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Abstract: The Reed-Solomon codes are widely used to establish a reliable channel to transmit
information in digital communication which has a strong error correction capability and a variety of
efficient decoding algorithm. We usually use the maximum likelihood decoding algorithm (MLD)
in the decoding process of Reed-Solomon codes. MLD algorithm lies in determining its error
distance. Li, Wan, Hong and Wu et al obtained some results on the error distance. For the Reed-
Solomon code RS q(F∗q, k), the received word u is called an ordinary word of RS q(F∗q, k) if the error
distance d(u,RS q(F∗q, k)) = n − deg(u(x)) with u(x) being the Lagrange interpolation polynomial of
u. In this paper, we make use of the polynomial method and particularly, we use the König-Rados
theorem on the number of nonzero solutions of polynomial equation over finite fields to show that if
q ≥ 4, 2 ≤ k ≤ q − 2, then the received word u ∈ Fq−1

q of degree q− 2 is an ordinary word of RS q(F∗q, k)
if and only if its Lagrange interpolation polynomial u(x) is of the form

u(x) = λ

q−2∑
i=k

aq−2−ixi + f≤k−1(x)

with a, λ ∈ F∗q and f≤k−1(x) ∈ Fq[x] being of degree at most k − 1. This answers partially an open
problem proposed by J.Y. Li and D.Q. Wan in [On the subset sum problem over finite fields, Finite
Fields Appls. 14 (2008), 911-929].
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1. Introduction

Let Fq be the finite field of q elements with characteristic p. Let D = {x1, · · · , xn} be a subset of
Fq, which is called the evaluation set. The generalized Reed-Solomon code RS q(D, k) of length n and
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dimension k over Fq is defined as follows:

RS q(D, k) := {( f (x1), · · · , f (xn)) ∈ Fn
q | f (x) ∈ Fq[x], deg f (x) ≤ k − 1}.

If D = F∗q , then it is called standard Reed-Solomon code, i.e.,

RS q(F∗q, k) := {( f (1), f (α), · · · , f (αq−2)) ∈ Fn
q | f (x) ∈ Fq[x], deg f (x) ≤ k − 1}, (1.1)

where α is a primitive element of Fq. We refer the above definition as the polynomial code version of
the standard Reed-Solomon code. If D = Fq, then it is called the extended Reed-Solomon code. For
any [n, k]q linear code C, the minimum distance d(C) is defined by

d(C) := min{d(x, y) | x ∈ C, y ∈ C, x , y},

where d(·, ·) denotes the Hamming distance of two words which is the number of different entries of
them and w(·) denotes the Hamming weight of a word which is the number of its non-zero entries.
Since the Reed-Solomon code is a linear code, we have

d(C) = min
0,x∈C
{d(x, 0)} = min

0,x∈C
{w(x)}.

The error distance to code C of a received word u ∈ Fn
q is defined by

d(u,C) := min
v∈C
{d(u, v)}.

Clearly, d(u,C) = 0 if and only if u ∈ C. The most important algorithmic problem in coding theory
is the maximum likelihood decoding (MLD): Given a received word u ∈ Fn

q, find a codeword v ∈ C
such that d(u, v) = d(u,C), then we decode u to v [4]. Therefore, it is very crucial to decide d(u,C)
for the word u. When decoding the generalized Reed-Solomon code RS q(D, k), for a received word
u = (u1, · · · , un) ∈ Fn

q, we define the Lagrange interpolation polynomial u(x) of u by

u(x) :=
n∑

i=1

ui

n∏
j=1
j,i

x − x j

xi − x j
∈ Fq[x], (1.2)

i.e., u(x) is the unique polynomial of degree deg(u(x)) ≤ n − 1 such that u(xi) = ui for 1 ≤ i ≤ n. For
u ∈ Fn

q, we define the degree of u(x) to be the degree of u, i.e., deg(u) := deg(u(x)). It is clear that
u ∈ RS q(D, k) if and only if d(u,RS q(D, k)) = 0 if and only if deg(u) ≤ k − 1. Equivalently,
u < RS q(D, k) if and only if d(u,RS q(D, k)) ≥ 1 if and only if k ≤ deg(u) ≤ n − 1. Evidently, we have
the following simple bounds due to Li and Wan [3].

