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Abstract: We study nonlinear problems for a parabolic equation with unknown source functions.
One of the problems is a system which contains the boundary value problem of the first kind and the
equation for a time dependence of the sought source function. In the other problem the corresponding
system is distinguished by boundary conditions. For these nonlinear systems, conditions of unique
solvability in a class of smooth functions are obtained on the basis of the Rothe method. The proposed
approach involves the proof of a priori estimates in the difference-continuous analogs of Hölder
spaces for the corresponding differential-difference nonlinear systems that approximate the original
systems by the Rothe method. The considered nonlinear parabolic problems essentially differ from
usual boundary value problems but have not only the theoretical interest. The present investigation is
connected with the mathematical modeling of nonstationary filtration processes in porous media.
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1. Introduction

The goal of the work is to investigate nonlinear parabolic problems that arise in the mathematical
modeling of some nonstationary filtration processes in underground hydrodynamics. These models are
formulated as a system that involves a boundary value problem for a quasilinear parabolic equation
with an unknown source function and, moreover, an additional relationship for a time dependence
of this sought function. Justification of the corresponding mathematical statements is an important
task since such statements essentially differ from usual boundary value problems (see the well known
monographs [1, 2]). Our main aim is to obtain conditions for existence and uniqueness of their smooth
solutions. Investigation of such conditions is carried out by using the Rothe method and a priori
estimates in the difference-continuous analogs of Hölder spaces for the corresponding differential-
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difference nonlinear system that approximates the original system. The approach that is proposed
in the present work allows one to avoid additional assumptions of the smoothness of the input data,
which have usually been imposed by the Rothe method (see, e.g., [1]). Thus, the faithful character of
differential relations between the input data and the solution in the chosen function spaces is determined
for each of the considered nonlinear parabolic problems.

This article is organized as follows. Beforehand, in section 2 we present some definitions of the
function spaces that are used in our analysis. In particular, the difference-continuous analogs of Hölder
classes are determined for the grid functions. In section 3, we analyze the nonlinear parabolic problem
with the boundary conditions of the first kind. In order to obtain the unique solvability result, the proof
of the corresponding a priori estimates is split into several stages. In section 4 the similar analysis
is carried out for the nonlinear parabolic problem with the boundary conditions of the second kind.
Section 5 contains an example of some mathematical models of filtration processes in underground
fluid mechanics. Such models arise in exploitation of oil-gas fields in the case of cracked porous
media. Finally, a short conclusion in section 6 summarizes the results of this work.

2. Basic designations

In our work we use standard definitions for the function spaces from [1]. In particular, the Hölder
class H2+λ,1+λ/2(Q) (0 < λ < 1) is determined as the space of functions u(x, t) continuous on the closed
set Q = {0 ≤ x ≤ l, 0 ≤ t ≤ T } together with their derivatives uxx, ut which satisfy the Hölder condition
as functions of x, t with the corresponding exponents λ and λ/2. The space O1[0,T ] is determined as
the set of continuous functions having the bounded derivative for 0 ≤ t ≤ T .

For a convenient presentation, the following designation is also used.
H1,λ/2,1(D) is the space of functions which are continuous for (x, t, u) ∈ D = Q× [−M0,M0] together

with their derivatives with respect to x, u and, moreover, satisfy the Hölder condition as functions of t
with the exponent λ/2.

Moreover, in connection with application of the Rothe method we use analogs of the Hölder classes
in the case of the grid functions û = (u0, . . . , un, . . . , uN) defined on the grid ωτ = {tn} = {nτ, n =

0,N, τ = T N−1} and in the case of the grid-continuous functions û(x) = (u0(x), . . . , un(x), . . . , uN(x))
defined on the set Qτ = {0 ≤ x ≤ l, tn ∈ ωτ}. Just as in [3] these analogs are determined in the following
way.

H1+λ/2
τ (ωτ) is the difference analog of the space H1+λ/2[0,T ] (see [1]) for the functions û having a

finite norm
|û|1+λ/2

ωτ
= max

0≤n≤N
|un| + max

1≤n≤N
|unt| + 〈ût〉

λ/2
ωτ
,

unt = (un − un−1)τ−1, n = 1,N, 〈ût〉
λ/2
ωτ

= max
1≤n<n′≤N

{|unt − un′t||tn − tn′ |
−λ/2}.

Hλ,λ/2
τ (Qτ) is the difference-continuous analog of the space Hλ,λ/2(Q) (see [1]) for the functions û(x)

continuous in x for (x, tn) ∈ Qτ and having a finite norm

|û(x)|λ,λ/2
Qτ

= max
(x,tn)∈Qτ

|un(x)| + 〈û(x)〉λ
x,Qτ

+ 〈û(x)〉λ/2
t,Qτ

,

〈û(x)〉λ
x,Qτ

= sup
(x,tn),(x′,tn)∈Qτ

{|un(x) − un(x′)||x − x′|−λ},

〈û(x)〉λ/2
t,Qτ

= sup
(x,tn),(x,t′n)∈Qτ

{|un(x) − un′(x)||tn − tn′ |
−λ/2}.
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H1+λ, 1+λ
2

τ (Qτ) is the difference-continuous analog of the space H1+λ, 1+λ
2 (Q) (see [1]) for the functions

