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Abstract: In this paper, geographical basis risk in weather derivative design and pricing is mitigated by
using spatial-temporal pricing models. A two-state regime-switching temperature model is constructed
and extended to multi-dimensional locations that are highly correlated in temperature. The “normal”
and “shifted” regime of this model are characterized by a heteroscedastic Ornstein-Uhlenbeck process
and a Brownian motion with mean different from zero respectively. The correlation between the driving
noise in each regime is assumed to be a function of the space between the locations and increases with
decreasing space. A weight is assigned to each location in the temperature basket. However, a location
with a higher risk is assigned a larger weight and vice versa. The weightings in the temperature basket
gave considerable importance to farming locations having greater exposure to temperature risk. The
further the farming location from the weather station, the larger the weight. With this spatial-temporal
weather derivatives pricing model, the holder of a weather derivative contract will have the opportunity
to select the most appropriate composite of weather stations with their desired weight that can reduce
geographical basis risks.
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1. Introduction

Agriculture is the main source of livelihood in Africa [1]. However, extreme changes in weather
patterns, unpredictable temperature changes, frequent heat wave, and increasing temperature as a
result of climate change make agriculture look like a costly gamble in Africa. The report of the
Intergovernmental Panel on Climate Change (IPCC) 2007 [2] gives a comprehensive evaluation of the
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impacts of climate change on agriculture in Africa. As stated by the IPCC report, the estimated
prediction of agriculture losses by 2100 is between 2% to 7% of gross domestic product (GDP) in
parts of the Sahara. The report revealed that Northern and Southern Africa are anticipated to record
GDP losses of between 0.4-1.3%, and between 2-4% for the Western and Central Africa. According
to [3], Africa is extremely affected by climate change from two causes: a limited social, economic,
and human abilities needed to adjust to the impact of climate change, and its geographical features of
having a predominantly vast land lying across the warming tropics. From planting to harvest, extreme
changes in weather can severely affect the quality and the complete production levels of crop yields.

The effects of weather do differ considerably in the agricultural supply and demand chain. Most
farmers in Africa have used traditional ways to improve the negative effect of extreme weather
conditions on their farmlands. However, most of these farmlands are in the same geographical
locations and as a result crop losses are correlated across farmers due to the covariant nature of
weather risks. This implies that farmers in the same geographical locations are vulnerable by the
same weather event and are probably going to endure extensive losses concurrently. Covariant risk
controls the success of traditional risk management techniques of smallholder farmers. Consequently,
there is the need for a suitable and efficient risk management tool for farmers to control weather
extremes and uncertainties. An emerging shift has been the success of a weather risk management
tool-weather derivative, which is use to reduce the financial effects of weather extremes and
uncertainties. The uptake of this tool has been lower than expected in the agricultural sector [4] due to
basis risks. As defined by [5], “Basis risk arises when the production pattern of the individual
operation is not perfectly correlated with the aggregated pattern of the area for which the derivative
has been designed”. Product-design and geographical basis risk are forms of basis risks.
Product-design basis risks can easily be mitigated if the appropriate weather variable is used as the
underlying index for designing the weather derivative. Geographical basis risk is difficult to mitigate
especially in most developing countries due to the unavailability of weather stations at most farming
locations under interest. For this reason, the need to develop spatial-temporal mathematical model
that considers different farming locations and assigning weights to weather stations relative to the
distance from the reference farming locations. This model is also beneficial to farmers with farmlands
in the same geographical locations.

Unlike traditional agricultural insurance that is used to hedge against risks from idiosyncratic
occurrences, weather derivatives allow agricultural stakeholders (farmers, input suppliers and other
stakeholders at the farm level) to hedge against covariant risks. Weather derivative is seen as an
efficient tool for mitigating risk that affects most farmers, input suppliers and other stakeholders at the
farm level. In a survey report conducted in 2008-2009 and prepared for the weather risk management
association, the agricultural sector contributed about 11%∗ of the total weather derivatives purchase in
the weather market. Unlike traditional insurance, the payoff of a weather derivative depends on an
index (specially designed measure) that is linked to the risk being hedged against.

The price of a weather derivative is usually dependent on different weather indices (heating degree
days (HDD), cooling degree days (CDD), Pacific Rim (PRIM), cumulative average temperature (CAT),
growing degree days (GDD)) that help in pricing weather derivatives. Different authors [6–8] have
used HDD and CDD indices as the major indices for pricing weather derivatives in the energy industry.
Similar to the CDD and HDD indices in the energy sector, the GDD and CAT indices are powerful

∗the second largest percentage after the energy sector
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indices that can be use to price weather derivatives for the agricultural sector in Africa. For this reason,
CAT and GDD are used as the major indices for the temperature based weather derivative pricing.
GDD measures the growth and development of crops, weeds, and insects during a growing season.

