathbf{f} \in C^{0, \alpha}\left(\bar{\omega}, \mathbb{R}^{m}\right)$ and $\lambda \in C^{0, \alpha}(\bar{\omega})$. (See [11, Theorem 1.8.3] or [12, Chapter VI, §2].) Choose q such that $m /(1-\alpha)<q<\infty$. According to Lemma 3.6 in the Appendix there exists a solution $(\mathbf{v}, p) \in W^{1, q}\left(\omega, \mathbb{R}^{m}\right) \times L^{q}(\omega)$ of

$$
-\Delta \mathbf{v}+\lambda \mathbf{v}+\nabla p=\mathbf{f}, \quad \nabla \cdot \mathbf{v}=0 \quad \text { in } \omega, \quad \mathbf{v}=0 \quad \text { on } \partial \omega .
$$

Put $\mathbf{F}=\mathbf{f}-\lambda \mathbf{v}$. Since $\mathbf{v} \in W^{1, q}(\omega) \hookrightarrow C^{0, \alpha}(\bar{\omega})$ by [11, Theorem 5.7.8], we infer that $\mathbf{v}, \mathbf{F} \in C^{0, \alpha}(\bar{\omega})$ by Lemma 3.7 in the Appendix. Then

$$
-\Delta \mathbf{v}+\nabla p=\mathbf{F}, \quad \nabla \cdot \mathbf{v}=0 \quad \text { in } \omega
$$

Choose bounded open sets ω_{1} and ω_{2} such that $\bar{\Omega} \subset \omega_{1} \subset \bar{\omega}_{1} \subset \omega_{2} \subset \bar{\omega}_{2} \subset \omega$. Fix $\varphi \in C^{\infty}\left(\mathbb{R}^{m}\right)$ such that $\varphi=1$ on ω_{1} and $\varphi=0$ on $\mathbb{R}^{m} \backslash \omega_{2}$. Define $\tilde{\mathbf{F}}=\varphi \mathbf{F}$ in ω and $\tilde{\mathbf{F}}=0$ in $\mathbb{R}^{m} \backslash \omega$.

For $x \in \mathbb{R}^{m} \backslash\{0\}$ and $i, j \in\{1,2, \ldots, m\}$ define

$$
\begin{gathered}
E_{i j}(x):=\frac{1}{2 \sigma_{m}}\left\{\frac{\delta_{i j}}{(m-2)|x|^{m-2}}+\frac{x_{i} x_{j}}{|x|^{m}}\right\}, \quad m \geq 3 \\
E_{i j}(x):=\frac{1}{2 \sigma_{2}}\left\{\delta_{i j} \ln \frac{1}{|x|}+\frac{x_{i} x_{j}}{|x|^{2}}\right\}, \quad m=2, \\
Q_{j}(x):=\frac{1}{\sigma_{m}} \frac{x_{j}}{|x|^{m}}
\end{gathered}
$$

where σ_{m} is the area of the unit sphere in R^{m}. Then $E=\left\{E_{i j}\right\}, Q=\left(Q_{1}, \ldots, Q_{m}\right)$ form a fundamental tensor of the Stokes system, i.e.,

$$
\begin{gathered}
-\Delta E_{i j}+\lambda E_{i j}+\partial_{i} Q_{j}=\delta_{0} \delta_{i j}, \quad i \leq m, \\
\partial_{1} E_{1 j}+\cdots+\partial_{m} E_{m j}=0,
\end{gathered}
$$

where δ_{0} is the Dirac measure. (See for example [13].) Define $\tilde{\mathbf{v}}:=E * \tilde{\mathbf{F}}$ and $\tilde{p}:=Q * \tilde{\mathbf{F}}$. Then

$$
-\Delta \tilde{\mathbf{v}}+\nabla \tilde{p}=\tilde{\mathbf{F}}, \quad \nabla \cdot \tilde{\mathbf{v}}=0 \quad \text { in } \mathbb{R}^{m}
$$

Define

$$
h_{\Delta}(x):= \begin{cases}\sigma_{2}^{-1} \ln |x|, & m=2, \\ (2-m)^{-1} \sigma_{m}^{-1}|x|^{2-m}, & m>2\end{cases}
$$

the fundamental solution for the Laplace equation. Since $F_{j} \in C_{l o c}^{0, \alpha}\left(\mathbb{R}^{m}\right)$, [14, Theorem 3.14.2] gives that $h_{\Delta} * \tilde{F}_{j} \in C_{\mathrm{loc}}^{2, \alpha}\left(\mathbb{R}^{m}\right)$ for $j=1, \ldots, m$. Since $Q_{j}=\partial_{j} h_{\Delta}$, we infer

$$
\tilde{p}=\partial_{1}\left(h_{\Delta} * \tilde{F}_{1}\right)+\cdots+\partial_{m}\left(h_{\Delta} * \tilde{F}_{m}\right) \in C_{\mathrm{loc}}^{1, \alpha}\left(\mathbb{R}^{m}\right)
$$

Since

$$
-\Delta(\mathbf{v}-\tilde{\mathbf{v}})+\nabla(p-\tilde{p})=\mathbf{F}-\tilde{\mathbf{F}}=0, \quad \nabla \cdot(\mathbf{v}-\tilde{\mathbf{v}})=0 \quad \text { in } \omega_{1},
$$

we infer that

$$
\Delta(p-\tilde{p})=\nabla \cdot \nabla(p-\tilde{p})=\nabla \cdot \Delta(\mathbf{v}-\tilde{\mathbf{v}})=\Delta[\nabla \cdot(\mathbf{v}-\tilde{\mathbf{v}})]=0 \quad \text { in } \omega_{1}
$$

in the sense of distributions. Thus $p-\tilde{p} \in C^{2}\left(\omega_{1}\right)$ by [14, Theorem 2.18.2]. Since $\tilde{p} \in C^{1, \alpha}(\omega)$ we infer that $p \in C_{l o c}^{1, \alpha}\left(\omega_{1}\right)$. Thus $\Delta \mathbf{v}=\nabla p-\mathbf{F} \in C_{l o c}^{0, \alpha}\left(\omega_{1} ; \mathbb{R}^{m}\right)$. According to [14, Proposition 3.18.1] we obtain that $\mathbf{v} \in C_{\text {loc }}^{2, \alpha}\left(\omega_{1} ; \mathbb{R}^{m}\right)$. (We can prove that $\mathbf{v} \in C_{\text {loc }}^{2, \alpha}\left(\omega_{1} ; \mathbb{R}^{m}\right)$ also using results in [15].)

Theorem 2.2. Let $0<\beta<\alpha<1$. Suppose that $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with boundary of class $C^{1, \alpha}$ and $\lambda \in C^{0, \beta}(\bar{\Omega})$ is non-negative. Let $\mathbf{f} \in C^{0, \beta}\left(\bar{\Omega}, \mathbb{R}^{m}\right), \mathbf{g} \in C^{1, \beta}\left(\partial \Omega, \mathbb{R}^{m}\right)$. Then there exist $\mathbf{v} \in C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right)$ and $p \in C^{0, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)$ solving

$$
\begin{equation*}
-\Delta \mathbf{v}+\lambda \mathbf{v}+\nabla p=\mathbf{f}, \quad \nabla \cdot \mathbf{v}=0 \quad \text { in } \Omega, \quad \mathbf{v}=\mathbf{g} \quad \text { on } \partial \Omega \tag{2.2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int_{\partial \Omega} \mathbf{n} \cdot \mathbf{g} \mathrm{d} \sigma=0 \tag{2.3}
\end{equation*}
$$

A velocity \mathbf{v} is unique and a pressure p is unique up to an additive constant. Moreover,

$$
\|\mathbf{v}\|_{\mathcal{C}^{1, \beta}(\bar{\Omega})}+\|p\|_{C^{0, \beta}(\bar{\Omega})} \leq C\left(\|\mathbf{f}\|_{C^{0, \beta}(\Omega)}+\|\boldsymbol{g}\|_{C^{1, \beta}(\partial \Omega)}+\left|\int_{\Omega} p \mathrm{~d} x\right|\right) .
$$

Proof. If $\mathbf{v} \in C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right), p \in C^{0, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)$ solve (2.2) then (2.3) holds by the Green formula.