Theorem 1.1. [3] Let u be a received word such that u < RS q(D, k). Then

n − deg(u) ≤ d(u,RS q(D, k)) ≤ n − k.

Let u ∈ Fn
q. If d(u,RS q(D, k)) = n − k, then the received word u is called a deep hole of RS q(D, k).

In 2007, Cheng and Murray [1] conjectured that a word u is a deep hole of RS q(F∗q, k) if and only if
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u(x) = axk + f≤k−1(x), where u(x) is the Lagrange interpolation polynomial of the received word u and
a ∈ F∗q. In 2012, Wu and Hong [9] disproved this conjecture by presenting a new class of deep holes for
standard Reed-Solomon codes RS q(F∗q, k). In fact, let q ≥ 4 and 2 ≤ k ≤ q − 2. They showed that the
received word u is a deep hole if its Lagrange interpolation polynomial equals axq−2 + f≤k−1(x). Later
on, the main result of [9] is extended to the generalized Reed-Solomon code in [2]. Recently, some
progress on deep holes of generalized projective Reed-Solomon codes are made in [10] and [11].

On the other hand, the received word u is called an ordinary word of RS q(D, k) if
d(u,RS q(D, k)) = n − deg(u(x)). If deg(u) = k, then the upper bound is equal to the lower bound
which implies that u is a deep hole and also an ordinary word. This immediately gives (q − 1)qk

ordinary words. We call these trivial ordinary words. It is an interesting problem to determine all the
ordinary words. In 2008, Li and Wan [3] proposed an open problem to determine all the ordinary
words of the standard Reed-Solomon code. In [4], by using Weil’s estimate on character sums, the
following result is obtained.

Theorem 1.2. [4] Let u ∈ F
q
q be such that k + 1 ≤ deg(u) ≤ q − 1. Assume that

q > max((deg(u))2, (deg(u) − k − 1)2+ε) and k > (4
ε

+ 1)(deg(u) − k) + 4
ε

+ 2 for some constant ε > 0.
Then u is an ordinary word of extended Reed-Solomon code RS q(Fq, k).

Furthermore, using Weil’s character sum estimate and Li-Wan sieve for distinct coordinates
counting, Zhu and Wan [12] showed the following result.

Theorem 1.3. [12] Let u ∈ Fq
q be such that k + 1 ≤ deg(u) ≤ q − 1. If there are positive constants c1

and c2 such that deg(u) − k < c1q1/2, (deg(u) − k + 1) log2 q < k < c2q, then u is an ordinary word of
extended Reed-Solomon code RS q(Fq, k).

In [5], Li and Zhu proved the following result.

Theorem 1.4. [5] Let 3 ≤ k + 2 ≤ q− 1, and u ∈ Fq
q be represented by polynomial u(x) = xk+2 − bxk+1 +

cxk + v(x) with deg v(x) ≤ k − 1. If k + 2 = q − 1 and b2 = c, then u is an ordinary word of extended
Reed-Solomon code RS q(Fq, k).

In this paper, we make use of a well-known result, i.e. the so-called König-Rados theorem, to find
all the ordinary words of degree q − 2 of standard Reed-Solomon code RS q(F∗q, k). The main result of
this paper can be stated as follows.

Theorem 1.5. Let q ≥ 4, 2 ≤ k ≤ q − 2 and u ∈ Fq−1
q be a received word with u(x) being its Lagrange

interpolation polynomial and deg u(x) = q − 2. Then u is an ordinary word of RS q(F∗q, k) if and only if
u(x) is of the following form

u(x) = λ

q−2∑
i=k

aq−2−ixi + f≤k−1(x)

with a, λ ∈ F∗q and f≤k−1(x) ∈ Fq[x] being of degree at most k − 1.

If one picks k = q − 2, then the ordinary words given by Theorem 1.5 are just the trivial ones.
From Theorem 1.5, the following interesting result follows immediately.
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Proposition 1.6. Let q ≥ 4, 2 ≤ k ≤ q − 2. Then the number of ordinary words of degree q − 2 of the
standard Reed-Solomon code RS q(F∗q, k) is equal to (q − 1)2qk.

This paper is organized as follows. First, in Section 2, we show several preliminary lemmas that
are needed in the proof of Theorem 1.5. Consequently, we show Theorem 1.5 in Section 3. Finally, we
present two examples to illustrate the validity of our main result.