The contributions made in this study are: (1) Motivated by [9], we develop a temperature dynamics
model for spatial-temporal locations in Ghana. This model captures the stylized facts of temperature
at different locations. (2) We develop an analytical weather derivative pricing model for basket futures
written on CAT and GDD indices. With the proposed basket futures pricing model, it will be cost
efficient and pragmatic for farmers to buy weather derivatives contracts for different but correlated
farming locations than a single farming location. Geographical basis risk will also be reduced when
using this spatial-temporal pricing model.

To the best our knowledge, the proposed analytical weather derivatives basket futures pricing
formulas using multi-dimensional regime-switching model is the first of its kind in literature.

2. Theoretical concepts

Assume DB represent the random payoff at expiry for the owner of a futures contract. At time
t ≤ t1 < t2 for a measurement period [t1, t2], the holder of the contract enters into the contract. Let
F(t, t1, t2) represent the price against receiving the random payment DB at time t2. For a constant
continuously compounded interest rate r > 0 and a risk-neutral probability measure Q, the arbitrage-
free future price for a measurement period [t1, t2] on the CAT and GDD can be define as Ft-adapted
stochastic process satisfying

0 = e−r(t2−t)EQ [DB − F(t, t1, t2)|Ft] (2.1)

Assume that the futures price F(t, t1, t2) is Ft adapted, then the futures price is define as

F(t, t1, t2) = EQ[DB|Ft] (2.2)

where t, t1, t2 are the current, starting and maturity time of the futures contract respectively and Ft is σ-
algebra up to a specified time t. From equation 2.2, it is important to calculate the risk-neutral measure
Q (also referred to as equivalent martingale measure) in order to determine futures prices.

To derive an explicit formula for the future price, we specify Q to help in calculating the
expectation. Following the analysis of [11], we use the Girsanov theorem to find a sub-family of
probability measures for the normal and shifted regimes. By using the option pricing technique under
independent regime-switching model of [12], the CAT and GDD futures are priced by splitting the
futures price into a normal and shifted price component. The two pricing component are joined up
using the idea of weighted mixture of probability in each regime from t1 to t2.

2.1. CAT futures

Suppose that for a contract period [t1, t2], the temperature dynamics follow the temperature model
in Lemma 3.1. Then, there is a price dynamic of futures written on a CAT index with t ≤ t1 < t2. From
equation 2.1, the futures price of CAT is

0 = e−r(t2−t)EQ

[∫ t2

t1
Txdx − FCAT (t, t1, t2) | Ft

]
. (2.3)
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Since the futures price F(t, t1, t2) is Ft adapted under the measure Q, FCAT is Ft-adapted. We can
therefore define the CAT futures price FCAT (t, t1, t2) for a weather derivative contract as

FCAT (t, t1, t2) = EQ

[∫ t2

t1
Txdx | Ft

]
(2.4)

2.2. GDD futures

Similar to the definition of the CAT futures price, the GDD futures price is given as

0 = e−r(t2−t)EQ

[∫ t2

t1
max (Tx − K, 0) dx − FGDD(t, t1, t2)

∣∣∣∣∣Ft

]
(2.5)

Using the same idea in deriving the CAT futures price, the price of the GDD futures can be derived as

FGDD(t, t1, t2) = EQ

[∫ t2

t1
max (Tx − K, 0) dx

∣∣∣∣∣Ft

]
. (2.6)

Where K is the optimal normal temperature at which a crop will develop. The rate of development of
most plants depends on the daily air temperature [13].
Because the market price of temperature risk remains unchanged for all derivatives that depends on
temperature, we use the same risk-neutral measure Q used in pricing the CAT futures to price the GDD
futures.

2.3. Change of measure

To find a mathematical expression for the futures price of the chosen indices, an arbitrage-free and
explicit dynamics for future price of the indices are constructed. The real-world measure P is changed
to a risk-neutral measure Q, in a way that the discounted price process of the underlying is a martingale
under Q. To transform the P to Q, the Girsanov theorem is employed. The Girsanov theorem provides
techniques for transforming P to Q under the setting of a Brownian motion, where Q is a second
probability measure.

Theorem 2.1 (Girsanov Theorem). Let Wt be a Brownian motion on a probability space (Ω,F ,P) and
λ = {λt : 0 ≤ t ≤ T } is an adaptive process satisfying the Novikov condition

E

[
exp

(
1
2

∫ t

0
λ2

udu
)]
< ∞. (2.7)

Let Z(t) = exp
(∫ t

0
λudWu −

1
2

∫ t

0
λ2

udu
)
, (2.8)

then Q ∼ P can be determined by the Radon-Nikodym derivative

dQ
dP
| Ft = Z(t), (2.9)

Then we can define the random process

and Vt = Wt −

∫ t

0
λsds. (2.10)
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Equivalently,
dVt = dWt − λtdt (2.11)

The process Vt is a Brownian motion under the measure Qλ

Proof. See [14] for the proof of this theorem. �

2.4. Girsanov’s Theorem in RN

Let B(t) =
(
B1(t), B2(t), B3(t), · · · , BN(t)

)
be an N-dimensional Brownian motion on a probability

space (Ω,F ,P) and λ =
(
λ1(t), λ2(t), λ3(t), · · · , λN(t)

)
be an N-dimensional adapted process on [0,T ].