û(x) continuous in x together with their derivatives with respect to x for (x, tn) ∈ Qτ and having a finite
norm

|û(x)|1+λ, 1+λ
2

Qτ

= max
(x,tn)∈Qτ

|un(x)| + |ûx(x)|λ,λ/2
Qτ

+ 〈û(x)〉
1+λ

2

t,Qτ

,

where ûx(x) = (u0x(x), . . . , unx(x), . . . , uNx(x)).
H2+λ,1+λ/2
τ (Qτ) is the difference-continuous analog of the space H2+λ,1+λ/2(Q) for the functions û(x)

continuous in x together with their derivatives ûxx(x) and ût(x) for (x, tn) ∈ Qτ and having a finite norm

|û(x)|2+λ,1+λ/2
Qτ

= max
(x,tn)∈Qτ

|un(x)| + max
(x,tn)∈Qτ

|unx(x)| + |ûxx(x)|λ,λ/2
Qτ

+ |ût(x)|λ,λ/2
Qτ

,

where
ûxx(x) = (u0xx(x), . . . , unxx(x), . . . , uNxx(x)),
ût(x) = (u1t(x), . . . , unt(x), . . . , uNt(x)),
unt(x) = (un(x) − un−1(x))τ−1, n = 1,N.

3. Unique solvability of a nonlinear parabolic problem with the boundary conditions of the first
kind

3.1. The statement for a quasilinear parabolic equation with an unknown source function

We formulate the present statement as a system for determination of the functions {u(x, t), p(x, t)}
in the domain Q = {0 ≤ x ≤ l, 0 ≤ t ≤ T } that satisfy the boundary value problem of the first kind

c(x, t, u)ut − Lu = f (x, t)p(x, t), (x, t) ∈ Q, (1)

u(x, t)|x=0 = w(t), u(x, t)|x=l = v(t), 0 < t ≤ T, (2)

u(x, t)|t=0 = ϕ(x), 0 ≤ x ≤ l, (3)

and the additional relationship

pt(x, t) = χ(t)p(x, t) + γ(x, t, u), (x, t) ∈ Q, p(x, t)|t=0 = p0(x), 0 ≤ x ≤ l, (4)

where a uniformly elliptic operator Lu has the form

Lu ≡ (a(x, t, u)ux)x − b(x, t, u)ux − d(x, t, u)u.

All the input data in equation (1), boundary conditions (2), initial condition (3), and in relationship (4)
are the known functions of their arguments; a ≥ amin > 0, c ≥ cmin > 0, amin, cmin = const > 0.

3.2. Conditions of unique solvability in the Hölder spaces

The result for unique definition of the smooth solution {u(x, t), p(x, t)} of systems (1)–(4) is supplied
by the following theorem.

Theorem 3.1. Let the following conditions be satisfied.
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1. For (x, t) ∈ Q and any u, |u| < ∞, the input data of the boundary value problems (1)–(3) are
uniformly bounded functions of their arguments, where the coefficient a(x, t, u) — together with
the derivatives ax(x, t, u) and au(x, t, u), moreover, 0 < amin ≤ a(x, t, u) ≤ amax, 0 < cmin ≤

c(x, t, u) ≤ cmax.
2. For (x, t, u) ∈ D = Q × [−M0,M0] (where M0 ≥ max(x,t)∈Q |u|, M0 is the constant from the

maximum principle for boundary value problems (1)–(3)) the functions a(x, t, u), ax(x, t, u),
au(x, t, u), b(x, t, u), and d(x, t, u) have the uniformly bounded derivatives with respect to u and
Hölder continuous in x and t with the corresponding exponents λ and λ/2; moreover, the
functions c(x, t, u) and f (x, t) are in H1,λ/2,1(D) and Hλ,λ/2(Q), respectively.

3. The functions w(t) and v(t) are in H1+λ/2[0,T ], the functions ϕ(x) and p0(x) are in H2+λ[0, l] and
C1[0, l], respectively, max0≤x≤l |p0(x)| ≤ p0

max, max0≤x≤l |p0
x(x)| ≤ p0

x max, p0
max, p0

x max = const > 0;
there hold the matching conditions

c(x, 0, ϕ)wt − Lϕ|x=0,t=0 = f (x, 0)p0(x)|x=0, (5)

c(x, 0, ϕ)vt − Lϕ|x=l,t=0 = f (x, 0)p0(x)|x=l. (6)

4. The function χ(t) is in C[0,T ], max0≤t≤T |χ(t)| ≤ χmax, χmax = const > 0; the function γ(x, t, u) is
uniformly bounded for (x, t) ∈ Q, |u| < ∞, and is continuous for (x, t, u) ∈ D together with the
derivatives with respect to x and u,

|γ(x, t, u)| ≤ γmax, max
(x,t,u)∈D

|γx(x, t, u)| ≤ γx max, max
(x,t,u)∈D

|γu(x, t, u)| ≤ γu max,

γmax, γx max, γu max = const > 0.

Then there exists a unique solution {u(x, t), p(x, t)} of the nonlinear systems (1)–(4) which has
properties

u(x, t) ∈ H2+λ,1+λ/2(Q), |u(x, t)|2+λ,1+λ/2
Q

≤ M, M = const > 0,

p(x, t) ∈ Hλ,λ/2(Q), |p(x, t)|λ,λ/2
Q
≤ M, M = const > 0.