2. Auxiliary lemmas

In this section, our main goal is to prove several lemmas that are needed in the proof of Theorem 1.5.
In what follows, we let

Pk−1 := { f (x) | f (x) ∈ Fq[x], deg f (x) ≤ k − 1}

and
f (F∗q) := ( f (1), f (α), · · · , f (αq−2)),

where α is a primitive element of Fq. We begin with the following lemma.

Lemma 2.1. Let u, v ∈ Fq−1
q be two words. If u = λv + f≤k−1(F∗q), where λ ∈ F∗q and f≤k−1(x) ∈ Fq[x] is

a polynomial of degree at most k − 1. Then each of the following is true:
(i). We have d(u,RS q(F∗q, k)) = d(v,RS q(F∗q, k)).
(ii). The word u is an ordinary word of RS q(F∗q, k) if and only if the word v is an ordinary word of

RS q(F∗q, k).
Proof. (i). Since RS q(F∗q, k) is a linear code, we obtain that

d(u,RS q(F∗q, k)) = min
c∈RS q(F∗q,k)

{d(u, c)}

= min
c∈RS q(F∗q,k)

{d(λv + f≤k−1(F∗q), c)}

= min
c∈RS q(F∗q,k)

{d(λv + f≤k−1(F∗q), c + f≤k−1(F∗q)}

= min
c(x)∈Pk−1

#{x ∈ F∗q|λv(x) + f≤k−1(x) − c(x) − f≤k−1(x) , 0}

= min
c(x)∈Pk−1

#{x ∈ F∗q|λv(x) − c(x) , 0}

= min
c∈RS q(F∗q,k)

{d(λv, c)}

= min
c∈RS q(F∗q,k)

{d(λv, λc)}(since λ ∈ F∗q)

= min
c(x)∈Pk−1

#{x ∈ F∗q|λv(x) − λc(x) , 0}

= min
c(x)∈Pk−1

#{x ∈ F∗q|v(x) − c(x) , 0}

= min
c∈RS q(F∗q,k)

{d(v, c)}

=d(v,RS q(F∗q, k))

as desired.
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(ii). Since u = λv + f≤k−1(F∗q), one has deg u = deg v. Hence u is an ordinary word of RS q(F∗q, k) if
and only if

d(u,RS q(F∗q, k)) = q − 1 − deg u,

if and only if

d(u,RS q(F∗q, k)) = q − 1 − deg v. (2.1)

But part (i) tells us that d(u,RS q(F∗q, k)) = d(v,RS q(F∗q, k)). So (2.1) holds if and only if

d(v,RS q(F∗q, k)) = q − 1 − deg v. (2.2)

So u is ordinary holds if and only if (2.2) is true. In other words, u is ordinary if and only if v is
ordinary.

This completes the proof of Lemma 2.1. �

Consequently, we give another useful fact.

Lemma 2.2. Let u ∈ Fq−1
q be a received word and u(x) be its Lagrange interpolation polynomial.

Then one has
d(u,RS q(F∗q, k)) = q − 1 − max

v(x)∈Pk−1
#{β ∈ F∗q|u(β) = v(β)}.

Proof. By (1.1), we have

d(u,RS q(F∗q, k)) = min
v∈RS q(F∗q,k)

{d(u, v)}

= min
v(x)∈Pk−1

#{1 ≤ i ≤ q − 1|u(αi−1) , v(αi−1)}

=q − 1 − max
v(x)∈Pk−1

#{1 ≤ i ≤ q − 1|u(αi−1) = v(αi−1)}

=q − 1 − max
v(x)∈Pk−1

#{β ∈ F∗q|u(β) = v(β)}

as required.
The proof of Lemma 2.2 is complete. �

The following result gives a formula on the number of nonzero solutions of polynomial equation
over finite fields and is due to König and Rados (see, for instance, [6–8]). It is a key and important
ingredient in the proof of our main result.

Lemma 2.3. (König-Rados) ( [6–8]) Let f (x) = a0 + a1x + · · · + aq−2xq−2 ∈ Fq[x]. Then the number of
nonzero solution of equation f (x) = 0 in Fq is equal to q − 1 − rank(A), where A is the left
(q − 1) × (q − 1) circulant matrix defined by

A :=


a0 a1 . . . aq−3 aq−2

a1 a2 . . . aq−2 a0
...