Suppose now that (2.3) holds. According to Lemma 2.1 there exists $(\tilde{\mathbf{v}}, \tilde{p}) \in C^{2, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{1, \beta}(\bar{\Omega})$ such that

$$
-\Delta \tilde{\mathbf{v}}+\lambda \tilde{\mathbf{v}}+\nabla \tilde{p}=\mathbf{f}, \quad \nabla \cdot \tilde{\mathbf{v}}=0 \quad \text { in } \Omega .
$$

Put $\hat{\mathbf{g}}:=\mathbf{g}-\tilde{\mathbf{v}}$. Then $\hat{\mathbf{g}} \in C^{1, \beta}\left(\partial \Omega, \mathbb{R}^{m}\right)$. Choose q such that $m /(1-\beta)<q<\infty$. According to Lemma 3.6 there exists a solution $(\hat{\mathbf{v}}, \hat{p}) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of

$$
-\Delta \hat{\mathbf{v}}+\lambda \hat{\mathbf{v}}+\nabla \hat{p}=0, \quad \nabla \cdot \hat{\mathbf{v}}=0 \quad \text { in } \Omega, \quad \hat{\mathbf{v}}=\hat{\mathbf{g}} \quad \text { on } \partial \Omega .
$$

A velocity $\hat{\mathbf{v}}$ is unique and a pressure \hat{p} is unique up to an additive constant. Define $\mathbf{v}:=\tilde{\mathbf{v}}+\hat{\mathbf{v}}$, $p:=\tilde{p}+\hat{p}$. Then (\mathbf{v}, p) is a solution of (2.2).

If $\lambda \equiv 0$ then $\hat{\mathbf{v}} \in C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right), \hat{p} \in C^{0, \beta}(\bar{\Omega})$ by [16, Theorem 5.2]. Moreover, $\hat{\mathbf{v}} \in C^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$, $\hat{p} \in C^{\infty}(\Omega)$. (See for example [17, §1.2].) Thus $\mathbf{v} \in C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right), p \in C^{0, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)$.

Let now λ be general. Since $\mathbf{v} \in W^{1, q}(\Omega) \hookrightarrow C^{0, \beta}(\bar{\Omega})$ by [11, Theorem 5.7.8], Lemma 3.7 in the Appendix gives that $\lambda \mathbf{v} \in C^{0, \beta}(\bar{\Omega})$. Therefore

$$
-\Delta \mathbf{v}+\nabla p=(\mathbf{f}-\lambda \mathbf{v}) \in C^{0, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)
$$

We have proved that $\mathbf{v} \in C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right), p \in C^{0, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)$.
Denote by Y the set of all $\mathbf{g} \in W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfying (2.3). Define $X:=\left\{\mathbf{v} \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) ; \nabla\right.$. $\mathbf{v}=0$ in $\left.\Omega,\left.\mathbf{v}\right|_{\partial \Omega} \in Y\right\}$,

$$
U_{\lambda}(\mathbf{v}, p):=\left[-\Delta \mathbf{v}+\lambda \mathbf{v}+\nabla p, \mathbf{v}, \int_{\Omega} p \mathrm{~d} x\right] .
$$

Then $U_{\lambda}: X \times L^{q}(\Omega) \rightarrow W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times Y \times \mathbb{R}^{1}$ is an isomorphism by Lemma 3.6. Denote $Z=$ $\left[X \cap C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)\right] \times C^{0, \beta}(\bar{\Omega}), W=C^{0, \beta}\left(\bar{\Omega}, \mathbb{R}^{m}\right) \times\left[Y \cap C^{1, \beta}\left(\partial \Omega, \mathbb{R}^{m}\right)\right] \times \mathbb{R}^{1}$. We have proved that $U_{\lambda}^{-1}(W) \subset Z$. Since $U_{\lambda}^{-1}: W \rightarrow Z$ is closed, it is continuous by the Closed graph theorem.
Theorem 2.3. Let $0<\alpha<1$ and $k \in \mathbb{N}_{0}$. Suppose that $\Omega \subset \mathbb{R}^{m}$ is a bounded domain with boundary of class $C^{k+2, \alpha}$ and $\lambda \in C^{k, \alpha}(\bar{\Omega})$ is non-negative. Let $\mathbf{f} \in C^{k, \alpha}\left(\bar{\Omega}, \mathbb{R}^{m}\right), \mathbf{g} \in C^{k+2, \alpha}\left(\partial \Omega, \mathbb{R}^{m}\right)$. Then there exists a solution $(\mathbf{v}, p) \in C^{k+2, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{k+1, \alpha}(\bar{\Omega})$ of (2.2) if and only if (2.3) holds. A velocity \mathbf{v} is unique and a pressure p is unique up to an additive constant. Moreover,

$$
\|\mathbf{v}\|_{C^{k+2, \alpha}(\bar{\Omega})}+\|p\|_{C^{k+1, \alpha}(\bar{\Omega})} \leq C\left(\|\mathbf{f}\|_{C^{k, \alpha}(\bar{\Omega})}+\|\mathbf{g}\|_{C^{k+2, \alpha}(\partial \Omega)}+\left|\int_{\Omega} p \mathrm{~d} x\right|\right) .
$$

Proof. (2.3) is a necessary condition for the solvability of the problem (2.2) by Theorem 2.2.
Denote by Y the set of all $\mathbf{g} \in C^{k+2, \alpha}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfying (2.3). Define $X:=\left\{\mathbf{v} \in C^{k+2, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) ; \nabla \cdot \mathbf{v}=\right.$ 0 in $\left.\Omega,\left.\mathbf{v}\right|_{\partial \Omega} \in Y\right\}$,

$$
U_{\lambda}(\mathbf{v}, p):=\left[-\Delta \mathbf{v}+\lambda \mathbf{v}+\nabla p, \mathbf{v}, \int_{\Omega} p \mathrm{~d} \sigma\right] .
$$

Then $U_{0}: X \times C^{k+1, \alpha}(\bar{\Omega}) \rightarrow C^{k, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times Y \times \mathbb{R}^{1}$ is an isomorphism by Theorem 2.2 and $[18$, Theorem IV.7.1]. Since $\mathbf{u} \mapsto \lambda \mathbf{u}$ is a bounded operator on $C^{k, \alpha}\left(\bar{\Omega}, \mathbb{R}^{m}\right)$ by Lemma 3.7 and $C^{k+2, \alpha}\left(\bar{\Omega}, \mathbb{R}^{m}\right) \hookrightarrow$ $C^{k, \alpha}\left(\bar{\Omega}, \mathbb{R}^{m}\right)$ is compact by [19, Lemma 6.36], the operator $U_{\mathcal{\lambda}}-U_{0}: X \times C^{k+1, \alpha}(\bar{\Omega}) \rightarrow C^{k, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times Y \times \mathbb{R}^{1}$ is compact. Hence the operator $U_{\lambda}: X \times C^{k+1, \alpha}(\bar{\Omega}) \rightarrow C^{k, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times Y \times \mathbb{R}^{1}$ is Fredholm with index 0 . The kernel of U_{λ} is trivial by Theorem 2.2. Therefore, $U_{\lambda}: X \times C^{k+1, \alpha}(\bar{\Omega}) \rightarrow C^{k, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times Y \times \mathbb{R}^{1}$ is an isomorphism.