Define

Zλ(t) := exp
( ∫ t

0
λ(s)dB(s) −

1
2

∫ t

0
|| λ(s) ||2 ds

)
, (2.12)

where || λ(s) ||2=
∑N

i=1 λi(s)2.
Let

B̃(t) = B(t) +

∫ t

0
λ(s)ds (2.13)

and suppose that

E

∫ t

0
|| λ(s) ||2 Z(s)2ds < ∞,

then B̃(t) is a N-dimensional standard Brownian motion under the measure Q defined as

dQ
dP

∣∣∣∣∣Ft = Z(T ) (2.14)

Observe that for each j,

B̃ j(t) = B j(t) +

∫ t

0
λ j(s)ds (2.15)

The component process of B̃(t) are independent under the measure Q.

Remark 1. The Novikov condition in the Girsanov theorem makes sure Z is positive martingale and
whenever E(Z) = 1. This is referred to as the Radon-Nikodym derivative.

Remark 2. λ is referred to as the market price of temperature risk (MPR). Since there is no real weather
derivative market in Africa from which the prices can be obtained, λ is assumed to be a constant. For
a constant λ, equation 2.11 can be redefined as

dVt = dWt − λdt (2.16)

3. Regime-switching temperature model

3.1. One-dimensional regime-switching model

Different temperature models have been proposed to capture the dynamics of temperature [6, 8–10,
15]. The usual assumptions in these models are: volatility of temperature is lower in summer than
in winter, temperature is autoregressive, temperature follows a predicted pattern and it goes around a
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seasonal mean. Early models used autoregressive moving average (ARMA) processes, autoregressive
process of order one (AR(1)) processes, mean reverting stochastic differential equations (SDE) [9,
15, 16]. All these models assumed no changes in the state of the dynamics of temperature. That is,
they used single-regime model to describe the dynamics of temperature. However, temperature can
go through different latent states in a particular period of time and a single SDE can not accurately
capture all this states. More complex models have been proposed in recent literatures, an example is
the model of [7, 17, 18], which uses a two-state Markov regime-switching model. [17] extended the
model of [7] by replacing the constant volatility in the base regime with heteroscedastic volatility.
This was necessary because volatility of temperature changes at different states. [18] further extended
this model by replacing the Brownian process in the shifted regime with a Lévy process. However,
none of these authors proposed a spatial-temporal pricing model for weather derivatives. Motivated
by [7, 17, 18], a regime-switching temperature dynamics model is proposed and later extended to a
multi-dimensional model. The switching dynamics between the regimes are assumed to be controlled
by an unobservable latent variable Rt. The model is governed by a two-state regime-switching model
Rt = {1, 2} in which a two-state Markov chain controls the characterization of the probability law of
switching between Rt = 1 and Rt = 2 with transition probabilities

pik = Pr(Rt = k | Rt−1 = i) ∀i, k = 1, 2

0 ≤ pik ≤ 1 and
2∑

k=1

pik = 1

The daily average temperature on day t, Tt is modelled as the sum of a deseasonalized temperature T̃t

and a deterministic seasonal component S t,

Tt = T̃t + S t

The deterministic seasonality component at time t, S t is given by

S t = a1 sin
(

2π
365

(t − ϕ)
)

+ a2t + a3

where a1, a2, a3 and ϕ are constants.
The proposed model is distinctly appropriate to capture the dynamics of temperature through time. The
proposed daily temperature model is given as

Tt =

Tt,1 : dTt,1 = dS t,1 + β(Tt,1 − S t,1)dt + σ1Tt,1dWt, if Tt is in the normal regime,
Tt,2 : dTt,2 = µdt + σ2dWt, if Tt is in the shifted regime,

(3.1)

where σ1Tt,1 is the daily local volatility of the normal regime through time, σ2 is the volatility of the
shifted regime, and β is the mean-reversion rate of the daily temperature in the normal regime which
reverses to the long term equilibrium level after the daily temperature has drifted from its equilibrium.
The probabilities for the process to be in the normal and shifted regimes are p1 and p2 respectively and
p1 + p2 = 1. Wt ∼ N(0, t) is the standard Brownian motion. Tt(T (t)) is the daily temperature at time t.
The regimes are assumed to be independent to each other and the futures contract is calculated for each
regime model. The final futures price is calculated using the weighted sum of the individual regimes.
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Lemma 3.1. If the daily average temperature Tt,1 follows the proposed model 3.1, then the explicit
solution is given by