In order to prove Theorem 3.1 and to establish the existence of the smooth solution with the
matching conditions (5) and (6) we approximate this system using the discretization procedure of the
Rothe method on the uniform grid ωτ = {tn} ∈ [0,T ] with time-step τ = T N−1:

cnunt − (anunx)x + bnunx + dnun = fn pn, (x, tn) ∈ Qτ = {0 < x < l} × ωτ, (7)

un|x=0 = wn, un|x=l = vn, 0 < tn ≤ T, (8)

u0(x) = ϕ(x), 0 ≤ x ≤ l, (9)

pnt = χn−1 pn−1 + γn−1, (x, tn) ∈ Qτ, pn(x)|n=0 = p0(x), 0 ≤ x ≤ l. (10)

The approximating system can be formulated as follows: Find {un(x), pn(x)}— approximate values of
the functions u(x, t) and p(x, t) for t = tn — satisfying conditions (7)–(10) in which an, bn, cn, and dn are
the values of the corresponding coefficients at the point (x, tn, un); fn = f (x, tn), wn = w(tn), vn = v(tn),
χn−1 = χ(tn−1), and γn−1 = γ(x, tn−1, un−1). In system (7)–(10) the following designations are also used:
unt = (un(x) − un−1(x))τ−1, unx = dun(x)/dx, pnt = (pn(x) − pn−1(x))τ−1.
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The proof of solvability of systems (1)–(4) by the Rothe method involves several stages.
Stage 1. Investigation of the differential-difference boundary value problems (7)–(9) in the

difference-continuous Hölder space H2+λ,1+λ/2
τ (Qτ) under assumption that pn(x) is the known function.

The aim of this stage is to prove unique solvability of problems (7)–(9) and to drive the corresponding
a priori estimates for the solution un(x) (independent of x, τ, n).

Stage 2. The proof of existence and uniqueness of the solution {un(x), pn(x)} to the differential-
difference systems (7)–(10) in the corresponding function spaces by using the results of stage 1.

Stage 3. The passage to the limit as time-step τ goes to 0 (i.e., n → ∞) in conditions (7)–(10) by
using the compactness of the set {un(x), pn(x)} thanks to the estimates obtained at stage 2. The aim of
this last stage is to show that original systems (1)–(4) have at least one solution in the corresponding
Hölder spaces.

3.3. A priori estimates in the difference-continuous Hölder spaces

Passing to these stages we show the proof in details only if the justification of the Rothe method
must take into account specific properties of systems (1)–(4). Otherwise, we only sketch the proof
referring to the known results.

The conditions of unique solvability of problems (7)–(9) in H2+λ,1+λ/2
τ (Qτ) are formulated by the

next lemma under assumption that pn(x) in the differential-difference equation (7) is the given source
function in Hλ,λ/2

τ (Qτ) with | p̂(x)|λ,λ/2Qτ
≤ M,M = const > 0.

Lemma 3.1. Assume that the conditions 1–3 of Theorem 3.1 hold and let pn(x) be a function with the
above-mentioned properties. Then the differential-difference boundary value problems (7)–(9) has a
unique solution un(x) in the domain Qτ (for any sufficiently small time-step τ of the grid ωτ) and the
following estimates are valid

max
(x,tn)∈Qτ

|un(x)| ≤ M0, max
(x,tn)∈Qτ

|unx(x)| ≤ M1,

|û(x)|λ,λ/2
Qτ

≤ M2, |ûx(x)|λ,λ/2
Qτ

≤ M3, |û(x)|2+λ,1+λ/2
Qτ

≤ M4, (11)

where Mi > 0 (i = 0, 4) are positive constants independent of x, τ, and n.

The conclusion of Lemma 3.1 is based on results of Theorem 4.3.3 [3] about unique solvability of
the differential-difference boundary value problems of the first kind in the Hölder class H2+λ,1+λ/2

τ (Qτ).
The proof of this theorem is supplied by the Leray-Schauder principle on the existence of the fixed
points of the completely continuous transforms. The following remarks must be added.

Remark 3.1. For the present problems (7)–(9) the constant M0 from the maximum principle has
the form

M0 =
{
c−1

min fmax pmaxT + max(wmax, vmax, ϕmax)
}

exp(K1T ),

K1 ≥ (1 + ε)dmaxc−1
min, ε > 0 is arbitrary, τ ≤ τ0 = εK−1

1 . (12)

In order to derive the estimate of the maximum principle auxiliary functions are used

η±n (x) = ±un(x)(1 + K1τ)−n + c−1
min fmax pmaxtn + max(wmax, vmax, ϕmax).
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Remark 3.2. In order to obtain the estimate max(x,tn)∈Qτ
|unx(x)| ≤ M1 for problems (7)–(9), we

apply the discrete analog of the known technique [4]. This approach allows one to avoid differentiating
equation (7) with respect to x and hence does not require additional smoothness of the input data.
Namely, we apply the odd extension of the function un(x) into domains Q−τ = {−l < x < 0} × ωτ and
Q+
τ = {l < x < 2l} × ωτ with the next introduction of an additional space variable z and a function

Wn(x, z) = un(x) − un(z). For this function the estimate |Wn(x, z)| ≤ M1|x − z| is derived that leads
to the desired estimate max(x,tn)∈Qτ

|unx(x)| ≤ M1 in (11). The constant M1 depends on values M0,
max0≤x≤l |ϕx(x)|, max0≤t≤T |wt(t)|, max0≤t≤T |vt(t)| (for details see Lemma 4.3.5 from [3]).

Passing to stage 2 we consider systems (7)–(10) in order to find {un(x), pn(x)}. The values of pn(x)
are beforehand unknown and simultaneously determined with un(x). This requires additional
reasonings for proving the solvability of systems (7)–(10).

