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1. Preliminaries

In [6], the extended beta function was defined by

1
B(x,y; p) = f A =y le M dy (1.1)
0

where R(p), R(x), R(y) > 0. It is clear that, if p = 0, then B(x, y;0) = B(x,y) is just the classical beta
function [28].
In [7], the extended confluent hypergeometric function was defined as
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where R(p) > 0 and B,y € C with y # 0,—1,-2,.... An integral representation of ®,(8,y;z) was
given in [7, Eq. (3.7)] by

1 1
Qp(ﬁ,y;z)=mfo A1 = gy B! exp(zt—t(lp_ t))dt (12)

for p > 0 and R(y) > R(B) > 0.
In [30], the extended beta function B(x, y; p) defined by (1.1) was generalized as

1
P _ g _ ool (__ P
Bﬂ(x,y)—‘fot (1 -0E( t(]—t))dt’ (1.3)

where R(p), R(x), R(y), A > 0, E; (x) = E,1(x) denotes the Mittag—Leffler function

Ea,ﬁ(Z) = kz:(; m,

and I'(7) is the classical Euler gamma function which can be defined [16,23,36] by

1142
I'(z) = lim

_M e\ {0,-1,-2,...)
n—oo Hk:O(Z + k)

or by
I'(z) = f le'dt, R(z) > 0.
0

It is clear that
Bl(x,y) = B(x,y;p) and Bj(x,y) = B(x,y).

It is well known [11, 15] that, when A € [0, 1], the Mittag-Leffler function E,;(—w) is completely
monotonic on (0, c0). Hence, when A € [0, 1], the Mittag-Leffler function E,(—w) is positive on (0, co).
For detailed information on complete monotonicity, please refer to [17,24] and the closely related
references therein.

In [30], the extended confluent hypergeometric function ®@,(8, y; z) defined by (1.2) was generalized

as o
BiB+ny-B)z

(B, y;2) = : 1.4
VD= 2 ey n (45
In [30, Eq. (31)], an integral representation of d)f,(,B, v;Z) was given by
OB, yi2) = — f e gy exp(zt)Eﬁ(— P )dt (1.5)
PR T BBy =B o (1 -1)

for p > 0,1 > 0,and R(y) > R(B) > 0.
It is obvious that (D}D(B, ¥,2) = ©,(B,7;2) and (B, y,2) = P(B,y; z) which is the classical confluent
hypergeometric series [28] and is the limit case of the Gauss hypergeometric function [27,32-35].
This paper is organized as follows. In Section 2, we recall definitions of some convex functions and
recite several lemmas needed in this paper. In Section 3, we present some inequalities for extended beta
functions B (x, y) defined in (1.3). In Section 4, we find the monotonicity and the logarithmic convexity
for functions related to extended confluent hypergeometric functions ®@,(8, v; z) defined in (1.4).
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2. Definitions and lemmas

Now we recall definitions of some convex functions and recite several lemmas.

Definition 2.1 ( [5,22]). Let X be a convex set in a real vector space and let f : X — R be a function.
Then f is said to be convex on X if the inequality

flax) + (1 = a)xy) < af(x) + (1 - a)f(x2)

is valid for any xy, x, € X and « € [0, 1].

A function f is said to be concave if —f is convex.

A function f is said to be logarithmically convex (or logarithmically concave respectively) on X if
f > 0andIn f (or —In f respectively) is convex (or concave respectively) on X.

Lemma 2.1 ( [8,10,21]). Let f,g : [a,b] C R — R be integrable and satisfy
[f(x) = fWIg(x) — g1 20
forall x,y € [a,b] and let p(x) : [a,b] C R — R be a positive integrable function. Then
b b b b
[ pereods [ pwgearz [ peoax [ pwsweds @

Lemma 2.2 ([29,31]). Let 0, and 6, be positive numbers such that ell + 91—2 =landlet f,g :|la,b] > R
be integrable functions. Then

b b 1/6 b 1/6,
| regeoas) < [ ircorax) ([ lecoras) 22)
Lemma 2.3 ( [4]). Let f(x) = Y, a,x" and g(x) = "o b,x", with a, € R and b, > 0 for all n,
converge on (—a, ). If the sequence {3*},., is increasing (or decreasing respectively), then x Jg% is

also increasing (or decreasing respectively) on (0, @).
3. Inequalities for extended beta functions

Now we start off to establish inequalities for functions involving extended beta functions.

Theorem 3.1. If x,y, x1,y; are positive numbers such that (x — x;)(y — y1) = 0, then, when A € [0, 1],
B (x, y)By(x1,y) < By(x1,y1)B,(x, ). 3.1)

Proof. Consider the mappings f, g, : [0, 1] — [0, c0) given by f(¢) = +*1, g(t) = (1 — ¢)’", and

h(t) = £97(1 — t)y'_lEA(—t(lp_ t)).