T (t) =


Tt,1 : Tt,1 = S t,1 + (T0,1 − S 0,1)e−βt +

∫ t

0
σTueβ(t−s)dWs

Tt,2 : Tt,2 = T0,2 + µt +

∫ t

0
σ2dWs

(3.2)

Proof. For the normal regime,

dTt = dS t + β(Tt − S t)dt + σTtdBt

dT̃t = βT̃t + σTtdBt, (3.3)

where T̃t,1 = Tt,1 − S t,1. Using the transformation below, dT̃t,1 will be evaluated,

F[T̃t,1, t] = T̃t,1e−βt

∂F
∂T̃t,1

= e−βt;
∂2F
∂T̃ 2

t,1

= 0;
∂F
∂t

= −βT̃te−βt

By Itô’s Lemma and from equation (3.15),

dFt,1 = σTt,1e−βtdWt (3.4)

Integrating equation (3.17) over the interval [0, t],

Ft,1 = F0,1 +

∫ t

0
σTs,1e−βsdWs

T̃te−βt = T̃0,1 +

∫ t

0
σTs,1e−βsdWs

T̃t = T̃0,1eβt +

∫ t

0
σTueβ(t−s)dWs

Tt = S t,1 + (T0,1 − S 0,1)eβt +

∫ t

0
σTs,1eβ(t−s)dWs

For the shifted regime
dTt,2 = µdt + σ2dWt∫ t

0
dTt,2 =

∫ t

0
µds +

∫ t

0
σ2dWs

Tt,2 = T0,2 + µt +

∫ t

0
σ2dWs

�
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3.2. Spatial-temporal regime switching model

Let N be the spatial locations in the basket,
(
ωi

)N

i=1
be the collection of weights for spatial locations(

yi
)N

i=1
. At time t, the basket of the deseasonalized average temperature at the N spatial locations is

given as

D(t) :=
N∑

i=1

ωiT i
t (3.5)

Where
∑N

i=1 ω
i = 1.

Assume temperature is spatially correlated across the random noise term. To allow analytical
pricing of the basket temperature derivatives contract, assume the risk-neutral distribution of
temperature for each location is normally distributed in the temperature model. That is, the basket
been a weighted sum of normally distributed temperature is also normally distributed. Consequently,
we are able to outwit the principal difficulty associated with pricing basket options of assets when
determining the distribution of the sum or average of the underlying assets. From these settings, a
spatial-temporal temperature model at each spatial location yi is proposed,

T i
t =

T i
t,1 : dT i

t,1 = dS i
t,1 + βi(T i

t,1 − S i
t,1)dt + σi

1T i
t,1dW i

t ,

T i
t,2 : dT i

t,2 = µidt + σi
2dW i

t

(3.6)

Model 3.6 can be expressed for locations i = 1, 2, · · · ,N as an N-dimensional system,

Tt =

Tt,1 : dTt,1 = dSt,1 + β(Tt,1 − St,1)dt + σ1Tt,1dWt,

Tt,2 : dTt,2 = µdt + σ2dWt
(3.7)

where Wt ∼ N(0,Ωt). From the property of linear transformation of multivariate normal distribution,

Y ∼ N(µ,Σ)⇒ XY ∼ N(Xµ, XΣXT )

Suppose Z ∼ N(0, It) and Y = XZ, then it follows that Y ∼ N(0, XXT t). By applying Cholesky
factorization to Σ, a lower triangular form for X is derived. Using this theory, Wt can be expressed as
an N-dimensional Brownian motion Bt,

Wt = LBt, (3.8)

LLT = Ω, L is a lower triangular matrix with non-negative diagonal entries, LT is an upper traingular
matrix, and Bt = (B1

t , B
2
t , B

3
t , · · · , B

N
t )T with dBi

tdB j
t = δi jdt. From equation 3.8, equation 3.7 can be

reformulated as

Tt =

Tt,1 : dTt,1 = dSt,1 + β(Tt,1 − St,1)dt + σ1Tt,1LdBt,

Tt,2 : dTt,2 = µdt + σ2LdBt
(3.9)

Equation 2.8 can be transformed for the normal and shifted regime,

Zλ
t =


exp

( ∫ t

0

(
σ1Ts,1L

)−1λsdBs −
1
2

∫ t

0
|| σ1Ts,1L ||−2|| λs ||

2 ds
)

exp
( ∫ t

0

(
σ2L

)−1λ(s)dBs −
1
2

∫ t

0
|| σ2L ||−2|| λ(s) ||2 ds

) (3.10)
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From equation 3.10, and assuming λ is a constant for each reference measurement station, it can be
inferred that;

Vλ
t =


Bt −

∫ t

0

(
σ1Ts,1L

)−1 λds

Bt −

∫ t

0
(σ2L)−1 λds

(3.11)

Equivalently

dVλ
t =

dBt −
(
σ1Tt,1L

)−1 λdt

dBt − (σ2L)−1 λdt
(3.12)

