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Abstract: In this paper we have proved that for a putative symmetric block design D with
parameters (280,63,14), admitting a Frobenius group G = 〈ρ, µ|ρ31 = µ3 = 1, ρµ = ρ5〉 of order
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1. Introduction and preliminaries

A 2 − (v, k, λ) design (P,B, I) is said to be symmetric if the relation |P| = |B| = v holds and in that
case we often speak of a symmetric design with parameters (v, k, λ). The collection of the parameter
sets (v, k, λ) for which a symmetric 2 − (v, k, λ) design exists is often called the “spectrum”. The
determination of the spectrum for symmetric designs is a widely open problem. For example, a finite
projective plane of order n is a symmetric design with parameters (n2 + n + 1, n + 1, 1) and it is still
unknown whether finite projective planes of non-prime-power order may exist at all.

The existence/non-existence of a symmetric design has often required “ad hoc” treatments even for
a single parameter set (v, k, λ). The most famous instance of this circumstance is perhaps the non-
existence of the projective plane of order 10, see [11].

It is of interest to study symmetric designs with additional properties, which often involve the
assumption that a non-trivial automorphism group acts on the design under consideration, see for
instance [4].

Among symmetric block designs of square order, a study of symmetric block designs of order 49
is of a particular interest. There are 15 possible parameters (v, k, λ) for symmetric designs of order 49,
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but until now only a few results are known (see [5, 8]). Due to the fact that symmetric designs of order
49 have a big number of points (blocks), the study of sporadic cases is very difficult, except, possibly,
when the existence of a collineation group is assumed.

A few methods for the construction of symmetric designs are known and all of them have shown to
be effective in certain situations. Here, we shall use the method of tactical decompositions, assuming
that a certain automorphism group acts on the design we want to construct, used by Z. Janko in [9];
see also [4, 10] and [6]. The present paper is concerned with a symmetric design D = (P,B, I) with
parameters (280, 63, 14): the existence/non-existence of such a design is still in doubt as far as we
know. We shall further assume that the given design admits a certain automorphism group of order
93. We assume the reader is familiar with the basic facts of design theory, see for instance [2], [3]
and [12]. If g is an automorphism of a symmetric design D with parameters (v, k, λ), then g fixes an
equal number of points and blocks, see [12, Theorem 3.1, p.78]. We denote the sets of these fixed
elements by FP(g) and FB(g) respectively, and their cardinality simply by |F(g)|. We shall make use of
the following upper bound for the number of fixed points, see [12, Corollary 3.7, p. 82]:

|F(g)| ≤ k +
√

k − λ. (1)

It is also known that an automorphism group G of a symmetric design has the same number of orbits
on the set of points P as on the set of blocks B: [12, Theorem 3.3, p.79]. Denote that number by t.

2. Point- and block-orbits

We adopt the notation and terminology of Section 1 in [4]. In the following, for the sake of
completeness, some fundamental relations are explicitly provided. Let D be a symmetric design with
parameters (v, k, λ) and let G be a subgroup of the automorphism group Aut(D) of D. Denote the
point orbits of G on P by P1,P2, . . .Pt and the line orbits of G on B by B1,B2, . . .Bt . Put |Pr| = ωr

and |Bi| = Ωi. Obviously,

t∑
r=1

ωr =

t∑
i=1

Ωi = v. (2)

Let γir be the number of points from Pr, which lie on a line from Bi; clearly this number does not
depend on the chosen line. Similarly, let Γ js be the number of lines from B j which pass through a point
from Ps. Then, obviously,

t∑
r=1

γir = k and
t∑

j=1

Γ js = k. (3)

By [3, Lemma 5.3.1. p.221], the partition of the point set P and of the block set B forms a tactical
decomposition of the designD in the sense of [3, p.210]. Thus, the following equations hold:

Ωi · γir = ωr · Γir (4)
t∑

r=1

γirΓ jr = λΩ j + δi j(k − λ) (5)
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t∑
i=1

Γirγis = λωs + δrs(k − λ) (6)

where δi j, δrs are the Kronecker symbols.
For a proof of these equations, the reader is referred to [3] and [4]. Equation (5), together with (4)

yields

t∑
r=1

Ω j

ωr
γirγ jr = λΩ j + δi j(k − λ). (7)

Definition 1. We denote

[Li, L j] =

t∑
r=1

Ω j

ωr
γirγ jr, 1 ≤ i, j ≤ t

and call these expressions the orbit products. The (t × t)-matrix (γir) is called the orbit structure of the
designD.