3. Darcy-Forchheimer-Brinkman system

We prove the existence of a classical solution of the Dirichlet problem for the Darcy-ForchheimerBrinkman system using fixed point theorems. The following two lemmas are crucial for it.
Lemma 3.1. Let $\Omega \subset \mathbb{R}^{m}$ be open, $0<\alpha \leq 1$ and $k \in \mathbb{N}$. Put $l=\max (k-2,0)$. Let $b \in C^{l, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$. Define

$$
\begin{equation*}
L_{b}(\mathbf{u}, \mathbf{v}):=b(\mathbf{u} \cdot \nabla) \mathbf{v} . \tag{3.1}
\end{equation*}
$$

Then there exists $C_{1} \in(0, \infty)$ such that if $\mathbf{u}, \mathbf{v} \in C^{k, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$, then $L_{b}(\mathbf{u}, \mathbf{v}) \in C^{l, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ and

$$
\begin{gather*}
\left\|L_{b}(\mathbf{u}, \mathbf{v})\right\|_{C^{l, \alpha}(\bar{\Omega})} \leq C_{1}\|\mathbf{u}\|_{C^{k, \alpha}(\bar{\Omega})}\|\mathbf{v}\|_{C^{k, \alpha}(\bar{\Omega})} \tag{3.2}\\
\left\|L_{b}(\mathbf{u}, \mathbf{u})-L_{b}(\mathbf{v}, \mathbf{v})\right\|_{C^{l, \alpha}(\bar{\Omega})} \leq C_{1}\|\mathbf{u}-\mathbf{v}\|_{C^{k, \alpha}(\bar{\Omega})}\left(\|\mathbf{v}\|_{C^{k, \alpha}(\bar{\Omega})}+\|\mathbf{u}\|_{C^{k, \alpha}(\bar{\Omega})}\right) . \tag{3.3}
\end{gather*}
$$

Proof. Lemma 3.7 in the Appendix forces that $L_{b}(\mathbf{u}, \mathbf{v}) \in C^{l, \alpha}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ and the estimate (3.2) holds true. Since

$$
L_{b}(\mathbf{u}, \mathbf{u})-L_{b}(\mathbf{v}, \mathbf{v})=L_{b}(\mathbf{u}-\mathbf{v}, \mathbf{u})+L_{b}(\mathbf{v}, \mathbf{u}-\mathbf{v}),
$$

the estimate (3.3) is a consequence of the estimate (3.2).
Lemma 3.2. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with boundary of class $C^{1, \alpha}$ and $0<\beta \leq \alpha<1$. Suppose that $a \in C^{0, \beta}(\bar{\Omega})$. For $\mathbf{v} \in C\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ define

$$
\begin{equation*}
A_{a} \mathbf{v}:=a|\mathbf{v}| \mathbf{v} \tag{3.4}
\end{equation*}
$$

1. Then there exists a constant C_{1} such that for $\mathbf{u}, \mathbf{v} \in C^{1,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ it holds

$$
\begin{gather*}
\left\|A_{a} \mathbf{v}\right\|_{\mathcal{C}^{0, \beta}(\bar{\Omega})} \leq C_{1}\|\mathbf{v}\|_{\mathcal{C}^{1,0}(\bar{\Omega})}^{2} \tag{3.5}\\
\left\|A_{a} \mathbf{v}-A_{a} \mathbf{u}\right\|_{C^{0, \beta}(\bar{\Omega})} \leq C_{1}\|\mathbf{v}-\mathbf{u}\|_{\mathcal{C}^{1,0}(\bar{\Omega})}\left[\|\mathbf{v}\|_{\mathcal{C}^{1,0}(\bar{\Omega})}+\|\mathbf{u}\|_{\mathcal{C}^{1,0}(\bar{\Omega})}\right] \tag{3.6}
\end{gather*}
$$

2. If $a \in C^{1, \beta}(\bar{\Omega})$, then there exists a positive constant C_{2} such that $A_{a}: C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \rightarrow C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ is a compact continuous mapping and

$$
\begin{equation*}
\left\|A_{a} \mathbf{v}\right\|_{\mathcal{C}^{1, \beta}\left(\Omega ; \mathbb{R}^{m}\right)} \leq C_{2}\|\mathbf{v}\|_{C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)}^{2} \tag{3.7}
\end{equation*}
$$

Proof. Easy calculation yields that

$$
\||\mathbf{v}|\|_{C^{0, \beta}(\bar{\Omega})} \leq\|\mathbf{v}\|_{\mathcal{C}^{0, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)}
$$

So, according to Lemma 3.7 in the Appendix

$$
\left\|A_{a} v\right\|_{C^{0, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)} \leq 4\|a\|_{C^{0, \beta}(\bar{\Omega})}\|v\|_{C^{0, \beta}\left(\bar{\Omega}: \mathbb{R}^{m}\right)}^{2} .
$$

Since $C^{1,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \hookrightarrow C^{0, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ by [19, Lemma 6.36], we obtain the estimate (3.5).
Clearly

$$
\left|A_{a} \mathbf{v}(x)-A_{a} \mathbf{v}(x)\right| \leq|a(x)||\|\mathbf{v}(x)|-|\mathbf{u}(x)\||\mathbf{v}(x)|+|a(x)\|\mathbf{u}(x)\| \mathbf{v}(x)-\mathbf{u}(x)| .
$$

Hence there exists a constant c_{1} such that

$$
\begin{equation*}
\left\|A_{a} \mathbf{v}-A_{a} \mathbf{u}\right\|_{C^{0}(\bar{\Omega})} \leq c_{1}\|\mathbf{v}-\mathbf{u}\|_{C^{0}(\bar{\Omega})}\left(\|\mathbf{v}\|_{C^{0}(\bar{\Omega})}+\|\mathbf{u}\|_{C^{0}(\bar{\Omega})}\right) . \tag{3.8}
\end{equation*}
$$

We now calculate derivatives of $A_{1} \mathbf{v}$. If $x \in \Omega$ and $\mathbf{v}(x) \neq 0$ then

$$
\begin{equation*}
\partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right]=|\mathbf{v}(x)| \partial_{j} v_{k}(x)+\frac{v_{k}(x)\left[\mathbf{v}(x) \cdot \partial_{j} \mathbf{v}(x)\right]}{|\mathbf{v}(x)|} . \tag{3.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|\nabla A_{1} \mathbf{v}(x)\right| \leq(m+1)^{2}|\mathbf{v}(x)|\|\mathbf{v}\|_{C^{1,0}(\bar{\Omega})} . \tag{3.10}
\end{equation*}
$$

Let now $x \in \Omega$ and $\mathbf{v}(x)=0$. Denote $\mathbf{e}_{j}=\left(\delta_{1 j}, \ldots, \delta_{m j}\right)$. Then

$$
\partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right]=\lim _{t \rightarrow 0} \frac{\left|\mathbf{v}\left(x+t e_{j}\right)\right|\left[v_{k}\left(x+t e_{j}\right)-v_{k}(x)\right]}{t}=|\mathbf{v}(x)| \partial_{j} v_{k}(x)=0
$$

and (3.10) holds too. Suppose now that $x \in \partial \Omega$. If $\mathbf{v}(x) \neq 0$ then $\partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right]$ can be continuously extended to x by (3.9). If $\mathbf{v}(x)=0$ then (3.10) gives that $\nabla A_{1} \mathbf{v}$ can be continuously extended to x by $\nabla A_{1} \mathbf{v}(x)=0$. The estimates (3.5) and (3.10) give that there exists a constant c_{2} such that

$$
\begin{equation*}
\left\|A_{1} \mathbf{v}\right\|_{\mathcal{C}^{1,0}(\bar{\Omega})} \leq c_{2}\|\mathbf{v}\|_{C^{1,0}(\bar{\Omega})}^{2} \tag{3.11}
\end{equation*}
$$

Suppose that $\mathbf{u}, \mathbf{v} \in \mathcal{C}^{1,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$. Let $x \in \Omega$. Suppose first that $\mathbf{u}(x)=0$. Since $\nabla A_{1} \mathbf{u}(x)=0$, (3.10) gives

$$
\begin{equation*}
\left|\nabla A_{1} \mathbf{v}(x)-\nabla A_{1} \mathbf{u}(x)\right|=\left|\nabla A_{1} \mathbf{v}(x)\right| \leq(m+1)^{2}|\mathbf{v}(x)-\mathbf{u}(x)|\|\mathbf{v}\|_{C^{1,0},(\bar{\Omega})} . \tag{3.12}
\end{equation*}
$$