Where Vλ
t is a Brownian motion under the measure Qλ

Consequently, the TML model under the equivalent martingale measure Qλ isdTt,1 = dSt,1 +
(
λ + β

(
Tt,1 − St,1

))
dt + σ1Tt,1LdVλ(t),

dTt,2 = (µ + λ) dt + σ2LdVλ(t),
(3.13)

Lemma 3.2. For a spatial location i, if the dynamics of the daily average temperature follows equation
3.13, then the explicit solution for the ith location yi is given as

T i
t,1 = S i

t,1 +
(
T i

0,1 − S i
0,1

)
eβ

it +

(
λ

β

)i

(eβ
it − 1) +

∫ t

0
σi

1T i
s,1eβ

i(t−s)
i∑

j=1

Li jdV j
λ(s),

T i
t,2 = T i

0,2 + (µ + λ)it +

∫ t

0
σi

2

i∑
j=1

Li jdV j
λ(s)

(3.14)

Proof. From the normal regime of model 3.13,

dTt,1 = dSt,1 +
(
λ + β

(
Tt,1 − St,1

))
dt + σ1Tt,1LdVλ(t),

dT̃t,1 = βT̃t,1 + λdt + σ1Tt,1LdVλ(t), (3.15)

where T̃t,1 = Tt,1 − St,1. dT̃t,1 will be evaluated using the transformation in equation 3.16,

F[T̃t,1, t] = T̃t,1e−βt (3.16)

By Itô’s Lemma and from equation (3.15),

dF = λe−βtdt + σ1Tt,1e−βtLdVt (3.17)

Integrating equation (3.17) over the interval [0, t] gives

Tt,1 = St,1 +
(
T0,1 − S0,1

)
eβt +

λ

β

(
eβt − 1

)
+

∫ t

0
σ1Ts,1eβ(t−s)LdVs

At location yi,

T i
t,1 = S i

t,1 +
(
T i

0,1 − S i
0,1

)
eβ

it +

(
λ

β

)i

(eβ
it − 1) +

∫ t

0
σi

1T i
s,1eβ

i(t−s)
i∑

j=1

Li jdV j
λ(s)
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From the shifted regime of model 3.13,

dTt,2 = µdt + λdt + σ2LdBλ(t)

Tt,2 = T0,2 + (µ + λ)t +

∫ t

0
σ2LdVλ(s)

At location yi,

Tt,2 = T i
0,2 + (µ + λ)it +

∫ t

0
σi

2

i∑
j=1

Li jdV j
λ(s),

hence the lemma. �

4. Pricing futures on temperature basket

The CAT and GDD futures will be priced by splitting the futures price into normal and shifted price
components and added up with probabilities in each regime for the contract period.

F(t, t1, t2) = Pr(R[t1,t2] = N)FN(t, t1, t2) + Pr(R[t1,t2] = S )FS (t, t1, t2) (4.1)

Where FN(t, t1, t2) and FS (t, t1, t2) are the futures price of the normal and shifted regimes respectively.
Pr(R[t1,t2] = N) and Pr(R[t1,t2] = S ) are the probability of the observed daily average temperature data
under the normal and shifted regimes throughout the contract period [t1, t2]. The splitting is possible
since it is assumed that the futures price under the normal regime is independent of the futures price
under the shifted regime.

4.1. CAT and GDD futures on temperature basket

By the same reasoning as in deriving the futures price of a single CAT, the futures price of a basket
CAT is given by

FCAT (t, t1, t2; D) = EQ

 N∑
i=1

ωi
( ∫ t2

t1
T i

xdx
)
| Ft

 (4.2)

Definition 4.1. At a spatial location yi and a specificied contract period, t ≤ t1 < t2, the GDD futures
price is define as

GDD(t1, t2) :=
∫ t2

t1
max

{
D(t) − K , 0

}
dt

=

∫ t2

t1
max

{ N∑
i=1

ωiT i
t − K , 0

}
dt

(4.3)

Analogously, the futures price of a basket GDD is defined as

FGDD(t, t1, t2; D) = EQ

( ∫ t2

t1
max

{ N∑
i=1

ωiT i
x − K , 0

}
dx

∣∣∣∣∣Ft

)

=

∫ t2

t1
EQ

(
max

{ N∑
i=1

ωiT i
x − K , 0

}∣∣∣∣∣Ft

)
dx

(4.4)
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Proposition 4.2. At a spatial location yi, the futures contract price on basket of CAT index following
the normal regime in equation 3.6 is calculated as

FN
CAT (t, t1, t2; D) =

N∑
i=1

ωi
[ ∫ t2

t1
S i

x,1dx +

∫ t2

t1

(
T i

t,1 − S i
t,1
)
eβ

i(x−t)dx+∫ t2

t1

(
λ

β

)i (
eβ

i(x−t) − 1
)
dx

]
Proof. For x ≥ t in Lemma 3.2,

T i
x,1 = S i

x,1 +
(
T i

t,1 − S i
t,1
)
eβ

i(x−t) +

(
λ

β

)i

(eβ
i(x−t) − 1) +

∫ x

t
σi

1T i
s,1eβ

i(x−s)
i∑

j=1

Li jdV j
λ(s) (4.5)