Since /() = (x — x)* 1 and g'(r) = (y; — y)(1 — t)17!, the functions f and g have the same
monotonicity on [0, 1]. Applying Chebyshev’s integral inequality (2.1) to f, g, and &, we have
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) b
ftx_l(l_l)yl_lE/l(_t(lp_t))dtf txl—l(l—l‘)y—lE,l(_t(lp_t))dl

b b
o R e LI AR T G B0

This can be rearranged as (3.1). The proof of Theorem 3.1 is complete. O

Corollary 3.1. For x,y > 0 and A € [0, 1], we have
Bl(x,y) > [B}(x, x)B}(y, »)]'"".
Proof. This follows from Theorem 3.1 directly. |

Theorem 3.2. The function (x,y) = B'(x,y) is logarithmically convex on (0, %) x (0, c0) for all p > 0
and 0 < A < 1. Consequently,

Xp+X2 Y1ty
W( :
[ 4 2 2
Proof. Let (x1,y1), (x2,y,) € (0,00)* and let ¢,d > 0 with ¢ + d = 1. Then

2
)] < B (x1,y1) B (x2,2)- (3.2)

Bli(c(x1,y1) + d(x2,¥2)) = Bi(cxy + d xp, cyy + dy»).

By definition, we have

1
Bg(C(Xl,yl) + d(.XZ,yz)) = f tcx1+dx2—1(1 _ t)cy1+dy2_1E/1(— D )dt
0 t(1-1

1 p c+d
— cx1+d xo—(c+d) 1= cy1+dy2—(c+d)[E (_ )]
f(; t (I-1) N\ -9 dt
1 c d
_ [ pmendemtg Z peoi-neg d(Yz—l)[E (_ p )] [E (_ p )]
fo e == AT L ) dr
1 c d
— xp—1 1= y1—1E (_ P )] [ x—-1 yz—lE (_ p )] dz.
fo[t (L=0""Ea Ty | Wy B

Setting 6, = % and 6, = [lz and using the Holder inequality (2.2) give

j: A1 —l')yl_lE/l(—t(lp_ r))dt C[j; tx2—1ty2‘1EA(—t(1p_ t))dt]d

= | Bj e,y [BY (2 )]
Accordingly, the function B’ (x, y) is logarithmically convex on (0, o0)?.

Whenc=d = % the above inequality reduces to (3.2). The proof of Theorem 3.2 is complete. O

Bl(c(x1,y1) + d(x2, ) <

Remark 3.1. Letting x,y > 0 such that min,(x + a,x —a) > 0 and taking x; = x +a, x, = x — a,
yi =y+b,and y, =y —bin (3.2) result in

[BY(x,y)]* < BY(x +a,y + b)B"(x — a,y — b)

forall p>0and 4> 0.
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4. Inequalities for extended confluent hypergeometric functions

Now we find the logarithmic convexity and the monotonicity related to the extended confluent
hypergeometric function (Df)(ﬁ, v;z) defined in (1.4).

Theorem 4.1. Let 8> 0 andy,6 > 0.

A X
1. Fory > 9, the function x — i’;i’gfx; is increasing on (0, 00).
P "
2. Fory > 6,
SOUB + L,y + L 0)Q0(B, 6 x) = yD3(B, v )P, (B+ 1,6 + 1; x). (4.1)

3. The function x — (D;(,B, v; x) is logarithmically convex on R.
4. For o,y,x > 0, the function

_, B&. YVIPUB + 0, ;5 X)
BB+ o, 7)D(B,Y; x)

is decreasing on (0, 00).

Proof. By the definition in (1.4), we have

(Df;(ﬂ’ Y X) _ i An(C)X"
DUB, 65 )  Tylo an(d)x"

where

BB +n,z—p)
Bg(ﬁ’z_ﬁ) .

a,(z) =

If denoting f;, = ZE;;, then

a,(0) awi(c) _ BB.S-P[BIUB+ny=B) BiB+n+1y=-p)
a(d)  a(d  BBY-BLB)B+n6-p) BiB+n+1,6-p

When taking x = +n,y = 0—0, x; = +n+1,and y; = y—Bin (3.1), since (x—x;)(y—y;) =y—-9 > 0,
it follows from Theorem 3.1 that

BB +n,y-pB) B BiB+n+1,y-pB)

BiB+n6-B) " BB+n+1,6-p)

fn _ﬁ1+1 =

which is equivalent to say that {f,},>o 1S an increasing sequence. Hence, with the aid of Lemma 2.3,