...
...

...
...

aq−2 a0 . . . aq−4 aq−3

 .
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3. Proof of Theorem 1.5

In this section, we use the lemmas presented in the previous section to give the proof of Theorem 1.5.

Proof of Theorem 1.5. First of all, we show the sufficiency part. Let

u(x) = λ

q−2∑
i=k

aq−2−ixi + f≤k−1(x),

where a and λ ∈ F∗q, f≤k−1(x) ∈ Fq[x] is a polynomial of degree at most k − 1. Define

uk(x) :=
q−2∑
i=k

aq−2−ixi. (3.1)

Then u(x) = λuk(x) + f≤k−1(x). Now we pick a primitive element α of Fq and let

uk := (uk(1), uk(α), · · · , uk(αq−2)).

By Lemma 2.1, one gets that

d(u,RS q(F∗q, k)) = d(uk,RS q(F∗q, k)).

Therefore, in order to show that

u := (u(1), u(α), · · · , u(αq−2))

is an ordinary word, it suffices to prove that uk is an ordinary word. Equivalently, we need only to show
that

d(uk,RS q(F∗q, k)) = q − 1 − deg uk(x) = 1, (3.2)

since deg uk(x) = q − 2. This will be done in what follows.
By Lemma 2.2, we have

d(uk,RS q(F∗q, k)) = q − 1 − max
v(x)∈Pk−1

#{β ∈ F∗q|uk(β) = v(β)}. (3.3)

For any v(x) ∈ Pk−1, one has deg v(x) ≤ k − 1. But deg uk(x) = q − 2 ≥ k. Hence

deg(uk(x) − v(x)) = deg uk(x).

It then follows that for any v(x) ∈ Pk−1, one has

#{γ ∈ F∗q|uk(γ) = v(γ)}

=#{γ ∈ F∗q|uk(γ) − v(γ) = 0}

≤ deg(uk(x) − v(x))
= deg uk(x) = q − 2. (3.4)
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On the other hand, we take

v0(x) := −
k−1∑
i=0

aq−2−ixi.

Then v0(x) ∈ Pk−1. Furthermore, by (3.1) we have

#{γ ∈ F∗q|uk(γ) − v0(γ) = 0}

=#
{
γ ∈ F∗q

∣∣∣∣ q−2∑
i=k

aq−2−iγi +

k−1∑
i=0

aq−2−iγi = 0
}

=#
{
γ ∈ F∗q

∣∣∣∣ q−2∑
i=0

aq−2−iγi = 0
}
. (3.5)

Since

xq−1 − 1 =

q−1∏
i=1

(x − αi)

and a ∈ F∗q implying that

xq−1 − 1 = (x − a)
q−2∑
i=0

aq−2−ixi,

it then follows that

q−2∑
i=0

aq−2−ixi =

q−1∏
i=1

(x − αi)

x − a
.

This infers that {
γ ∈ F∗q

∣∣∣∣ q−2∑
i=0

aq−2−iγi = 0
}

= F∗q \ {a},

from which one can derive that

#
{
γ ∈ F∗q

∣∣∣∣ q−2∑
i=0

aq−2−iγi = 0
}

= q − 2. (3.6)

So (3.4) together with (3.5) and (3.6) implies that

max
v(x)∈Pk−1

#
{
γ ∈ F∗q

∣∣∣∣uk(γ) − v(γ) = 0
}

= q − 2. (3.7)

Hence (3.2) follows immediately from (3.3) and (3.7). So u is an ordinary word of RS q(F∗q, k). This
finishes the proof of the sufficiency part.

Now we turn our attention to the proof of the necessity part. Let u be an ordinary word of RS q(F∗q, k)
and deg u(x) = q − 2. Then by the definition of ordinary word, we have

d(u,RS q(F∗q, k)) = q − 1 − (q − 2) = 1.
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Hence by Lemma 2.2, one has

max
v(x)∈Pk−1

#{xi ∈ F
∗
q|u(x) − v(x) = 0} = q − 1 − d(u,RS q(F∗q, k)) = q − 1 − 1 = q − 2.

Notice that for any v(x) ∈ Pk−1, one has

#{xi ∈ F
∗
q|u(x) − v(x) = 0} ≤ deg(u(x) − v(x)) = q − 2.