Let now $|\mathbf{v}(x)| \geq|\mathbf{u}(x)|>0$. According to (3.9)

$$
\begin{aligned}
& \left|\partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right]-\partial_{j}\left[|\mathbf{u}(x)| u_{k}(x)\right]\right| \leq\left|\mathbf{v}(x)-\mathbf{u}(x)\left\|\partial _ { j } v _ { k } (x) \left|+\left|\mathbf{u}(x) \| \partial_{j} v_{k}(x)-\partial_{j} u_{k}(x)\right|\right.\right.\right. \\
& +\frac{\left|\mathbf{u}(x)\left\|v_{k}(x)-u_{k}(x)\right\| \mathbf{v}(x) \cdot \partial_{j} \mathbf{v}(x)\right|+|\mathbf{u}(x)|\left|u_{k}(x)\right|\left|\mathbf{v}(x)-\mathbf{u}(x) \| \partial_{j} \mathbf{v}(x)\right|}{|\mathbf{v}(x)||\mathbf{u}(x)|} \\
& \quad+\frac{\left|u _ { k } (x) \left\|\left.\mathbf{u}(x)\right|^{2}\left|\partial_{j} \mathbf{v}(x)-\partial_{j} \mathbf{u}(x)\right|+\left|\mathbf{u}(x)-\mathbf{v}(x)\left\|u_{k}(x)\right\| \mathbf{u}(x) \cdot \partial_{j} \mathbf{u}(x)\right|\right.\right.}{|\mathbf{v}(x)||\mathbf{u}(x)|}
\end{aligned}
$$

$$
\leq 6\|\mathbf{u}-\mathbf{v}\|_{C^{1,0}(\bar{\Omega})}\left(\|\mathbf{v}\|_{C^{1,0}(\bar{\Omega})}+\|\mathbf{u}\|_{\mathcal{C}^{1,0}(\bar{\Omega})}\right)
$$

This inequality, (3.12) and (3.8) give that there exists a constant c_{3} such that

$$
\left\|A_{1} \mathbf{u}-A_{1} \mathbf{v}\right\|_{\mathcal{C}^{1,0}(\bar{\Omega})} \leq c_{3}\|\mathbf{u}-\mathbf{v}\|_{C^{1,0}(\bar{\Omega})}\left(\|\mathbf{v}\|_{\mathcal{C}^{1,0}(\bar{\Omega})}+\|\mathbf{u}\|_{\mathcal{C}^{1,0}(\bar{\Omega})}\right)
$$

Since $C^{1,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \hookrightarrow C^{0, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ by [19, Lemma 6.36], there exists a constant c_{4} such that

$$
\left\|A_{1} \mathbf{u}-A_{1} \mathbf{v}\right\|_{C^{0, \beta}(\bar{\Omega})} \leq c_{4}\|\mathbf{u}-\mathbf{v}\|_{C^{1,0}(\bar{\Omega})}\left(\|\mathbf{v}\|_{C^{1,0}(\bar{\Omega})}+\|\mathbf{u}\|_{\mathcal{C}^{1,0}(\bar{\Omega})}\right) .
$$

Since $A_{a} \mathbf{v}=a A_{1} \mathbf{v}$, Lemma 3.7 gives that there exists a constant C_{1} such that (3.6) holds.
Let now $\mathbf{v} \in C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$. We are going to calculate $\nabla^{2} A_{1} \mathbf{v}$. If $x \in \Omega$ and $\mathbf{v}(x) \neq 0$, then we obtain from (3.9)

$$
\begin{array}{r}
\partial_{l} \partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right]=|\mathbf{v}(x)| \partial_{l} \partial_{j} v_{k}(x)+\frac{\partial_{j} v_{k}(x)\left[\mathbf{v}(x) \cdot \partial_{l} \mathbf{v}(x)\right]}{|\mathbf{v}(x)|} \tag{3.13}\\
+\frac{\partial_{l} v_{k}(x)\left[\mathbf{v}(x) \cdot \partial_{j} \mathbf{v}(x)\right]+v_{k}(x)\left[\partial_{l} \mathbf{v}(x) \cdot \partial_{j} \mathbf{v}(x)\right]+v_{k}(x)\left[\mathbf{v}(x) \cdot \partial_{l} \partial_{j} \mathbf{v}(x)\right]}{|\mathbf{v}(x)|} \\
-\frac{v_{k}(x)\left[\mathbf{v}(x) \cdot \partial_{j} \mathbf{v}(x)\right]\left[\mathbf{v}(x) \cdot \partial_{l} \mathbf{v}(x)\right]}{|\mathbf{v}(x)|^{3}} .
\end{array}
$$

So,

$$
\begin{equation*}
\left|\partial_{l} \partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right]\right| \leq 6\|\mathbf{v}\|_{C^{2,0}(\bar{\Omega})}^{2} . \tag{3.14}
\end{equation*}
$$

Now we calculate $\partial_{l} \partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right]$ in the sense of distributions. For $\epsilon \geq 0$ denote $\Omega(\epsilon):=\{x \in$ $\Omega ;|\mathbf{v}(x)|>\epsilon\}, V(\epsilon):=\Omega \backslash \overline{\Omega(\epsilon)}$. Suppose that $\varphi \in C^{\infty}\left(\mathbb{R}^{m}\right)$ has compact support in Ω. We have proved that if $\mathbf{v}(x)=0$, then $\partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right]=0$. Thus

$$
\begin{gathered}
\left\langle\partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right], \varphi\right\rangle=-\int_{\Omega}\left[\partial_{l} \varphi(x)\right] \partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right] \mathrm{d} x \\
\quad=-\lim _{\epsilon \downarrow 0} \int_{\Omega(\epsilon)}\left[\partial_{l} \varphi(x)\right] \partial_{j}\left[|\mathbf{v}(x)| v_{k}(x)\right] \mathrm{d} x .
\end{gathered}
$$

According to the Green formula

$$
\left\langle\partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right], \varphi\right\rangle=\lim _{\epsilon \downarrow 0}\left[\int_{\Omega(\epsilon)} \varphi \partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right] \mathrm{d} x-\int_{\partial \Omega(\epsilon)} \varphi n_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right] \mathrm{d} \sigma\right] .
$$

If $x \in \partial \Omega(\epsilon) \cap \Omega$ then $|\mathbf{v}(x)|=\epsilon$. If $x \in \partial \Omega(\epsilon) \backslash \Omega$ then $\varphi(x)=0$. Thus we obtain by (3.14) and (3.9)

$$
\begin{equation*}
\left\langle\partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right], \varphi\right\rangle=\int_{\Omega(0)} \varphi \partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right]-\lim _{\epsilon\rfloor 0} \int_{\partial \Omega(\epsilon)} \varphi n_{l}\left[\epsilon \partial_{j} v_{k}+\frac{v_{k} \mathbf{v} \cdot \partial_{j} \mathbf{v}}{\epsilon}\right] . \tag{3.15}
\end{equation*}
$$

According to the Green formula

$$
\left|\lim _{\epsilon \downharpoonright 0} \int_{\partial \Omega(\epsilon)} \varphi n_{l}\left[\epsilon \partial_{j} v_{k}+\frac{v_{k} \mathbf{v} \cdot \partial_{j} \mathbf{v}}{\epsilon}\right]\right| \leq \lim _{\epsilon \downharpoonright 0}\left|\epsilon \int_{\partial \Omega(\epsilon)} \varphi n_{l} \partial_{j} v_{k} \mathrm{~d} \sigma\right|
$$

$$
\begin{gathered}
+\lim _{\epsilon \downarrow 0}\left|\int_{\partial V(\epsilon)} \varphi n_{l} \frac{v_{k} \mathbf{v} \cdot \partial_{j} \mathbf{v}}{\epsilon} \mathrm{~d} \sigma\right|=\lim _{\epsilon\rfloor 0} \epsilon\left|\int_{\Omega(\epsilon)} \partial_{l}\left[\varphi \partial_{j} v_{k}\right] \mathrm{d} x\right| \\
+\lim _{\epsilon\rfloor 0}\left|\int_{V(\epsilon)} \frac{1}{\epsilon}\left[\partial_{l} \varphi v_{k} \mathbf{v} \cdot \partial_{j} \mathbf{v}+\varphi \partial_{l} v_{k} \mathbf{v} \cdot \partial_{j} \mathbf{v}+\varphi v_{k} \partial_{l} \mathbf{v} \cdot \partial_{j} \mathbf{v}+\varphi v_{k} \mathbf{v} \cdot \partial_{l} \partial_{j} \mathbf{v}\right] \mathrm{d} x\right| \\
\leq 0+\lim _{\epsilon \downarrow 0} \int_{V(\epsilon) \backslash V(0)}\|\varphi\|_{C^{1}(\bar{\Omega})}\|\mathbf{v}\|_{C^{2}(\bar{\Omega})}^{2} \mathrm{~d} x=0 .
\end{gathered}
$$

This and (3.15) give

$$
\left\langle\partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right], \varphi\right\rangle=\int_{\Omega(0)} \varphi \partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right] .
$$