The first step in the construction of a design is to find all possible orbit structures. The second step
of the construction is usually called indexing. In fact for each coefficient γir of the orbit matrix one has
to specify which γir points of the point orbit Pr lie on the lines of the block orbit Bi. Of course, it is
enough to do this for a representative of each block orbit, as the other lines of that orbit can be obtained
by producing all G-images of the given representative.

3. Action of the Frobenius group of order 93

In our construction of symmetric 2 − (280, 63, 14) designs we assume the existence of an
automorphism group G = 〈ρ, µ|ρ31 = µ3 = 1, ρµ = ρ5〉, which is a so called Frobenius group of order
93 with Frobenius kernel of order 31 (see [7]).

Lemma 3.1. Let ρ be an element of G with o(ρ) = 31. Then 〈ρ〉 fixes precisely one point and one block.

Proof. By [12, Theorem 3.1] the group 〈ρ〉 fixes the same number of points and blocks. Denote that
number by f. Obviously f ≡ 280(mod 31), i.e. f ≡ 1(mod 31). The upper bound (1) for the number of
fixed points yields f ∈ {1, 32, 63}. As o(ρ) > λ, an application of a result of M. Aschbacher [1, Lemma
2.6, p.274] forces the fixed structure to be a subdesign of D. But there is no symmetric design with
v = 32 or v = 63 and λ = 14 (there is no k ∈ IN which satisfy 14 · (v − 1) = k · (k − 1)). Hence, f is
equal to 1. �

Our next task is to determine the lengths of the orbits of G on the sets of points and blocks of the
symmetric block designD. The possible orbit lengths are 1, 3, 31, 93.

Lemma 3.2. There is no orbit of length 3 of G.

Proof. If false, then ρ would have at least three fixed points or three fixed blocks, which is not possible.
�

Up to reordering, there are precisely four possibilities for the arrays expressing the lengths of the
G-orbits on points and blocks, namely: O1 = [1; 93; 93; 93]; O2 = [1; 31; 31; 31; 93; 93];
O3 = [1; 31; 31; 31; 31; 31; 31; 93];O4 = [1; 31; 31; 31; 31; 31; 31;
31; 31; 31]:
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Lemma 3.3. The case O1 = [1; 93; 93; 93] of the orbit distribution does not occur.

Since for the case O1 = [1; 93; 93; 93] it is not possible to be constructed the fixed block, the
following lemmas follow.

Lemma 3.4. Up to isomorphism there are exactly two orbit structures for symmetric (280,63,14)
designs and the automorphism group F31·3 acting with the orbit distribution
O2 = [1; 31; 31; 31; 93; 93].

Proof. We put PI = {I0, I1, · · · , I30}, I = 1, 2, 3, P4 = {40, 41, · · · , 430, 50, 51, · · · ,

530, 60, 61, · · · , 630}, P5 = {70, 71, · · · , 730, 80, 81, · · · , 830, 90, 91, · · · , 930}, for the non–trivial orbits of
the group G. Thus, G acts on these point orbits as a permutation group in a unique way. Hence, for
the two generators of G we may put

ρ = (∞)(I0, I1, · · · , I30), I = 1, 2, · · · , 9,

where∞ is the fixed point of collineation, whereas non-trivial 〈ρ〉−orbits are numbers 1, 2, 3, 4, 5, 6, 7,
8, 9 and∞, 10, 11, · · · , 930 all points of the symmetric block designD, and the collineation µ of order 3
acts in the symmetric block design as permutation (1)(2)(3)(4, 5, 6)(7, 8, 9) on orbit numbers, whereas
on indices acts µ : x→ 5x (mod 31) or

µ = (∞)(K0)(K1,K5,K25)(K2,K10,K19)(K3,K15,K13)(K4,K20,K7)

(K6,K30,K26)(K8,K9,K14)(K11,K24,K27)(K12,K29,K21)(K16,K18,K28)

(K17,K23,K22)(4i, 55i, 625i)(7i, 85i, 925i), K = 1, 2, 3, i = 0, · · · , 30.

We immediately obtain the following.

Corollary 1. The element µ of G of order 3 fixes precisely 4 points and 4 blocks ofD. Each block orbit
contains a unique block stabilized by µ.