So there is a polynomial v0(x) ∈ Pk−1 such that

#{x ∈ F∗q|u(x) − v0(x) = 0} = q − 2.

Write

u(x) =

q−2∑
i=0

uixi

and

v0(x) =

k−1∑
i=0

vixi.

Let uq−2 = λ. Since degu(x) = q − 2, one has λ ∈ F∗q. Then

u(x) − v0(x) =

q−2∑
i=0

uixi −

k−1∑
i=0

vixi

=

q−2∑
i=k

uixi +

k−1∑
i=0

(ui − vi)xi

=λ
( q−2∑

i=k

λ−1uixi +

k−1∑
i=0

λ−1(ui − vi)xi
)

(since λ ∈ F∗q)

:=λ
q−2∑
i=0

cixi,

with ci = λ−1ui for all integers i with k ≤ i ≤ q − 2 and ci = λ−1(ui − vi) for all integers i with
0 ≤ i ≤ k − 1. One then deduces that

#
{
x ∈ F∗q

∣∣∣∣ q−2∑
i=0

cixi = 0
}

= q − 2. (3.8)

On the other hand, Lemma 2.3 yields that

#
{
x ∈ F∗q

∣∣∣∣ q−2∑
i=0

cixi = 0
}

= q − 1 − rank(B), (3.9)
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where B is the left circulant matrix defined by

B :=


c0 c1 . . . cq−3 cq−2

c1 c2 . . . cq−2 c0
...

...
...

...
...

cq−2 c0 . . . cq−4 cq−3

 .
So from (3.8) and (3.9), we derive that rank(B) = 1. Since cq−2 = λ−1λ = 1, one has

B =


c0 c1 . . . cq−3 1
c1 c2 . . . 1 c0
...

...
...

...
...

1 c0 . . . cq−4 cq−3

 .
Assume that cq−3 = 0. Then B holds a nonzero minor of order 2, and so one gets that rank(B) ≥ 2,

which is impossible. Hence we must have cq−3 , 0. In the following, we let cq−3 = a. Then a ∈ F∗q.
For each integer i with 1 ≤ i ≤ q − 1, let ri denote the i-th row of the matrix B. Then rank(ri) = 1
for each integer i with 1 ≤ i ≤ q − 1. Since rank(B)=1, there exists an element a ∈ F∗q such that
r1 = ar2. Then we deduce that cq−2 = ac0 and ck = ack+1 for 0 ≤ k ≤ q − 3. Since cq−2 = 1, one has
a = cq−3, c0 = a−1 = aq−2 and ck = a−1ck−1 for 1 ≤ k ≤ q − 2. It then follows that ck = aq−2−k for
0 ≤ k ≤ q − 2. This implies that

u(x) − v0(x) = λ

q−2∑
i=0

aq−2−ixi.

Therefore

u(x) = λ

q−2∑
i=k

aq−2−ixi + λ

k−1∑
i=0

aq−2−ixi + v0(x)

= λ

q−2∑
i=k

aq−2−ixi + f≤k−1(x),

where

f≤k−1(x) := λ

k−1∑
i=0

aq−2−ixi + v0(x) ∈ Pk−1.

So the necessity part is proved.
This concludes the proof of Theorem 1.5 �

4. Examples and final remarks

In this last section, we supply two examples to demonstrate the validity of Theorem 1.5.

Example 4.1. Let q = 7, n = q− 1 = 6, k = 3. Putting α = 3 gives us the standard Reed-Solomon code

RS 7(F∗7, 3) = {( f (1), f (3), · · · , f (35)) ∈ F6
7 | f (x) ∈ F7[x], deg f (x) ≤ 2}.

AIMS Mathematics Volume 4, Issue 5, 1336–1347.
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Using the MATLAB 2011a programming, we search for the ordinary word and find out all the
ordinary words of degree q − 2 = 5 of standard Reed-Solomon code RS 7(F∗7, 3) that are listed in
Table 1. By (1.2), we can get the Lagrange interpolation polynomial u(x) of the ordinary word u of
degree 5 of RS 7(F∗7, 3) listed also in Table 1. This coincides with Theorem 1.5.

Suppose that u is an ordinary word of degree 5 of RS 7(F∗7, 3). Then

d(u,RS 7(F∗7, 3)) = n − deg u(x) = 6 − 5 = 1.