Lemma 3.2. Assume that the input data of systems (1)–(4) satisfy the hypotheses of Theorem 3.1. Then
in the domain Qτ for any time-step τ ≤ τ0 (τ0 > 0 is the constant defined by estimate (12)) there exists
a unique solution {un(x), pn(x)} of the differential-difference systems (7)–(10) having the properties

un(x) ∈ H2+λ,1+λ/2
τ (Qτ), pn(x) ∈ Hλ,λ/2

τ (Qτ),

max
(x,tn)∈Qτ

|pn(x)| ≤ pmax, max
(x,tn)∈Qτ

|pnx(x)| ≤ px max, max
(x,tn)∈Qτ

|pnt(x)| ≤ pt max, (13)

where
pmax = (p0

max + Tγmax) exp(Tχmax),

px max = {p0
x max + T (γx max + γu maxM1)} exp(Tχmax),

pt max = χmax(p0
max + Tγmax) exp(Tχmax) + γmax.

Proof of Lemma 3.2. Starting with the initial conditions for t0 = 0, we assume that for each of
time layers t j ( j = 1, n − 1) the solutions {u j(x), p j(x)} are found and the corresponding estimates are
established. The conditions of Theorem 3.1 concerning the functions p0(x), γ(x, t, u) and χ(t) allow
one to conclude that for 0 ≤ x ≤ l, t = tn there hold from (10)

|pn(x)| ≤ (1 + τχmax)|pn−1(x)| + τγmax

≤ (1 + τχmax)n p0
max +

n−1∑
j=0

(1 + τχmax) jτγmax,

max
(x,tn)∈Qτ

|pn(x)| ≤ (p0
max + Tγmax) exp(Tχmax).

Moreover, from (10) it is not difficult to obtain

pnx(x) = (1 + τχn−1)pn−1x(x) + τ(γn−1x + γn−1uun−1x(x)),

|pnx(x)| ≤ (1 + τχmax)n p0
x max +

n−1∑
j=0

(1 + τχmax) jτ(γx max + γu maxM1),

max
(x,tn)∈Qτ

|pnx(x)| ≤ {p0
x max + T (γx max + γu maxM1)} exp(Tχmax).
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Next we note from (10) that
max

(x,tn)∈Qτ

|pnt(x)| ≤ χmax pmax + γmax

≤ χmax(p0
max + Tγmax) exp(Tχmax) + γmax.

Thus, for t = tn estimates (13) are received since we assume that the corresponding estimates for t j

( j = 1, n − 1) are already known.
As a result of (13) the grid-continuous source function pn(x), which is determined from (10) by

using the given values of pn−1(x) and un−1(x), belongs to Hλ,λ/2
τ (Qτ) with the norm | p̂(x)|λ,λ/2Qτ

≤ M,
where M ≤ pmax + px max + pt max. This claim easily follows from the definition of the norm in the
Hölder class Hλ,λ/2

τ (Qτ).
By Lemma 3.1 this means that the differential-difference boundary value problem of the first kind

(7)–(9) with such a source function pn(x) has a unique solution un(x) in H2+λ,1+λ/2
τ (Qτ) for which

bounds (11) hold. Thus Lemma 3.2 is proved.
Remark 3.3. We have already indicated in Remarks 3.1 and 3.2 that the constants M0 and M1 in

estimates (11) for |un(x)| and |unx(x)| depend of the value of pmax. This means that the present estimates
can be derived as soon as the estimate for |pn(x)| is established.

Passing to stage 3 we note that the uniform estimates (11), (13) (independent of x, τ, and n) mean
the compactness of the set {un(x), pn(x)} in the corresponding spaces. By taking the limit as τ goes to 0
(i.e., as n→ ∞) in conditions (7)–(10), we can show in a standard way that the original problem (1)–(4)
has at least one solution {u(x, t), p(x, t)} such that u(x, t) ∈ H2+λ,1+λ/2(Q), p(x, t) ∈ Hλ,λ/2(Q).

Thus the proof of the solvability in the Hölder spaces of nonlinear boundary value problem (1)–(4)
by the Rothe method is completed.

3.4. Proof of uniqueness of the solution {u(x, t), p(x, t)}

In order to finish the proof of Theorem 3.1, it remains to show that the solution of problems (1)–(4)
is unique in the class of smooth functions

sup
(x,t)∈Q

|u, ux, uxx, ut| < ∞, sup
(x,t)∈Q

|p, px, pt| < ∞.

Assume that for t ∈ [0, t0], 0 ≤ t0 < T , the uniqueness is already proved. Let us show the
uniqueness result for t ∈ [t0, t0 + ∆t], where ∆t > 0 is a sufficiently small but bounded time interval
that allows us exhaust all the segment [0,T ] by a fixed number of steps. We will use a contradiction
argument. Assume that for t ∈ [t0, t0 + ∆t] there exist two solutions of systems (1)–(4) {u(x, t), p(x, t)}
and {u(x, t), p(x, t)}. It is easily seen from (4) that in the domain Qt0 = {0 ≤ x ≤ l, t0 ≤ t ≤ t0 + ∆t} the
differences

η(x, t) = u(x, t) − u(x, t), ζ(x, t) = p(x, t) − p(x, t)

satisfy the following relationship

ζt(x, t) = χ(t)ζ(x, t) + γu(x, t, u)η(x, t).

By taking into account that p(x, t0) = p(x, t0), i.e., ζ(x, t0) = 0 for 0 ≤ x ≤ l, we obtain

ζ(x, t) =

t∫
t0

χ(τ)ζ(x, τ) dτ +

t∫
t0

γu(x, τ, u(x, τ))η(x, τ) dτ.