EQ
[ ∫ t2

t1
T i

x,1dx | Ft

]
= EQ

[ ∫ t2

t1

(
S i

x,1 +
(
T i

t,1 − S i
t,1
)
eβ

i(x−t) +

(
λ

β

)i

(eβ
i(x−t) − 1)+∫ x

t
σi

1T i
s,1eβ

i(x−s)
i∑

j=1

Li jdV j
λ(s)

)
dx

∣∣∣∣Ft

]
=

∫ t2

t1
S i

x,1dx +

∫ t2

t1

(
T i

t,1 − S i
t,1
)
eβ

i(x−t)dx+∫ t2

t1

(
λ

β

)i (
eβ

i(x−t) − 1
)
dx

FN
CAT (t, t1, t2; D) =

N∑
i=1

ωiEQ

[∫ t2

t1
T i

x,1dx | Ft

]

=

N∑
i=1

ωi
[ ∫ t2

t1
S i

x,1dx +

∫ t2

t1

(
T i

t,1 − S i
t,1
)
eβ

i(x−t)dx+∫ t2

t1

(
λ

β

)i (
eβ

i(x−t) − 1
)
dx

]
�

Proposition 4.3. For a specificied contract period, t ≤ t1 < t2 at spatial location yi, the futures contract
price on basket of CAT index following the shifted regime in equation 3.6 is

FS
CAT (t, t1, t2; D) =

N∑
i=1

ωi

[
T i

t,2(t2 − t1) +
1
2

(µ + λ)i
(
(t2 − t)2 − (t1 − t)2

)]
(4.6)

Proof. We first integrate the shifted regime in lemma 3.2 at a spatial location yi over the time interval
[t1, t2]. ∫ t2

t1
T i

t,2dx =

∫ t2

t1
T i

0,2dx +

∫ t2

t1
(µ + λ)itdx +

∫ t2

t1

∫ t

0
σi

2

i∑
j=1

Li jdV j
λ(s)dx

= T i
0,2(t2 − t1) +

1
2

(µ + λ)i(t2
2 − t2

1) +

∫ t2

t1

∫ t

0
σi

2

i∑
j=1

Li jdV j
λ(s)dx

(4.7)
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For x ≥ t and a spatial location yi

∫ t2

t1
T i

x,2dx = T i
t,2(t2 − t1) +

1
2

(µ + λ)i
(
(t2 − t)2 − (t1 − t)2

)
+

∫ t2

t1

∫ x

t
σi

2

i∑
j=1

Li jdV j
λ(s)dx

FS
CAT (t, t1, t2; D) =

N∑
i=1

ωiEQ

[∫ t2

t1
T i

x,2dx | Ft

]

=

N∑
i=1

ωiEQ
[(

T i
t,2(t2 − t1) +

1
2

(µ + λ)i
(
(t2 − t)2 − (t1 − t)2

)
+

∫ t2

t1

∫ x

t
σi

2

i∑
j=1

Li jdV j
λ(s)dx

)∣∣∣∣Ft

]
=

N∑
i=1

ωi
(
T i

t,2(t2 − t1) +
1
2

(µ + λ)i
(
(t2 − t)2 − (t1 − t)2

) )
�

Generally, if we assume that the daily average temperature follows model 3.6, then the CAT futures
price on temperature basket is computed using Equation 4.1, Proposition 4.2 and 4.3.

Proposition 4.4. For a specificied contract period, t ≤ t1 < t2 at spatial location yi, the futures contract
price on basket GDD index following the normal regime in equation 3.6 is given by

FN
GDD(t, t1, t2; D) =

∫ t2

t1

(
ξ(t, x) + 2∆(t, x)

) 1
2
(
φ
(
Λ(t, x)

)
+ Λ(t, x)Φ

(
Λ(t, x)

))
dx, (4.8)

where Φ is the cumulative standard normal distribution function, φ is the standard normal density
function,

Λ(t, x) =
Ψ(t, x) − K(

ξ(t, x) + 2∆(t, x)
) 1

2

,

Ψ(t, x) =

N∑
i=1

ωi
(
S i

t,1 +
(
T i

0,1 − S i
0,1

)
eβ

it +

(
λ

β

)i

(eβ
it − 1)

)
,

ξ(t, x) =

N∑
i=1

ω2
i=

2(t, x) =

N∑
i=1

ω2
i

i∑
j=1

∫ x

t
σ2

i T 2
(t,1),iL

2
i je

2βi(x−s)ds,

∆(t, x) =

N∑
i=1

N∑
j=i+1

ωiω j
( i∑

q=1

LiqL jq
)
Υi j(t, x)