On the other hand, one has
d(u,RS 7(F∗7, 3)) = min

v∈RS 7(F∗7,3)
{d(u, v)}.

So it is sufficient to find a codeword v in RS 7(F∗7, 3) such that d(u, v) = 1. For the received ordinary

word u = λ(3, 1, 0, 6, 0, 4) + f of degree 5, by (1.2) we compute and get that u(x) = λ
5∑

i=3
xi + f (x).

Furthermore, one can search and find the word v = λ(4, 1, 0, 6, 0, 4)+ f ∈ RS 7(F∗7, 3) such that d(u, v) =

1. For the other ordinary words u of degree 5, one can also find the corresponding codewords v such
that d(u, v) = 1. We can easily compute the Lagrange interpolation polynomial v(x) of v also listed in
Table 1.

Table 1. Ordinary words of degree 5 for RS 7(F∗7, 3).
λ ∈ F∗7, f = l2e2 + l1e + l0, f (x) = l2x2 + l1x + l0 with ei = (1, 3i, 2i, 6i, 4i, 5i) and l0, l1, l2 running over

F7, d(u, v) = 1
Ordinary word u LIP u(x) of u Codeword v LIP v(x) of v
λ(3, 1, 0, 6, 0, 4) + f λ(x5 + x4 + x3) + f (x) λ(4, 1, 0, 6, 0, 4) + f λ(6x2 + 6x + 6) + f (x)
λ(0, 2, 5, 4, 0, 3) + f λ(x5 + 2x4 + 4x3) + f (x) λ(0, 2, 2, 4, 0, 3) + f λ(6x2 + 5x + 3) + f (x)
λ(6, 1, 5, 0, 2, 0) + f λ(x5 + 3x4 + 2x3) + f (x) λ(6, 6, 5, 0, 2, 0) + f λ(x2 + 3x + 2) + f (x)
λ(0, 5, 0, 1, 6, 2) + f λ(x5 + 4x4 + 2x3) + f (x) λ(0, 5, 0, 1, 1, 2) + f λ(6x2 + 3x + 5) + f (x)
λ(3, 0, 4, 0, 5, 2) + f λ(x5 + 5x4 + 4x3) + f (x) λ(3, 0, 4, 0, 5, 5) + f λ(x2 + 5x + 4) + f (x)
λ(1, 0, 3, 4, 6, 0) + f λ(x5 + 6x4 + x3) + f (x) λ(1, 0, 3, 3, 6, 0) + f λ(x2 + 6x + 1) + f (x)

Example 4.2. Let q = 11, n = q − 1 = 10, k = 5. Putting α = 2 gives us the standard Reed-Solomon
code

RS 11(F∗11, 5) = {( f (1), f (2), · · · , f (29)) ∈ F10
11 | f (x) ∈ F11[x], deg f (x) ≤ 5}.

Using the MATLAB 2011a programming, we search for the ordinary word and find out all the
ordinary words of degree q−2 = 9 of standard Reed-Solomon code RS 11(F∗11, 5) that are listed in Table
2. By (1.2), one can easily calculate the Lagrange interpolation polynomial u(x) of the ordinary word
u of degree 9 of RS 11(F∗11, 5) listed also in Table 2. This coincides with Theorem 1.5.

Suppose that u is an ordinary word of degree 9 of RS 11(F∗11, 5). Then

d(u,RS 11(F∗11, 5)) = n − deg u(x) = 10 − 9 = 1.

On the other hand, one has
d(u,RS 11F

∗
11, 5)) = min

v∈RS 11(F∗11,5)
{d(u, v)}.
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So it is sufficient to find a codeword v in RS 11(F∗11, 5) such that d(u, v) = 1. For the received ordinary
word u = λ(5, 2, 0, 5, 0, 10, 0, 4, 0, 7) + f of degree 9, by (1.2) we compute and get that

u(x) = λ
9∑

i=5
xi + f (x). Furthermore, one can search and find the codeword

v = λ(6, 2, 0, 5, 0, 10, 0, 4, 0, 7) + f ∈ RS 11(F∗11, 5) such that d(u, v) = 1. For the other ordinary words u
of degree 9, one can also find the corresponding codewords v such that d(u, v) = 1. It is easy to
compute the Lagrange interpolation polynomial v(x) of v that is listed in Table 2.