AIMS Mathematics Volume 4, Issue 5, 1508–1522.
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Hence in Qt0 = {0 ≤ x ≤ l, t0 ≤ t ≤ t0 + ∆t} there holds

max
(x,t)∈Qt0

|ζ(x, t)| ≤ ∆t χmax max
(x,t)∈Qt0

|ζ(x, t)| + ∆tγu max max
(x,t)∈Qt0

|η(x, t)|. (14)

Moreover, thanks to (1)–(3) η(x, t) and ζ(x, t) satisfy the relationships

c(x, t, u)ηt − (a(x, t, u)ηx)x +A0ηx +A1η = f (x, t)ζ(x, t), (x, t) ∈ Qt0 ,

η|x=0 = 0, η|x=l = 0, t0 < t ≤ t0 + ∆t,

η(x, t0) = 0, 0 ≤ x ≤ l,

where the coefficients A0 and A1 depend in the corresponding way on the derivatives au, axu, auu, bu,
cu, and du at the point (x, t, σu + (1 − σ)u) (0 < σ < 1). Moreover, A0 and A1 depend on u(x, t) and
the derivatives ux(x, t), uxx(x, t), and ut(x, t).

All the input data of this linear boundary value problem of the first kind are uniformly bounded in
the domain Qt0 as functions of (x, t). This allows one to apply the maximum principle that leads to the
following estimate

max
(x,t)∈Qt0

|η(x, t)| ≤ K2 max
(x,t)∈Qt0

|ζ(x, t)|, K2 = const > 0. (15)

From (14) by taking into account this estimate we obtain

max
(x,t)∈Qt0

|ζ(x, t)| ≤ ∆t (χmax + K2γu max) max
(x,t)∈Qt0

|ζ(x, t)|.

Choosing then ∆t > 0 such that

∆t (χmax + K2γu max) ≤ 1 − µ, 0 < µ < 1,

we output the following relationship

max
(x,t)∈Qt0

|ζ(x, t)| ≤ (1 − µ) max
(x,t)∈Qt0

|ζ(x, t)|,

i.e., max(x,t)∈Qt0
|ζ(x, t)| = 0. Thanks to (15) we can conclude from here that max(x,t)∈Qt0

|η(x, t)| = 0.
Thus, the uniqueness result is completely proved for t ∈ [t0, t0 + ∆t].

By repeating the analogous arguments for t ∈ [t1, t2] (t1 = t0 + ∆t, t2 = t1 + ∆t), t ∈ [t2, t3], etc., up
to the final time T , we drive the uniqueness result for problems (1)–(4) on all the segment [0,T ].

Thus, there exists a unique solution {u(x, t), p(x, t)} of the nonlinear systems (1)–(4) in the class of
smooth functions. Theorem 3.1 is completely proved.

3.5. Error estimates of the Rothe method for the boundary conditions of the first kind

Our next aim is to show that the Rothe method is applicable for construction of approximate
solutions of the present nonlinear system. It is necessary to estimate the differences

ωn(x) = un(x) − u(x, tn), ξn(x) = pn(x) − p(x, tn),

where {u(x, tn), p(x, tn)} solves the original problems (1)–(4) for t = tn, {un(x), pn(x)} solves the
approximating systems (7)–(10).
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Theorem 3.2. Assume that the input data satisfy the conditions of Theorem 3.1. Then for any
sufficiently small time-step τ of the grid ωτ there hold the error estimates for the Rothe method

max
(x,tn)∈Qτ

|ωn(x)| ≤ K3(Ψ + ψ), max
(x,tn)∈Qτ

|ξn(x)| ≤ K4(Ψ + ψ), (16)

where Ψ = max(x,tn)∈Qτ
Ψn(x), ψ = max(x,tn)∈Qτ

ψn(x), Ψn(x) is the discretization error for the differential-
difference boundary value problems (7)–(9) and ψn(x) is the discretization error for equation (10), K3

and K4 are positive constants independent of x, t, τ, and n.

The proof repeats—with the corresponding modification—the above proof of the uniqueness result
in Theorem 3.1. We only note that estimates (16) are shown step by step for the bounded time intervals
[0, tn0], [tn0 , tn1], [tn1 , tn2], etc., up to the final time tN = T . Existence of such estimates allows one to
apply the Rothe method for approximate solving the nonlinear problems (1)–(4) with the unknown
source function. The solution {u(x, t), p(x, t)} can be obtained as the limit of the solution {un(x), pn(x)}
of the approximating systems (7)–(10) as the time-step τ of the grid ωτ goes to 0.

4. The nonlinear parabolic problem with the boundary conditions of the second kind

4.1. The statement and conditions of unique solvability in the Hölder spaces

Now we consider the nonlinear parabolic problem which is distinguished by the boundary
conditions from system (1)–(4)

a(x, t)ux|x=0 = g(t), a(x, t)ux|x=l = q(t), 0 < t ≤ T. (17)

Here and in what follows we assume that the coefficient a has the form a = a(x, t). Conditions of unique
solvability of such a nonlinear parabolic problem with an unknown source function are established by
the following theorem.

Theorem 4.1. Let the following conditions be satisfied.

1. For (x, t) ∈ Q and any u, |u| < ∞, the input data of the corresponding problem for equation (1)
with the boundary conditions (17) are uniformly bounded functions of their arguments, where the
coefficient a(x, t) — together with the derivatives ax(x, t) and at(x, t); moreover, ax(x, t) and f (x, t)
are in Hλ,λ/2(Q), there hold

0 < amin ≤ a(x, t) ≤ amax, 0 < cmin ≤ c(x, t, u) ≤ cmax,

2. For (x, t, u) ∈ D = Q × [−M0,M0] (M0 > 0 is the constant from the maximum principle for
boundary value problem (1), (17),(3)) the functions b(x, t, u) and d(x, t, u) are Hölder continuous
in x, t with the corresponding exponents λ and λ/2 and have the uniformly bounded derivatives
with respect to u; the function c(x, t, u) is in H1,λ/2,1(D).