In what follows, we are going to construct a representative block for each block orbit. A
representative block for the block orbit of length 31 will be the block fixed by µ. Hence the
multiplicities of orbit numbers in orbit blocks, corresponding to point and block orbit of length 31,
will be ≡ 0, 1 (mod 3).

The 〈ρ〉−fixed block can be written in the form:

L1 = ∞(1011 · · · 130)(2021 · · · 230)

or
L1 = ∞131231.

Let L2, L3, L4, L5, L6 be the representative blocks for the five non–trivial block orbits. There are exactly
two non–fixed orbit blocks passing through the fixed point∞. Let them be L2, L3. We write

L2 = ∞1a12a23a34a45a5

L3 = ∞1b12b23b34b45b5

where ai, bi denote the multiplicities of the appearance of orbit numbers in the orbit blocks L2, L3,
respectively.
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The multiplicities of the appearance of orbit numbers satisfy the following conditions:

a1 + a2 + a3 + a4 + a5 = 62,

b1 + b2 + b3 + b4 + b5 = 62.

Because |Li ∩ L1| = 14, i = 2, 3 and ∞ ∈ Li, i = 1, 2, 3 we have a1 + a2 = 13, b1 + b2 = 13 , and
consequently a3 + a4 + a5 = 49, b3 + b4 + b5 = 49. From (7) we have

[L2, L2] = 31/1 · 1 · 1 + 31/31 · a2
1 + 31/31 · a2

2 + 31/31 · a2
3 + 31/93 · a2

4 + 31/93 · a2
5

= 14 · 31 + 63 − 14 = 483

[L3, L3] = 31/1 · 1 · 1 + 31/31 · b2
1 + 31/31 · b2

2 + 31/31 · b2
3 + 31/93 · b2

4 + 31/93 · b2
5

= 14 · 31 + 63 − 14 = 483

[L3, L2] = 31 · 1 · 1 + 31/31 · a1 · b1 + 31/31 · a2 · b2 + 31/31 · a3 · b3 + 31/93 · a4b4 + 31/93 · a5b5

= 14 · 31 = 434

where 0 ≤ ai ≤ 13, i = 1, 2, 0 ≤ a3 ≤ 21, 0 ≤ ai ≤ 38, i = 4, 5.
In order to reduce isomorphic cases that may appear in the orbit structures at the last stage, without

loss of generality, for block L2, we can use the reduction a1 ≥ a2, a4 ≥ a5.

Using the computer we have proved that there exist only six different orbit types for the block L2

satisfying the above mentioned conditions:

a1 a2 a3 a4 a5

1. 10 3 7 21 21
2. 9 4 10 21 18
3. 9 4 4 24 21
4. 7 6 10 24 15
5. 7 6 7 27 15
6. 7 6 4 27 18

Further on, acting with the Frobenius group G = F31·3, for orbit block L3 we have:

Table 1. Triples {L1, L2, L3}.

Block L2
Number of orbit
types for L3

Number of triples
{L1, L2, L3}

Type 1. 1 1
Type 2. 1 1
Type 3. 1 1
Type 4. 1 1
Type 5. 1 1
Type 6. 1 1
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The fourth orbit block L4 has the form:

L4 = 1c12c23c34c45c5

where ci, i = 1, 2, · · · , 5 are multiplicities of the appearance of orbit numbers 1,2,3, 4 and 5 in orbit
block L4.

We have: c1 + c2 + c3 + c4 + c5 = 63,

[L4, L4] = c2
1 + c2

2 + c2
3 + 1/3c2

4 + 1/3c2
5 = 14 · 31 + 63 − 14 = 483,

[L4, Li] = 14 · 31 = 434, (i = 2, 3).

[L4 ∩ L1] = 14 implies c1 + c2 = 14, therefore c3 + c4 + c5 = 63 − 14 = 49.
[L4, L4] = 483 implies 0 ≤ c3 ≤ 21, and 0 ≤ ci ≤ 38, i = 4, 5, whereas c1 + c2 = 14 implies

0 ≤ ci ≤ 14, i = 1, 2.
Further on, acting with the Frobenius group G = F31·3, for the orbit block L4, for the number of

triples L1, L2, L3 given in Table 1, we have:

Table 2. Triples {L2, L3, L4}.