So, if we define $\partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right](x)$ by (3.13) for $\mathbf{v}(x) \neq 0$, and $\partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right](x)=0$ for $\mathbf{v}(x)=0$, then this function is $\partial_{l} \partial_{j}\left[|\mathbf{v}| v_{k}\right]$ in sense of distributions. (3.14) forces $A_{1} \mathbf{v} \in W^{2, \infty}\left(\Omega ; \mathbb{R}^{m}\right)$ and

$$
\left\|A_{1} \mathbf{v}\right\|_{W^{2,0}(\Omega)} \leq c_{5}\|\mathbf{v}\|_{C^{2,0}(\bar{\Omega})}^{2}
$$

$W^{2, \infty}(\Omega) \hookrightarrow C^{1, \beta}(\bar{\Omega})$ compactly by [20, Theorem 6.3]. So,

$$
\begin{equation*}
\left\|A_{1} \mathbf{v}\right\|_{\mathcal{C}^{1, \beta}(\bar{\Omega})} \leq c_{6}\|\mathbf{v}\|_{C^{2,0}(\bar{\Omega})}^{2} . \tag{3.16}
\end{equation*}
$$

Since A_{1} maps bounded subsets of $C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ to bounded subsets of $W^{2, \infty}\left(\Omega ; \mathbb{R}^{m}\right)$ and $W^{2, \infty}(\Omega) \hookrightarrow$ $C^{1, \beta}(\bar{\Omega})$ compactly, the mapping $A_{1}: C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \rightarrow C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ is compact. We now show that the mapping $A_{1}: C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \rightarrow C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ is continuous. Suppose the opposite. Then there exist $\left\{\mathbf{v}_{k}\right\} \subset C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ and $\epsilon>0$ such that $\mathbf{v}_{k} \rightarrow \mathbf{v}$ in $C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ and $\left\|A_{1} \mathbf{v}_{k}-A_{1} \mathbf{v}\right\|_{C^{1, \beta}(\bar{\Omega})}>\epsilon$. Since $A_{1}: C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \rightarrow C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ is compact, there exists a sub-sequence $\left\{\mathbf{v}_{k(n)}\right\}$ of $\left\{\mathbf{v}_{k}\right\}$ and $\mathbf{w} \in C^{1, \beta}(\bar{\Omega})$ such that $A_{1} \mathbf{v}_{k(n)} \rightarrow \mathbf{w}$ in $C^{1, \beta}(\bar{\Omega})$. Since $A_{1}: C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \rightarrow C^{0, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ is continuous, it must be $\mathbf{w}=A_{1} \mathbf{v}$. That is a contradiction.

Since $A_{a} \mathbf{v}=a A_{1} \mathbf{v}$, Lemma 3.7 and (3.16) give that $A_{a}: C^{2,0}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \rightarrow C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ is a compact continuous mapping and (3.7) holds.

Remark 3.3. Let A_{a} be from Lemma 3.2 with $a \in C^{\infty}(\bar{\Omega})$. We cannot show that $A_{a}: C^{k, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \rightarrow$ $C^{k-2, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ for $k \geq 4$ as shows the following example. Fix $z \in \Omega$ and define $\mathbf{v}(x):=\left(x_{2}-z_{2}, 0, \ldots, 0\right)$. Then $\mathbf{v} \in C^{\infty}\left(R^{m} ; R^{m}\right)$ but $|\mathbf{v}| \mathbf{v} \notin C^{2}\left(\Omega ; R^{m}\right)$.

Theorem 3.4. Let $0<\beta \leq \alpha<1$ and $k \in \mathbb{N}$. If $k=1$ suppose that $\beta<\alpha$. Put $l=\max (k-2,0)$. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with boundary of class $C^{k, \alpha}$. Let a,,$\lambda \in C^{l, \beta}(\bar{\Omega})$ and $\lambda \geq 0$. If $k \geq 3$ suppose that $a \equiv 0$. Then there exist $\delta, \epsilon, C \in(0, \infty)$ such that the following holds: If $\mathbf{g} \in C^{k, \beta}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfying (2.3), $\mathbf{F} \in C^{l, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ and

$$
\begin{equation*}
\|\mathbf{g}\|_{C^{k, \beta}(\partial \Omega)}+\|\mathbf{F}\|_{\mathcal{C}^{\prime \prime \beta}(\bar{\Omega})}<\delta, \tag{3.17}
\end{equation*}
$$

then there exists a unique solution $(\mathbf{u}, p) \in\left[C^{k, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right)\right] \times\left[C^{k-1, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)\right]$ of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system

$$
\begin{gather*}
\nabla p-\Delta \mathbf{u}+\lambda \mathbf{u}+a|\mathbf{u}| \mathbf{u}+b(\mathbf{u} \cdot \nabla) \mathbf{u}=\mathbf{F}, \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \Omega, \tag{3.18a}\\
\mathbf{u}=\mathbf{g} \quad \text { on } \partial \Omega \tag{3.18b}
\end{gather*}
$$

such that

$$
\begin{equation*}
\int_{\Omega} p \mathrm{~d} x=0 \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathbf{u}\|_{C^{k, \beta}(\bar{\Omega})}<\epsilon \tag{3.20}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\|\mathbf{u}\|_{C^{k, \beta}(\bar{\Omega})}+\|p\|_{C^{k-1, \beta}(\bar{\Omega})} \leq C\left(\|\boldsymbol{g}\|_{C^{k, \beta}(\partial \Omega)}+\|\mathbf{F}\|_{C^{L^{\prime} \beta}(\bar{\Omega})}\right) . \tag{3.21}
\end{equation*}
$$

If $\tilde{\mathbf{g}} \in C^{k, \beta}\left(\partial \Omega ; \mathbb{R}^{m}\right), \tilde{\mathbf{F}} \in C^{l, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right), \tilde{\mathbf{u}} \in C^{k, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right)$ and $\tilde{p} \in C^{k-1, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)$,

$$
\begin{gather*}
\nabla \tilde{p}-\Delta \tilde{\mathbf{u}}+a|\tilde{\mathbf{u}}| \tilde{\mathbf{u}}+\lambda \tilde{\mathbf{u}}+b(\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}}=\tilde{\mathbf{F}}, \quad \nabla \cdot \tilde{\mathbf{u}}=0 \quad \text { in } \Omega, \tag{3.22a}\\
\tilde{\mathbf{u}}=\tilde{\mathbf{g}} \quad \text { on } \partial \Omega, \quad \int_{\Omega} \tilde{p} \mathrm{~d} x=0 \tag{3.22b}
\end{gather*}
$$

and $\|\tilde{\mathbf{u}}\|_{C^{k, \beta}(\bar{\Omega})}<\epsilon$, then

$$
\begin{equation*}
\|\mathbf{u}-\tilde{\mathbf{u}}\|_{C^{k, \beta}(\bar{\Omega})}+\|p-\tilde{p}\|_{C^{k-1, \beta}(\bar{\Omega})} \leq C\left(\|\mathbf{g}-\tilde{\mathbf{g}}\|_{C^{C^{k}(\partial \Omega)}}+\|\mathbf{F}-\tilde{\mathbf{F}}\|_{C^{L^{\prime} \beta(\bar{\Omega})}}\right) . \tag{3.23}
\end{equation*}
$$

Proof. Let L_{b} be defined by (3.1), A_{a} be given by (3.4). Put $D_{a b} \mathbf{u}:=L_{b}(\mathbf{u}, \mathbf{u})+A_{a} \mathbf{u}$. According to Lemma 3.1 and Lemma 3.2 there exists a constant C_{1} such that

$$
\begin{gather*}
\left\|D_{a b} \mathbf{v}\right\|_{C^{l \beta}(\bar{\Omega})} \leq C_{1}\|\mathbf{v}\|_{\mathcal{C}^{k \beta \beta}(\bar{\Omega})}^{2}, \tag{3.24}\\
\left\|D_{a b} \mathbf{v}-D_{a b} \mathbf{u}\right\|_{C^{1 / \beta}(\bar{\Omega})} \leq C_{1}\|\mathbf{v}-\mathbf{u}\|_{C^{k \beta \beta}(\bar{\Omega})}\left[\|\mathbf{v}\|_{C^{k \beta \beta}(\bar{\Omega})}+\|\mathbf{u}\|_{C^{k \beta}(\bar{\Omega})}\right] \tag{3.25}
\end{gather*}
$$