3. The functions ϕ(x), g(t), and q(t) are in H2+λ[0, l] and O1[0,T ], respectively; there hold the
matching conditions a(x, 0)ϕx|x=0 = g(0), a(x, 0)ϕx|x=l = q(0).

4. The functions p0(x) and χ(t) are in C1[0, l] and C[0,T ], respectively,

max
0≤x≤l
|p0(x)| ≤ p0

max, max
0≤x≤l
|p0

x(x)| ≤ p0
x max, max

0≤t≤T
|χ(t)| ≤ χmax,
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where p0
max, p0

x max, χmax = const > 0; the function γ(x, t, u) is uniformly bounded for (x, t) ∈ Q,
|u| < ∞, and is continuous for (x, t, u) ∈ D together with the derivatives with respect to x and u,

|γ(x, t, u)| ≤ γmax, max
(x,t,u)∈D

|γx(x, t, u)| ≤ γx max, max
(x,t,u)∈D

|γu(x, t, u)| ≤ γu max,

where γmax, γx max, γu max = const > 0.

Then the present nonlinear parabolic problem has a unique solution {u(x, t), p(x, t)} which satisfies
the conditions

u(x, t) ∈ H2+λ,1+λ/2(Q), p(x, t) ∈ Hλ,λ/2(Q),

|u(x, t)|2+λ,1+λ/2
Q

≤ M, |p(x, t)|λ,λ/2
Q
≤ M, M,M = const > 0.

This solution is the limit of the solution {un(x), pn(x)} of the corresponding differential-difference
nonlinear system that approximates the original system by the Rothe method.

4.2. The scheme of proof of Theorem 4.1

Claims of Theorem 4.1 are proved by analogy with the proof of the corresponding claims of
Theorem 3.1. Namely, solvability of the original nonlinear system with the boundary conditions (17)
is established with the help of the differential-difference approximation of this system, which is is
distinguished from (7)–(10) by the boundary conditions

anunx|x=0 = gn, anunx|x=l = qn, 0 < tn ≤ T, (18)

where an = a(x, tn), gn = g(tn), and qn = q(tn).
Investigation of the present approximation involves several stages similar to ones in section 3. In

the corresponding stage 1 we take into account specific properties of conditions (18) and establish
unique solvability in H2+λ,1+λ/2

τ (Qτ) of the differential-difference boundary value problem of the second
kind under assumption that the source function pn(x) in equation (7) is given. Moreover, pn(x) is in
Hλ,λ/2
τ (Qτ) with | p̂(x)|λ,λ/2Qτ

≤ M,M = const > 0, max(x,tn)∈Qτ
|pn(x)| ≤ pmax, pmax = const > 0.

Lemma 4.1. Assume that the conditions 1–3 of Theorem 4.1 hold and let pn(x) be a functon with the
above-mentioned properties. Then for any sufficiently small time-step τ of the grid ωτ there exists one
and only one solution of the differential-difference boundary value problem with conditions (18) which
belongs to the class H2+λ,1+λ/2

τ (Qτ) and satisfies the estimates

max
(x,tn)∈Qτ

|un(x)| ≤ M0, max
(x,tn)∈Qτ

|unx(x)| ≤ M1,

|û(x)|λ,λ/2
Qτ

≤ M2, |ûx(x)|λ,λ/2
Qτ

≤ M3, |û(x)|2+λ,1+λ/2
Qτ

≤ M4, (19)

where Mi > 0 (i = 0, 4) are positive constants independent of x, τ, and n.

The conclusion of Lemma 4.1 is based on results of Theorem 1 from [5] which we apply by the
corresponding way to problem (7), (18), (9). Note that this theorem about unique solvability of the
differential-difference boundary value problem of the second kind in the Hölder class H2+λ,1+λ/2

τ (Qτ) is
proved by the Leray-Schauder principle on the existence of the fixed points of the completely
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continuous transforms. In order to apply this principle, a priori estimates in H1+λ, 1+λ
2

τ (Qτ) for un(x)
must be derived. For the present nonlinear problem we make the following remarks.

Remark 4.1. For problem (7), (18), (9) the constant M0 from the maximum principle has the form

M0 = K6T exp(K5T ) + K7l
(
1 +

l
4

)
, (20)

in which K5, K6, and K7 are positive constants,

K5 ≥ (1 + ε)dmaxc−1
min, τ ≤ τ0 = εK−1

5 , ε > 0 is arbitrary,

K6 ≥ c−1
min

{
fmax pmax + 2K7amax + K7l

(
ax max + bmax + (1 + l

4 )dmax
)}
,

K7 ≥ max(l−1ϕmax, l−1a−1
mingmax, l−1a−1

minqmax).

In order to derive the estimate of the maximum principle auxiliary functions are used (for details
see Lemma 1 from [5])

η±n (x) = (1 + K5τ)−n
{
un(x) ± K7(x −

l
2

)2 ± K7l
}
± K6tn.

Remark 4.2. In order to obtain the estimate max(x,tn)∈Qτ
|unx(x)| ≤ M1 for problem (7), (18), (9), we

apply the approach proposed in [5]. This approach allows one to avoid differentiating equation (7) with
respect to x and hence does not require additional smoothness of the input data. Here we only sketch
the proof, for details see Lemma 2 from [5]. A substitution is carried out

ϑn(x) = un(x) − x2ψl
n + (x − l)2ψ0

n, (x, tn) ∈ Qτ,

ψ0
n = gn (2lan|x=0)−1 , ψl

n = qn (2lan|x=l)−1 , n = 1,N,

that reduces the boundary conditions at x = 0 and x = l to homogeneous ones

ϑnx(x) = unx(x) − 2xψl
n + 2(x − l)ψ0

n, ϑnx(x)|x=0 = 0, vnx(x)|x=l = 0.