Table 2. Ordinary words of degree 9 for RS 11(F∗11, 5).
λ ∈ F∗11, f = l4e4 + l3e3 + l2e2 + l1e + l0, f (x) = l4x4 + l3x3 + l2x2 + l1x + l0 with

ei = (1, 2i, 4i, 8i, 5i, 10i, 9i, 7i, 3i, 6i) and l0, l1, l2, l3, l4 running over F11, d(u, v) = 1
Ordinary word u LIP u(x) of u Codeword v LIP v(x) of v

λ(5, 2, 0, 5, 0, 10, 0, 4, 0, 7) + f λ(x9 + x8 + x7 + 10x6 + x5) + f (x) λ(6, 2, 0, 5, 0, 10, 0, 4, 0, 7) + f λ(10x4 + 10x3 + 10x2 + 10x + 10) + f (x)
λ(9, 8, 1, 0, 8, 0, 5, 0, 2, 0) + f λ(x9 + 2x8 + 4x7 + 8x6 + 5x5) + f (x) λ(9, 3, 1, 0, 8, 0, 5, 0, 2, 0) + f λ(x4 + 2x3 + 4x2 + 8x + 5) + f (x)
λ(0, 9, 0, 7, 0, 5, 0, 6, 9, 8) + f λ(x9 + 3x8 + 9x7 + 5x6 + 4x5) + f (x) λ(0, 9, 0, 7, 0, 5, 0, 6, 2, 8) + f λ(10x4 + 8x3 + 2x2 + 6x + 7) + f (x)
λ(0, 10, 4, 6, 0, 4, 0, 8, 0, 1) + f λ(x9 + 4x8 + 5x7 + 9x6 + 3x5) + f (x) λ(0, 10, 7, 6, 0, 4, 0, 8, 0, 1) + f λ(10x4 + 7x3 + 6x2 + 2x + 8) + f (x)
λ(0, 3, 0, 8, 1, 7, 0, 1, 0, 2) + f λ(x9 + 5x8 + 3x7 + 4x6 + 9x5) + f (x) λ(0, 3, 0, 8, 10, 7, 0, 1, 0, 2) + f λ(10x4 + 6x3 + 8x2 + 7x + 2) + f (x)
λ(4, 0, 10, 0, 9, 0, 8, 0, 3, 10) + f λ(x9 + 6x8 + 3x7 + 7x6 + 9x5) + f (x) λ(4, 0, 10, 0, 9, 0, 8, 0, 3, 1) + f λ(x4 + 6x3 + 3x2 + 7x + 9) + f (x)
λ(7, 0, 3, 0, 10, 0, 1, 7, 5, 0) + f λ(x9 + 7x8 + 5x7 + 2x6 + 3x5) + f (x) λ(7, 0, 3, 0, 10, 0, 1, 4, 5, 0) + f λ(x4 + 7x3 + 5x2 + 2x + 3) + f (x)
λ(6, 0, 5, 2, 3, 0, 2, 0, 4, 0) + f λ(x9 + 8x8 + 9x7 + 6x6 + 4x5) + f (x) λ(6, 0, 5, 9, 3, 0, 2, 0, 4, 0) + f λ(x4 + 8x3 + 9x2 + 6x + 4) + f (x)
λ(0, 6, 0, 9, 0, 2, 3, 10, 0, 3) + f λ(x9 + 9x8 + 4x7 + 3x6 + 5x5) + f (x) λ(0, 6, 0, 9, 0, 2, 8, 10, 0, 3) + f λ(10x4 + 2x3 + 7x2 + 8x + 6) + f (x)
λ(1, 0, 7, 0, 4, 6, 9, 0, 6, 0) + f λ(x9 + 10x8 + x7 + 10x6 + x5) + f (x) λ(1, 0, 7, 0, 4, 5, 9, 0, 6, 0) + f λ(x4 + 10x3 + x2 + 10x + 1) + f (x)

Remark 4.3. In this paper, we determine all the ordinary words of maximal degree q−2 of the standard
Reed-Solomon code RS q(F∗q, k). In the close future, we will explore the ordinary words of degree no
more than q − 3 of the standard Reed-Solomon code RS q(F∗q, k).
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