By Theorem 2.2 and Theorem 2.3 there exists a constant C_{2} such that for each $\mathbf{g} \in C^{k, \beta}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfying (2.3) and $\mathbf{f} \in C^{l, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ there exists a unique solution $(\mathbf{u}, p) \in\left[C^{k, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right)\right] \times$ $\left[C^{k-1, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)\right]$ of the Dirichlet problem (2.2), (3.19). Moreover,

$$
\begin{equation*}
\|\mathbf{u}\|_{C^{k \beta \beta}(\bar{\Omega})}+\|p\|_{C^{k-1, \beta}(\bar{\Omega})} \leq C_{2}\left(\|\mathbf{g}\|_{C^{k, \beta}(\partial \Omega)}+\|f\|_{C^{\prime, \beta}(\bar{\Omega})}\right) \tag{3.26}
\end{equation*}
$$

Remark that (\mathbf{u}, p) is a solution of (3.18) if (\mathbf{u}, p) is a solution of (2.2) with $\mathbf{f}=\mathbf{F}-D_{a b} \mathbf{u}$. Put

$$
\epsilon:=\frac{1}{4\left(C_{1}+1\right)\left(C_{2}+1\right)}, \quad \delta:=\frac{\epsilon}{2\left(C_{2}+1\right)} .
$$

If $(\mathbf{u}, p),(\tilde{\mathbf{u}}, \tilde{p}) \in\left[C^{k, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right)\right] \times\left[C^{k-1, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)\right]$ are solutions of (3.18), (3.19) and (3.22) with (3.20) and $\|\tilde{\mathbf{u}}\|_{\left.C^{k} \overline{(} \bar{\Omega}\right)}<\epsilon$, then

$$
\begin{aligned}
\|\mathbf{u}-\tilde{\mathbf{u}}\|_{C^{k \beta} \beta}(\bar{\Omega}) & +\|p-\tilde{p}\|_{C^{k-1, \beta}(\bar{\Omega})} \leq C_{2}\left[\|\mathbf{g}-\tilde{\mathbf{g}}\|_{C^{k \beta}(\partial \Omega)}+\|\mathbf{F}-\tilde{\mathbf{F}}\|_{C^{l \beta}(\bar{\Omega})}\right. \\
& \left.+\left\|D_{a b}(\mathbf{u}, \mathbf{u})-D_{a b}(\tilde{\mathbf{u}}, \tilde{\mathbf{u}})\right\|_{C^{l / \beta}(\bar{\Omega})}\right] \leq C_{2}\left[\|\mathbf{g}-\tilde{\mathbf{g}}\|_{C^{k, \beta}(\partial \Omega)}\right. \\
& \left.+\|\mathbf{F}-\tilde{\mathbf{F}}\|_{C^{l / \beta}(\bar{\Omega})}+2 \epsilon C_{1}\|\mathbf{u}-\tilde{\mathbf{u}}\|_{C^{k \beta}(\bar{\Omega})}\right] .
\end{aligned}
$$

Since $2 C_{1} C_{2} \epsilon<1 / 2$ we get subtracting $2 \epsilon C_{1} C_{2}\|\mathbf{u}-\tilde{\mathbf{u}}\|_{C^{k, \beta}(\bar{\Omega})}$ from the both sides

$$
\|\mathbf{u}-\tilde{\mathbf{u}}\|_{C^{k, \beta}(\bar{\Omega})}+\|p-\tilde{p}\|_{C^{k-1, \beta}(\bar{\Omega})} \leq 2 C_{2}\left[\|\mathbf{g}-\tilde{\mathbf{g}}\|_{C^{k}(\partial \Omega)}+\|\mathbf{F}-\tilde{\mathbf{F}}\|_{C^{1 / \beta}(\bar{\Omega})}\right] .
$$

Therefore a solution of (3.18) satisfying (3.19) and (3.20) is unique. Putting $\tilde{p} \equiv 0, \tilde{\mathbf{u}} \equiv 0, \tilde{\mathbf{F}} \equiv 0$ and $\tilde{\mathbf{g}} \equiv 0$, we obtain (3.21) with $C=2 C_{2}$.

Denote $X:=\left\{\mathbf{v} \in C^{k, \beta}\left(\bar{\Omega}, \mathbb{R}^{m}\right) ;\|\mathbf{v}\|_{C^{k, \beta}(\bar{\Omega})} \leq \epsilon\right\}$. Fix $\mathbf{g} \in C^{k, \beta}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and $\mathbf{F} \in C^{l, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ satisfying (2.3) and (3.17). For $\mathbf{v} \in X$ there exists a unique solution ($\left.\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right) \in\left[C^{k, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right)\right] \times$ $\left[C^{k-1, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)\right]$ of the Dirichlet problem (2.2), (3.19) with $\mathbf{f}=\mathbf{F}-D_{a b} \mathbf{v}$. Remember that $\left(\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right)$ is a solution of (3.18) if and only if $\mathbf{u}^{\mathbf{v}}=\mathbf{v}$. According to (3.26), (3.17) and (3.24)

$$
\left\|\mathbf{u}^{\mathbf{v}}\right\|_{C^{k \beta \beta}(\bar{\Omega})} \leq C_{2}\left[\|\mathbf{g}\|_{C^{k} \beta(\partial \Omega)}+\|\mathbf{F}\|_{C^{1 / \beta}(\bar{\Omega})}+\left\|D_{a b} \mathbf{v}\right\|_{C^{l / \beta}(\bar{\Omega})}\right] \leq C_{2} \delta+C_{2} C_{1} \epsilon^{2}
$$

As $C_{2} \delta+C_{2} C_{1} \epsilon^{2}<\epsilon$, we infer $\mathbf{u}^{\mathbf{v}} \in X$. If $\mathbf{w} \in X$ then

$$
\left\|\mathbf{u}^{\mathbf{v}}-\mathbf{u}^{\mathbf{w}}\right\|_{C^{k, \beta}(\bar{\Omega})} \leq C_{2}\left\|D_{a b} \mathbf{v}-D_{a b} \mathbf{w}\right\|_{C^{l / \beta}(\bar{\Omega})} \leq C_{2} C_{1} 2 \epsilon\|\mathbf{w}-\mathbf{v}\|_{C^{k, \beta}(\bar{\Omega})}
$$

by (3.26) and (3.25). Since $C_{2} C_{1} 2 \epsilon<1$, the Fixed point theorem ([21, Satz 1.24]) gives that there exists $\mathbf{v} \in X$ such that $\mathbf{u}^{\mathbf{v}}=\mathbf{v}$. So, ($\left.\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right)$ is a solution of (3.18), (3.19) in $\left[C^{k, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \cap C^{2}\left(\Omega ; \mathbb{R}^{m}\right)\right] \times$ $\left[C^{k-1, \beta}(\bar{\Omega}) \cap C^{1}(\Omega)\right]$ satisfying (3.20).

In Theorem 3.4 we suppose that $a \equiv 0$ for $k \geq 3$. This assumption cannot be removed for $k>3$ as Remark 3.3 shows. The following theorem is devoted to the case $k=3$.