Next we use even extension of the function ϑn(x) into domains Q−τ = {−l < x < 0} × ωτ and Q+
τ =

{l < x < 2l} × ωτ with the next introduction of an additional space variable z and a function Wn(x, z) =

ϑn(x) − ϑn(z). The main aim is to obtain the estimate |Wn(x, z)| ≤ M1|x − z| that leads to the estimate of
the derivative ϑnx(x), i.e., to the desired estimate for unx(x) in (19).

The constant M1 depends on values M0, pmax, ϕx max, gmax, qmax. We especially note that M1 is
independent of the derivative pnx(x) in Qτ thanks to the proposed approach.

The next stage in proof of Theorem 4.1 is to consider the corresponding approximate system with
boundary conditions (18) for determination of {un(x), pn(x)}.

Lemma 4.2. Assume that the input data satisfy the hypotheses of Theorem 4.1. Then in the domain Qτ

for any time-step τ ≤ τ0 (τ0 > 0 is the constant defined by estimate (20)) there exists a unique solution
{un(x), pn(x)} of the present differential-difference system having the properties

un(x) ∈ H2+λ,1+λ/2
τ (Qτ), pn(x) ∈ Hλ,λ/2

τ (Qτ),

max
(x,tn)∈Qτ

|pn(x)| ≤ pmax, max
(x,tn)∈Qτ

|pnx(x)| ≤ px max, max
(x,tn)∈Qτ

|pnt(x)| ≤ pt max, (21)

where pmax, px max, pt max are positive constants independent of x, τ, and n.
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The proof of Lemma 4.2 repeats the above proof of Lemma 3.2 with the corresponding use of a
priori estimates of Lemma 4.1. The values of constants in estimates (21) are determined by analogy
with ones in Lemma 3.2. These estimates mean that the grid-continuous source function pn(x), which
is determined from (10) by using the given values of pn−1(x) and un−1(x), belongs to Hλ,λ/2

τ (Qτ) with the
norm | p̂(x)|λ,λ/2Qτ

≤ M, whereM ≤ pmax + px max + pt max. Hence by Lemma 4.1 the differential-difference
boundary value problem of the second kind corresponding to this source function pn(x) has a unique
solution un(x) in H2+λ,1+λ/2

τ (Qτ) for which bounds (19) hold.
Remark 4.3. In Remarks 4.1 and 4.2 it is indicated that the constants M0 and M1 in estimates (19)

for |un(x)| and |unx(x)| depend of the value pmax. This means that the present estimates can be obtained
as soon as the estimate for |pn(x)| ≤ pmax is established.

As a result of the uniform estimates (19), (21) (independent of x, τ, and n) the set {un(x), pn(x)}
is compact in the corresponding spaces. Passing to the last stage 3 we take the limit as τ goes to 0
(i.e., as n → ∞) in conditions (7), (18), (9), and (10). This allows one to show in a standard way that
the original problem with the boundary conditions of the second kind (17) has at least one solution
{u(x, t), p(x, t)} such that u(x, t) ∈ H2+λ,1+λ/2(Q), p(x, t) ∈ Hλ,λ/2(Q). Thus the solvability in the Hölder
spaces of the present nonlinear boundary value problem is proved.

In order to complete the proof of Theorem 4.1, it remains to show the uniqueness of the solution
{u(x, t), p(x, t)} in the class of smooth functions. The present result is established by analogy with the
corresponding result in Theorem 3.1 step by step for the bounded time intervals that allows us exhaust
all the segment [0,T ] by a fixed number of steps. By a contradiction argument we assume that for
t ∈ [t0, t0 + ∆t] there exist two solutions {u(x, t), p(x, t)} and {u(x, t), p(x, t)}. The corresponding linear
boundary value problem for the differences η(x, t) = u(x, t) − u(x, t), ζ(x, t) = p(x, t) − p(x, t) has the
form in the domain Qt0 = {0 ≤ x ≤ l, t0 ≤ t ≤ t0 + ∆t}

c(x, t, u)ηt − (a(x, t)ηx)x +A0ηx +A1η = f (x, t)ζ(x, t), (x, t) ∈ Qt0 ,

a(x, t)ηx|x=0 = 0, a(x, t)ηx|x=l = 0, t0 < t ≤ t0 + ∆t,

η(x, t0) = 0, 0 ≤ x ≤ l,

where all the input data are uniformly bounded in the domain Qt0 as functions of (x, t) thanks to the
established estimates. This allows one to apply the maximum principle that leads to the following
estimate [1]

max
(x,t)∈Qt0

|η(x, t)| ≤ K8∆t max
(x,t)∈Qt0

|ζ(x, t)|, K8 = const > 0.

Moreover,
max

(x,t)∈Qt0

|ζ(x, t)| ≤ ∆t χmax max
(x,t)∈Qt0

|ζ(x, t)| + ∆t γu max max
(x,t)∈Qt0

|η(x, t)|.

By repeating the corresponding reasonings in the proof of Theorem 3.1 we obtain choosing ∆t from
the condition

∆t (χmax + K8γu max) ≤ 1 − µ, 0 < µ < 1,

that max(x,t)∈Qt0
|ζ(x, t)| = 0, max(x,t)∈Qt0

|η(x, t)| = 0. Thus, the uniqueness result is proved for t ∈
[t0, t0 + ∆t]. By repeating the analogous arguments step by step for the next bounded time intervals we
drive the uniqueness result on all the segment [0,T ].