=

N∑
i=1

N∑
j=i+1

ωiω j
( i∑

q=1

LiqL jq
) ∫ x

t
σi

1σ
j
1T i

u,1T j
u,1e(βi+β j)(x−s)ds
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Proof. Let

D(x) =

N∑
i=1

ωiT i
x (4.9)

For x ≥ t in Lemma 3.2,

T i
x,1 = S i

x,1 +
(
T i

t,1 − S i
t,1
)
eβ

i(x−t) +

(
λ

β

)i

(eβ
i(x−t) − 1) +

∫ x

t
σi

1T i
s,1eβ

i(x−s)
i∑

j=1

Li jdV j
λ(s) (4.10)

For convenience, we shall denote the deterministic and random component of equation 4.10 as Gi(t, x)
and Hi(t, x) respectively. That is,

Gi(t, x) = S i
x,1 +

(
T i

t,1 − S i
t,1
)
eβ

i(x−t) +

(
λ

β

)i

(eβ
i(x−t) − 1)

Hi(t, x) =

∫ x

t
σi

1T i
s,1eβ

i(x−s)
i∑

j=1

Li jdV j
λ(s) =

i∑
j=1

∫ x

t
σi

1T i
s,1eβ

i(x−s)Li jdV j
λ(s)

Hence

D(x) =

N∑
i=1

ωi
(
Gi(t, x) + Hi(t, x)

)
(4.11)

At time t, the distribution of the basket D(x) can be computed. However, Gi(t, x) is deterministic.
Hence, at time t and by Itô isometry,∫ x

t
σi

1T i
s,1eβ

i(x−s)Li jdV j
λ(s) ∼ N

(
0,

∫ x

t
σ2

i T 2
(s,1),iL

2
i je

2βi(x−s)ds
)

But V j
λ(s) are independent for each j. So the variances can be summed to obtain the variance of Hi(t, x),

Hi(t, x) ∼ N
(
0,

i∑
j=1

∫ x

t
σ2

i T 2
i L2

i je
2βi(x−u)du

)
= N

(
0,=2(t, x)

)
Since

∑N
i=1 ω

iHi(t, x) is a sum of normally distributed random variables, it implies that it is normally
distributed with the following respective mean and variance:

E
( N∑

i=1

ωiHi(t, x)
)

=

N∑
i=1

ωiE
(
Hi(t, x)

)
= 0

and

Var
( N∑

i=1

ωiHi(t, x)
)

=

N∑
i=1

Var
(
ωiHi(t, x)

)
+ 2

∑
i< j

Cov
(
ωiHi, ω jH j

)
=

N∑
i=1

ω2
i Var(Hi(t, x)) + 2

∑
i< j

ωiω jCov
(
Hi,H j

)
=

N∑
i=1

ω2
i=

2(t, x) + 2
∑
i< j

ωiω jCov
(
Hi,H j

)
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Now, take into account Cov
(
Hi,H j) for j > 1. Both H1 and H j are in the same integral form with

respect to the standard Brownian motion V1
λ(u). By the independence property of V1

λ(u) and V j
λ(u), the

covariance only exist between these two integrals. Therefore,

Cov
(
Hi,H j

)
=

∫ x

t
σi

1σ
j
1T i

s,1T j
s,1e(βi+β j)(x−s)

( i∑
q=1

LiqL jq
)
ds, ∀ j > 1

=
( i∑

q=1

LiqL jq
) ∫ x

t
σi

1σ
j
1T i

s,1T j
s,1e(βi+β j)(x−s)ds, ∀ j > 1

Define Υi j(t, x) :=
∫ x

t
σi

1σ
j
1T i

s,1T j
s,1e(βi+β j)(x−s)ds.

Var
( N∑

i=1

ωiHi(t, x)
)

=

N∑
i=1

ω2
i=

2(t, x) + 2
∑
i< j

ωiω j
( i∑

q=1

LiqL jq
)
Υi j(t, x)

=

N∑
i=1

ω2
i=

2(t, x) + 2
N∑

i=1

N∑
j=i+1

ωiω j
( i∑

q=1

LiqL jq
)
Υi j(t, x)

From 4.11,

D(x) ∼ N
( N∑

i=1

ωiGi(t, x),
N∑

i=1

ω2
i=

2(t, x) + 2
N∑

i=1

N∑
j=i+1

ωiω j
( i∑

q=1

LiqL jq
)
Υi j(t, x)

)
Let

Ψ(t, x) =

N∑
i=1

ωiGi(t, x); ξ(t, x) =

N∑
i=1

ω2
i=

2(t, x)

∆(t, x) =

N∑
i=1

N∑
j=i+1

ωiω j
( i∑

q=1

LiqL jq
)
Υi j(t, x)

D(x) can be written in the form of a standard normal random variable Z ∼ N(0, 1) as