4 3X) . . .
we conclude that x — z‘jg’;’xi is increasing on (0, co).
P U
Recall from [30] that
dn A . (B)n A .
I O,B,v;x) = %) O,(B+n,y +n;x). 4.2)
D (B,y;x)

Since the increasing property of x is equivalent to

Dy (B.53x)

d [P3(B,y; x)
L[,
dxl@i(5,6;x)
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together with (4.2), we further obtain

DB, y: )DL (B, 65 x) — D (B, y: )P (B, 6: x)

B

= ;(Df,(,B+ Ly + 1; 0@, 6; x) £

gcpg(ﬁ, Y; )@, (B+ 1,6+ 1;x) > 0.
This implies the inequality (4.1).
The logarithmic convexity of x (D;l,(ﬁ, v;x) can be proved by using the integral

representation (1.5) and by applying the Holder inequality (2.2) as follows:

1 1
OB, y:ax + (1 - a)y) = mfo A = 1) P explaxt + (1 - a)yt)Eﬂ(—t(lp_ t))dt

_ m fo‘l[(rg—l(l _ Al eXp(Xf)E/l(_t(lp_ t)))a

X (tﬁ—l(l — At exp(yt)E,l(— t(lp— 5 ))1‘“] dt

s[m fol B1(1 = gyrA-1 exp(xt)E/l(—t(lp_ t))dt]a

1 ' o —B-1 p e
X[B(,B,y—,B)fo £ -y exp(yt)EA(—t(l_t))dt]
= [©3(B,7: DI [Py B, y: ]

for x,y > 0 and « € [0, 1]. For the case x < 0, the assertion follows immediately from the identity

DI(B.y: x) = € DNy — B,7:—2)

in [30].
Let 8’ > B and

Wty = 711 = gy #! exp(xr)EA(—t(lp_ t)), f(t):(ﬁ)ﬁ_ﬂ’, s =)

Using the integral representation (1.5), we have

BB, y)P)(B + 0, y: X) B BB, Y)PNB + 0,y x) ~ fol FOg®h(r)d ~ fol gMh(r)dt
BB+ o,0®B,y:0)  BE +oNOE. 70 [ fon(rdi [ hnde

4.3)

One can easily determine that, when o > 0 and 5’ > 3, the function f is decreasing and the function
g 1s increasing. Since 4 is a nonnegative function for ¢ € [0, 1], by Chebyshev’s inequality (2.1), it
follows that

1 1 1 1
f f(Oh(r)dt f gHh(r)dt < f h(r)dt f f(Hg®h()dz.
0 0 0 0
Combining this with (4.3) yields

BB.y)PYB+0,y:x) BB, Y)ONB +0,7;X) N
BB +6,7)PyB,y;x) BB +0o,)OB,y:x)
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which is equivalent to say that the function

_, BB, V@B + 0,75 %)
B(B + o, y)0(B,v; x)

is decreasing on (0, c0). The proof of Theorem 4.1 is complete. O

Remark 4.1. The decreasing property of the function

Fﬁﬂﬂw%w+m%ﬂ
BB + o, )@ (B,y; x)

is equivalent to the inequality

B*(B+0.,y)
2 - )12
[©,(B + 0, y; 0] 2 B(B + 20, 7)B(B,7)

When A = 1, the inequality (4.4) becomes

Bz(,B +0,y)
B(B + 20, v)B(B,7y)

which was established in [12]. When A = 1 and p = 0, the inequality (4.4) reduces to

DB + 207,73 )P, (B, 3 X). (4.4)

(Df,(ﬁ +0,7;x) >

OP(B + 20,7y, x)DP (B, y; x)

BB +0a,y)
BB +20,7)BB,y)
which recovers Theorem 4(b) in [9] and Eq. (24) in [12].

Remark 4.2. In recent years, some new results about the topic in this paper have been obtained in the
papers [2,3,13,14,18-20,25] and closely related references therein.

DB+ 0,y x) > OB + 20, y; OB, y; x)

Remark 4.3. In this paper, we established some inequalities involving Bg’ (x,y) and (Df,(ﬂ, v; 2).
Throughout this paper, if we take 4 = 1, all results in this paper reduce to those in [12]; if we take
A =1and p =0, all results in this paper reduce to corresponding ones in [1, 8].

Remark 4.4. When A > 1, is the Mittag-Lefller function E,(—w) still positive on (0, c0)? When 1 > 1,
what about the validity of Theorems 3.1 and 3.2 and Corollary 3.1?

Remark 4.5. This paper is a slightly revised version of the preprint [26].
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