Thus, Theorem 4.1 on unique solvability of the nonlinear parabolic problem with the boundary
conditions of the second kind is completely proved.
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4.3. Error estimates of the Rothe method for the boundary conditions of the second kind

In order to show that the Rothe method allows one to obtain approximate solutions for the
considered nonlinear system, it is necessary to estimate the differences

ωn(x) = un(x) − u(x, tn), ξn(x) = pn(x) − p(x, tn),

where {u(x, tn), p(x, tn)} solves the original problem with the boundary conditions (17) for t = tn,
{un(x), pn(x)} solves the approximating system with conditions (18).

Theorem 4.2. Let the conditions of Theorem 4.1 be satisfied. Then for any sufficiently small time-step
τ of the grid ωτ there hold the error estimates for the Rothe method

max
(x,tn)∈Qτ

|ωn(x)| ≤ K9(Ψ + ψ), max
(x,tn)∈Qτ

|ξn(x)| ≤ K10(Ψ + ψ), (22)

where Ψ = max(x,tn)∈Qτ
Ψn(x), ψ = max(x,tn)∈Qτ

ψn(x), Ψn(x) is the discretization error for the
differential-difference boundary value problem with conditions (18) and ψn(x) is the discretization
error for equation (10), K9 and K10 are positive constants independent of x, t, τ, and n.

This theorem is analogous to Theorem 3.2. Estimates (22) are derived step by step for the bounded
time intervals up to the final time tN = T . From (22) it follows that the solution {u(x, t), p(x, t)} can
be obtained as the limit of the solution {un(x), pn(x)} of the corresponding approximate system as the
time-step τ of the grid ωτ goes to 0.

5. Mathematical models of some filtration processes

The nonlinear parabolic problems that are investigated in sections 3, 4 have the wide applications.
In particular, such statements are motivated by the needs of the modeling and control of nonstationary
filtration processes in underground hydrodynamics. Below as an example we show a mathematical
model that arises in exploitation of oil-gas fields in the case of cracked porous media (see, e.g., [6, 7]).

The present statement is connected with nonstationary filtration of liquid to vertical bore-hole in a
circular stratum—to find the pressure distribution in cracked blocks that satisfies the relationships in
the cylindrical coordinate system (r, t):

βcrut = µ−1r−1(k(u)rur
)

r + µ−1α(p − u), (r, t) ∈ Q = {rbh < r < r f c, 0 < t ≤ T }, (23)

u(r, t)|r=rbh = ubh, u(r, t)|r=r f c = u f c, 0 < t ≤ T, (24)

βpb pt = −µ−1α(p − u), (r, t) ∈ Q, (25)

u(r, t)|t=0 = ϕ(r), p(r, t)|t=0 = ϕ(r), rbh ≤ r ≤ r f c. (26)

Here u(r, t) is the pressure in the cracks, p(r, t) is the pressure in the porous blocks, βcr and βpb are the
corresponding coefficients of elastic capacity, rbh is the radius of the bore-hole, r f c is the radius of the
feed contour, ubh and u f c are the pressure corresponding to these boundaries, ϕ(r) is the initial pressure
distribution in the stratum, µ is the liquid viscosity, α is the parameter of liquid shift between the blocks
and the cracks, k represents the permeability of the stratum.
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It is known that filtration properties of cracked porous stratums depend of changes of the pressure.
Mathematical statements that are considered in section 3 for a quasilinear parabolic equation, allow
one to take into account this dependence. In particular, the coefficient k in (23) has the form k(u).

Besides (24) the boundary conditions in systems (23)–(26) can be given in the other form, in
particular, of the second kind

2πHµ−1(k(u)rur
)
|r=rbh = q(t), 2πHµ−1(k(u)rur

)
|r=r f c = 0, 0 < t ≤ T,

or of the mixed kind

2πHµ−1(k(u)rur
)
|r=rbh = q(t), u(r, t)|r=r f c = u f c, 0 < t ≤ T,

where H is the tickness of the stratum, q(t) is the debit.
All these models can be considered as concrete examples of the nonlinear parabolic problems that

are investigated in sections 3, 4. The pressure p(r, t) in the porous blocks plays the role of sought
source function in equation (23). The corresponding equation for a time dependence of p(r, t) has the
form (25).

6. Conclusion

In this work the nonlinear parabolic problems with an unknown source function are investigated.
They are formulated as a system that involves a boundary value problem for a quasilinear parabolic
equation and, moreover, an additional relationship for a time dependence of this sought function. Our
main aim is to justify such problems in a class of smooth functions taking into account their essential
distinction from usual boundary value problems. The following results of our analysis can be
formulated—conditions of unique solvability in the Hölder spaces are proved for the corresponding
nonlinear system with the boundary conditions both of the first and second kind.

To this end, a priori estimates in the corresponding spaces are established for the nonlinear
differential-difference system that approximates the original system by the Rothe method. Thanks to
these estimates in the differential-continuous analogs of Hölder classes we avoid additional
assumptions of the smoothness of the input data (which have usually been imposed by the Rothe
method). Thus, the proposed approach allows one to determine the faithful character of differential
relations for the nonlinear parabolic problems of the considered type. These results are similar to the
ones obtained in [1] for the boundary value problems in the case of quasilinear parabolic equations
with the given right-hand side.

The error estimates established in the work for the Rothe method show that this method provides
the approximate solutions for the present nonlinear parabolic problems. As an example of important
applications, a model of nonstationary filtration in the cracked porous stratum is represented.
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