F(x) = Ψ(t, x) +

(
ξ(t, x) + 2∆(t, x)

) 1
2

Z (4.12)

From equation 4.4, consider
N∑

i=1

ωiT i
t − K > 0 (4.13)

This requires (
ξ(t, x) + 2∆(t, x)

) 1
2

Z > K − Ψ(t, x)

Z >
K − Ψ(t, x)(

ξ(t, x) + 2∆(t, x)
) 1

2

:= Λ′(t, x) (4.14)
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From Equation 4.14,

K = Ψ(t, x) + Λ′(t, x)
(
ξ(t, x) + 2∆(t, x)

) 1
2 (4.15)

From equations 4.4 and 4.14,

EQ

(
max

{ N∑
i=1

ωiT i
t −C , 0

}
dx

∣∣∣∣Ft

)
=

∫ +∞

Λ′(t,x)

(
D(x) − K

)e−
1
2 z2

√
2π

dz (4.16)

Substituting 4.12 and 4.15,

EQ

(
max

{ N∑
i=1

ωiT i
t − K , 0

}
dx

∣∣∣∣Ft

)
=

∫ +∞

Λ′(t,x)

(
Ψ(t, x) +

(
ξ(t, x) + 2∆(t, x)

) 1
2 z−

Ψ(t, x) − Λ′(t, x)
(
ξ(t, x) + 2∆(t, x)

) 1
2

)e−
1
2 z2

√
2π

dz

=

∫ +∞

Λ1(t,x)

((
ξ(t, x) + 2∆(t, x)

) 1
2 z − Λ′(t, x)

(
ξ(t, x) + 2∆(t, x)

) 1
2
)e−

1
2 z2

√
2π

dz

=
(
ξ(t, x) + 2∆(t, x)

) 1
2
( ∫ +∞

Λ′(t,x)

ze−
1
2 z2

√
2π

dz + Λ1(t, x)Φ
(
− Λ′(t, x)

)
=
(
ξ(t, x) + 2∆(t, x)

) 1
2

(e−
1
2 Λ(t,x)2

√
2π

+ Λ(t, x)Φ
(
Λ(t, x)

)
=
(
ξ(t, x) + 2∆(t, x)

) 1
2
(
φ
(
Λ(t, x)

)
+ Λ(t, x)Φ

(
Λ(t, x)

))
Therefore

FN
GDD(t, t1, t2; D) =

∫ t2

t1

(
ξ(t, x) + 2∆(t, x)

) 1
2
(
φ
(
Λ(t, x)

)
+ Λ(t, x)Φ

(
Λ(t, x)

))
dx

where
Λ(t, x) = −Λ′(t, x) =

Ψ(t, x) − K(
ξ(t, x) + 2∆(t, x)

) 1
2

�

Proposition 4.5. The price of a futures contract on basket GDD index following the shifted regime in
equation 3.6 at time t ≤ t1 < t2 is given by

FE
GDD(t, t1, t2; D) =

∫ t2

t1

(
S (t, x) + 2Y(t, x)

) 1
2
(
φ
(
g(t, x)

)
+ g(t, x)Φ

(
g(t, x)

))
dx

where φ and Φ as their usual meaning as in Proposition 4.4.

g(t, x) =
U(t, x) − K(

S (t, x) + 2Y(t, x)
) 1

2

, U(t, x) =

N∑
i=1

ωi
(
T i

t,2 +
(
µ + λ

)i
)
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S (t, x) =

N∑
i=1

ω2
i Σ

2(t, x) =

N∑
i=1

ω2
i

i∑
j=1

∫ x

t
σ2

2,iL
2
i jdu

Y(t, x) =

N∑
i=1

N∑
j=i+1

ωiω j
i∑

q=1

LiqL jq
∫ x

t
σi

2σ
j
2du

Proof. The proof of Proposition 4.5 follows in the same way as the proof of Proposition 4.4 �

In summary, if the daily average temperature follows the regime-switching model in equation 3.6,
equation 4.1, Proposition 4.4, and Proposition 4.5 are used to calculate the GDD futures price on the
temperature basket.

5. Conclusion

In this paper, a regime-switching temperature dynamics model for spatial-temporal farming
location was developed. To allow analytical tractability of the pricing models, the driving noise of the
regimes were captured by a Brownian motion. Based on this model, pricing models for basket futures
written on cumulative average temperature (CAT) and growing degree-days (GDD) indices were
proposed. Pricing futures on temperature basket provides significant benefit as it mitigates
geographical basis risks and changing of contracts relative to risk exposures of hedgers. With the
proposed spatial-temporal regime-switching pricing model, investors in the weather derivative market
have the opportunity to select the most appropriate composite of weather stations with their desired
weight to optimize basis risk.

An extension of this research would be to use the multi-dimensional regime-switching temperature
model to price basket options on futures at different locations, also called rainbow options.
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