Theorem 3.5. Let $0<\beta \leq \alpha<1$ and $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with boundary of class $C^{3, \alpha}$. Let $a, b, \lambda \in C^{1, \beta}(\bar{\Omega})$ and $\lambda \geq 0$. Then there exist $\delta, \epsilon \in(0, \infty)$ such that the following holds: If $\mathbf{g} \in C^{3, \beta}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfies (2.3), $\mathbf{F} \in C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ and

$$
\begin{equation*}
\|\mathbf{g}\|_{C^{3 \beta}(\partial \Omega)}+\|\mathbf{F}\|_{\mathcal{C}^{1, \beta}(\bar{\Omega})}<\delta, \tag{3.27}
\end{equation*}
$$

then there exists a unique solution $(\mathbf{u}, p) \in C^{3, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{2, \beta}(\bar{\Omega})$ of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (3.18), (3.19) such that

$$
\begin{equation*}
\|\mathbf{u}\|_{C^{3} \beta(\bar{\Omega})}<\epsilon . \tag{3.28}
\end{equation*}
$$

Proof. Let L_{b} be defined by (3.1), A_{a} be given by (3.4). We conclude from Lemma 3.1 and Lemma 3.2 that there exists a constant C_{1} such that

$$
\begin{gather*}
\left\|L_{b}(\mathbf{v}, \mathbf{v})\right\|_{C^{1, \beta}(\bar{\Omega})}+\left\|A_{a} \mathbf{v}\right\|_{C^{1, \beta}(\bar{\Omega})} \leq C_{1}\|\mathbf{v}\|_{\left.C^{3, \beta}, \bar{\Omega}\right)}^{2}, \tag{3.29}\\
\left\|L_{b}(\mathbf{v}, \mathbf{v})-L_{b}(\mathbf{u}, \mathbf{u})\right\|_{C^{1, \beta}(\bar{\Omega})} \leq C_{1}\|\mathbf{v}-\mathbf{u}\|_{C^{3, \beta}(\bar{\Omega})}\left[\|\mathbf{v}\|_{C^{3, \beta}(\bar{\Omega})}+\|\mathbf{u}\|_{\left.C^{3}, \overline{(}\right)}\right] . \tag{3.30}
\end{gather*}
$$

According to Theorem 2.3 there exists a constant C_{2} such that for each $\mathbf{g} \in C^{3, \beta}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfying (2.3) and $\mathbf{f} \in C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ there exists a unique solution $(\mathbf{u}, p) \in C^{3, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{2, \beta}(\bar{\Omega})$ of the Dirichlet problem (2.2), (3.19). Moreover,

$$
\begin{equation*}
\|\mathbf{u}\|_{C^{3, \beta}(\bar{\Omega})}+\|p\|_{C^{2, \beta}(\bar{\Omega})} \leq C_{2}\left(\|\mathbf{g}\|_{C^{3, \beta}(\partial \Omega)}+\|f\|_{C^{1, \beta}(\bar{\Omega})}\right) . \tag{3.31}
\end{equation*}
$$

Suppose now that

$$
\begin{equation*}
0<\epsilon<\frac{1}{4\left(C_{1}+1\right)\left(C_{2}+1\right)}, \quad 0<\delta<\frac{\epsilon}{2\left(C_{2}+1\right)} . \tag{3.32}
\end{equation*}
$$

Put $X_{\epsilon}:=\left\{\mathbf{v} \in C^{3, \beta}\left(\bar{\Omega}, \mathbb{R}^{m}\right) ;\|\mathbf{v}\|_{C^{3 \beta}(\bar{\Omega})} \leq \epsilon\right\}$. Fix $\mathbf{g} \in C^{3, \beta}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ and $\mathbf{F} \in C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ satisfying (2.3) and (3.27). For $\mathbf{v} \in X_{\epsilon}$ there exists a unique solution ($\left.\mathbf{u}^{\mathbf{v}}, p^{\mathbf{v}}\right) \in C^{3, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{2, \beta}(\bar{\Omega})$ of the Dirichlet problem (2.2), (3.19) with $\mathbf{f}=\mathbf{F}-L_{b}(\mathbf{v}, \mathbf{v})$. Moreover, there is a unique solution $\left(\tilde{\mathbf{u}}^{\mathbf{v}}, \tilde{p}^{\mathbf{v}}\right) \in$ $C^{3, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{2, \beta}(\bar{\Omega})$ of

$$
\begin{gathered}
\nabla \tilde{p}^{\mathbf{v}}-\Delta \tilde{\mathbf{u}}^{\mathrm{v}}+\lambda \tilde{\mathbf{u}}^{\mathbf{v}}=-a|\mathbf{v}| \mathbf{v}, \quad \nabla \cdot \tilde{\mathbf{u}}^{\mathrm{v}}=0 \quad \text { in } \Omega, \\
\tilde{\mathbf{u}}^{\mathbf{v}}=0 \quad \text { on } \partial \Omega, \quad \int_{\Omega} \tilde{p}^{\mathrm{v}} \mathrm{~d} x=0 .
\end{gathered}
$$

If $\mathbf{u}^{\mathbf{v}}+\tilde{\mathbf{u}}^{\mathbf{v}}=\mathbf{v}$ then $\left(\mathbf{v}, p^{\mathbf{v}}+\tilde{p}^{\mathbf{v}}\right)$ is a solution of the problem (3.18), (3.19). If $\mathbf{w} \in X_{\epsilon}$ then

$$
\begin{gathered}
\left\|\mathbf{u}^{\mathbf{v}}\right\|_{C^{3}, \bar{\Omega}(\bar{\Omega})}+\left\|\tilde{\mathbf{u}}^{w^{W}}\right\|_{C^{3, \beta}(\bar{\Omega})} \leq C_{2}\left(\|\mathbf{g}\|_{C^{3, \beta}(\partial \Omega)}+\|\mathbf{F}\|_{\mathcal{C}^{1, \beta}(\bar{\Omega})}+\left\|L_{b}(\mathbf{v}, \mathbf{v})\right\|_{C^{1, \beta}(\bar{\Omega})}\right. \\
\left.+\left\|A_{a} \mathbf{w}\right\|_{C^{1, \beta}(\bar{\Omega})}\right) \leq C_{2}\left(\delta+C_{1}\|\mathbf{v}\|_{C^{3, \beta}(\bar{\Omega})}^{2}+C_{1}\|\mathbf{w}\|_{C^{3, \beta}(\bar{\Omega})}^{2}\right)<\epsilon
\end{gathered}
$$

by (3.31), (3.27), (3.29) and (3.32). So, $\mathbf{u}^{\mathbf{v}}+\tilde{\mathbf{u}}^{\mathbf{w}} \in X_{\epsilon}$. According to (3.31), (3.30) and (3.32)

$$
\begin{gathered}
\left\|\mathbf{u}^{\mathbf{v}}-\mathbf{u}^{\mathbf{w}}\right\|_{C^{3 \beta}(\bar{\Omega})} \leq C_{2}\left\|L_{b}(\mathbf{v}, \mathbf{v})-L_{b}(\mathbf{w}, \mathbf{w})\right\|_{C^{1, \beta}(\bar{\Omega})} \\
\leq C_{1} C_{2}\|\mathbf{v}-\mathbf{w}\|_{\left.C^{3 \beta}, \bar{\Omega}\right)}\left[\|\mathbf{v}\|_{C^{3 \beta}(\bar{\Omega})}+\|\mathbf{w}\|_{C^{3 \beta},(\bar{\Omega})}\right]<\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|_{C^{3 \beta}(\bar{\Omega})} .
\end{gathered}
$$

So $\mathbf{v} \mapsto \mathbf{u}^{\mathbf{v}}$ is a contractive mapping on X_{ϵ}. Since $A_{a}: C^{3, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \rightarrow C^{1, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ is a compact continuous mapping by Lemma 3.2, the mapping $\mathbf{v} \mapsto \tilde{\mathbf{u}}^{\mathbf{v}}$ is a compact continuous mapping on X_{ϵ}. Lemma 3.8 forces that there exists $\mathbf{v} \in X_{\epsilon}$ such that $\mathbf{u}^{\mathbf{v}}+\tilde{\mathbf{u}}^{\mathbf{v}}=\mathbf{v}$. Hence $\left(\mathbf{v}, p^{\mathbf{v}}+\tilde{p}^{\mathbf{v}}\right)$ is a solution of the problem (3.18), (3.19), (3.28) in $C^{3, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{1, \beta}(\bar{\Omega})$. By Theorem 3.4, for sufficiently small ϵ and δ there exists at most one solution of the problem (3.18), (3.19), (3.28) in $C^{3, \beta}\left(\bar{\Omega} ; \mathbb{R}^{m}\right) \times C^{1, \beta}(\bar{\Omega})$.

Acknowledgments

Supported by RVO: 67985840 and GAČR grant GA17-01747S.

Conflict of interest

The author declares no conflict of interest in this paper.

References

1. D. A. Nield, A. Bejan, Convection in Porous Media, 4 Eds., New York: Springer, 2013.
2. M. Kohr, M. L. de Cristoforis, S. E. Mikhailov, et al. Integral potential method for a transmission problem with Lipschitz interface in R^{3} for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67 (2016), 116.
3. M. Kohr, M. L. de Cristoforis, W. L. Wendland, On the Robin-transmission boundary value problems for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes systems, J. Math. Fluid Mech., 18 (2016), 293-329.
4. M. Kohr, M. L. de Cristoforis, W. L. Wendland, Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains, J. Math. Fluid Mech., 16 (2014), 595-630.
5. R. Gutt, M. Kohr, S. E. Mikhailov, et al. On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Meth. Appl. Sci., 40 (2017), 7780-7829.
6. T. Grosan, M. Kohr, W. L. Wendland, Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains, Math. Meth. Appl. Sci., 38 (2015), 36153628.
7. R. Gutt, T. Grosan, On the lid-driven problem in a porous cavity: A theoretical and numerical approach, Appl. Math. Comput., 266 (2015), 1070-1082.
8. M. Kohr, M. L. de Cristoforis, W. L. Wendland, Poisson problems for semilinear Brinkman systems on Lipschitz domains in R^{n}, Z. Angew. Math. Phys., 66 (2015), 833-864.
9. M. Kohr, W. L. Wendland, Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Var. Partial Differ. Eq., 57 (2018), 165.
10. D. Medková, Bounded solutions of the Dirichlet problem for the Stokes resolvent system, Complex Var. Elliptic Eq., 61 (2016), 1689-1715.
11. A. Kufner, O. John, S. Fučík, Function Spaces, Prague: Academia, 1977.
12. E. M. Stein, Singular Integrals and Differentiability of Functions, New Jersey: Princeton University Press, 1970.
13. W. Varnhorn, The Stokes Equations, Berlin: Akademie Verlag, 1994.
14. D. Medková, The Laplace Equation, Springer, 2018.
15. V. A. Solonnikov, General boundary value problems for Douglas-Nirenberg elliptic systems II, Proc. Steklov Inst. Math., 92 (1966), 212-272.
16. P. Maremonti, R. Russo, G. Starita, On the Stokes equations: The boundary value problem, In: P. Maremonti, Advances in Fluid Dynamics, Dipartimento di Matematica, 1999, 69-140.
17. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, New York: Cambridge University Press, 1992.
18. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady State Problems, 2 Eds., Springer, 2011.
19. D. Gilberg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin Heidelberg: Springer, 2001.
20. R. A. Adams, J. L. Fournier, Sobolev Spaces, 2 Eds., Oxford: Elsevier, 2003.
21. M. Dobrowolski, Angewandte Functionanalysis. Functionanalysis, Sobolev-Räume und elliptische Differentialgleichungen, 2 Eds., Berlin Heidelberg: Springer, 2010.
22. G. P. Galdi, G. Simader, H. Sohr, On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl., 167 (1994), 147-163.
23. M. Mitrea, M. Wright, Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains, Paris: Société mathématique de France, 2012.
24. C. Amrouche, V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., 44 (1994), 109-140.
25. D. R. Smart, Fixed Point Theorems, Cambridge: Cambridge University Press, 1974.

Appendix

Lemma 3.6. Let $\Omega \subset \mathbb{R}^{m}$ be a bounded domain with boundary of class C^{1}. Let $\lambda \in L^{\infty}(\Omega)$ be nonnegative and $1<q<\infty$. If $\mathbf{f} \in W^{-1, q}\left(\Omega, \mathbb{R}^{m}\right)$ and $\mathbf{g} \in W^{1-1 / q, q}\left(\partial \Omega, \mathbb{R}^{m}\right)$, then there exists a solution $(\mathbf{v}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ of (2.2) if and only if (2.3) holds. A velocity \mathbf{v} is unique and a pressure p is unique up to an additive constant. Moreover,

$$
\|\mathbf{v}\|_{W^{1, q}(\Omega)}+\|p\|_{L^{q}(\Omega)} \leq C\left(\|\mathbf{f}\|_{W^{-1, q(\Omega)}}+\|\mathbf{g}\|_{W^{1-1 / q, q(\partial \Omega)}}+\left|\int_{\Omega} p \mathrm{~d} x\right|\right) .
$$

Proof. If $(\mathbf{v}, p) \in W^{1, q}\left(\Omega, \mathbb{R}^{m}\right) \times L^{q}(\Omega)$ is a solution of (2.2), then (2.3) holds by Green's formula.
Denote by Y_{q} the set of all $\mathbf{g} \in W^{1-1 / q, q}\left(\partial \Omega ; \mathbb{R}^{m}\right)$ satisfying (2.3). Define $X_{q}:=\left\{\mathbf{v} \in W^{1, q}\left(\Omega ; \mathbb{R}^{m}\right) ; \nabla\right.$. $\mathbf{v}=0$ in $\left.\Omega,\left.\mathbf{v}\right|_{\partial \Omega} \in Y_{q}\right\}$,

$$
U_{\lambda}(\mathbf{v}, p):=\left[-\Delta \mathbf{v}+\lambda \mathbf{v}+\nabla p, \mathbf{v}, \int_{\Omega} p \mathrm{~d} x\right] .
$$

Then $U_{0}: X_{q} \times L^{q}(\Omega) \rightarrow W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times Y_{q} \times \mathbb{R}^{1}$ is an isomorphism by [22, Theorem 2.1]. Since $U_{\lambda}-U_{0}: X_{q} \times L^{q}(\Omega) \rightarrow W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times Y_{q} \times \mathbb{R}^{1}$ is compact, $U_{\lambda}: X_{q} \times L^{q}(\Omega) \rightarrow W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times Y_{q} \times \mathbb{R}^{1}$ is a Fredholm operator with index 0 . Let now $U_{\lambda}(\mathbf{v}, p)=0$. Since $U_{\lambda}: X_{2} \times L^{2}(\Omega) \rightarrow W^{-1,2}\left(\Omega ; \mathbb{R}^{m}\right) \times Y_{2} \times \mathbb{R}^{1}$ is a Fredholm operator with index 0 , [23, Lemma 11.9.21] gives $(\mathbf{v}, p) \in X_{2} \times L^{2}(\Omega)$. Since $-\Delta \mathbf{v}+\nabla p=$ $-\lambda \mathbf{v}$, Green's formula forces

$$
\int_{\Omega} \nabla \mathbf{v} \cdot \nabla \boldsymbol{\Phi} \mathrm{d} x=-\int_{\Omega} \lambda \mathbf{v} \cdot \boldsymbol{\Phi} \mathrm{d} x
$$

for all $\boldsymbol{\Phi} \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$ with $\nabla \cdot \boldsymbol{\Phi}=0$. As \mathbf{v} is in the closure of the space of such $\boldsymbol{\Phi}$ by [24, Theorem 2.9], we infer

$$
\int_{\Omega}[\nabla \mathbf{v} \cdot \nabla \mathbf{v}+\lambda \mathbf{v} \cdot \mathbf{v}] \mathrm{d} x=0
$$

$\nabla v \equiv 0$ and therefore the velocity \mathbf{v} is constant. We have $\mathbf{v} \equiv 0$, because $\mathbf{v}=0$ on $\partial \Omega$. Moreover, $\nabla p=\Delta \mathbf{v}-\lambda \mathbf{v} \equiv 0$ forces that p is constant. The equality $\int_{\Omega} p \mathrm{~d} x=0$ gives that $p \equiv 0$. Therefore $U_{\lambda}: X_{q} \times L^{q}(\Omega) \rightarrow W^{-1, q}\left(\Omega ; \mathbb{R}^{m}\right) \times Y_{q} \times \mathbb{R}^{1}$ is an isomorphism.

Lemma 3.7. Let $\Omega \subset \mathbb{R}^{m}$ be open and $0<\alpha \leq 1$. If $f, g \in C^{0, \alpha}(\bar{\Omega})$ then $f g \in C^{0, \alpha}(\bar{\Omega})$ and

$$
\|f g\|_{C^{0, \alpha}(\bar{\Omega})} \leq 2\|f\|_{\mathcal{C}^{0, \alpha}(\bar{\Omega})}\|g\|_{\mathcal{C}^{0, \alpha}(\bar{\Omega})}
$$

(See [14, Lemma 1.16.8].)
Lemma 3.8. Let Z be a closed convex non-empty subset of a Banach space X. Suppose that A and B map Z into X and that

- $A x+B y \in Z$ for all $x, y \in Z$,
- A is a contraction mapping,
- B is compact and continuous.

Then there exists $z \in Z$ such that $A z+B z=z$.
(See [25, Theorem 4.4.1].)
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