Block L2
Number of
doubles {L2, L3}

Number of triples
{L2, L3, L4}

Type 1. 1 2
Type 2. 1 2
Type 3. 1 2
Type 4. 1 2
Type 5. 1 2
Type 6. 1 2

Therefore, we have found twelve compatible triples L2, L3, L4, respectively twelve compatibile
quadruples L1, L2, L3, L4.

Let L5 = 1d12d23d34d45d5 be the fifth orbit block, where di, i = 1, 2, · · · , 5 denote the multiplicities of
the appearance of orbit numbers in the block L5.

We have:

d1 + d2 + d3 + d4 + d5 = 63,

[L5, L5] = 93/31d2
1 + 93/31d2

2 + 93/31d2
3 + 93/93d2

4 + 93/93d2
5 = 14 · 93 + 63 − 14 = 1351,

[L5, Li] = 14 · 93 = 1302, (i = 2, 3, 4).

|L5 ∩ L1| = 14 implies d1 + d2 = 14, therefore d3 + d4 + d5 = 49.
[L5, L5] = 1351 implies 0 ≤ d3 ≤ 21, and 0 ≤ di ≤ 36, i = 4, 5, whereas d1 + d2 = 14 implies

0 ≤ di ≤ 14, i = 1, 2.
Further on, acting with the Frobenius group G = F31·3, for the orbit block L5, for the number of

triples L2, L3, L4 given in Table 2, we have:
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Table 3. Orbit types for L5.

Quadruples
{L1, L2, L3, L4}

Number of orbit
types for L5

Case 1. 1
Case 2. 1
Case 3. 1
Case 4. 1
Case 5. 1
Case 6. 1
Case 7. 2
Case 8. 1
Case 9. 1
Case 10. 2
Case 11. 1
Case 12. 1

Obviously, among blocks L5 are also blocks L6. Because of that, we choose doubles among
candidates for the block L5, such that every couple of them satisfies the intersection in 14 points.
Based on this fact we have found that, from Case 7. and Case 10. in Table 3. for the number of orbit
types for L5, up to isomorphism, there are exactly two orbit structures:

Table 4. Orbit structures.

OS1. 1 31 31 31 93 93
1 31 31 0 0 0
1 7 6 10 24 15
1 6 7 4 18 27
0 10 4 10 15 24
0 8 6 5 24 20
0 5 9 8 20 21

OS2. 1 31 31 31 93 93
1 31 31 0 0 0
1 7 6 7 27 15
1 6 7 7 15 27
0 7 7 1 24 24
0 9 5 8 20 21
0 5 9 8 21 20

�

Lemma 3.5. Up to isomorphism there are exactly eight orbit structures for symmetric (280,63,14)
designs and the automorphism group F31·3 acting with the orbit distribution
O3 = [1; 31; 31; 31; 31; 31; 31; 93].

Proof. We put PI = {I0, I1, · · · , I30}, I = 1, 2, 3, 4, 5, 6, P7 = {70, 71, · · · , 730,

80, 81, · · · , 830, 90, 91, · · · , 930}, for the non–trivial orbits of the group G. Thus, G acts on these point
orbits as a permutation group in a unique way. Hence, for the two generators of G we may put
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ρ = (∞)(I0, I1, · · · , I30), I = 1, 2, · · · , 9,

where∞ is the fixed point of collineation, whereas non–trivial 〈ρ〉−orbits are numbers 1, 2, 3, 4, 5, 6, 7,
8, 9 and∞, 10, 11, · · · , 930 all points of the symmetric block designD, and the collineation µ of order 3
acts in the symmetric block design as permutation (1)(2)(3)(4)(5)(6)(7, 8, 9) on orbit numbers, whereas
on indices acts µ : x→ 5x (mod 31) or

µ = (∞)(K0)(K1,K5,K25)(K2,K10,K19)(K3,K15,K13)(K4,K20,K7)

(K6,K30,K26)(K8,K9,K14)(K11,K24,K27)(K12,K29,K21)(K16,K18,K28)

(K17,K23,K22)(7i, 85i, 925i), K = 1, 2, 3, 4, 5, 6, i = 0, · · · , 30.

We immediately obtain the following.

Corollary 2. The element µ of G of order 3 fixes precisely 7 points and 7 blocks ofD. Each block orbit
contains a unique block stabilized by µ.

In what follows, we are going to construct a representative block for each block orbit. A
representative block for the block orbit of length 31 will be the block fixed by µ. Hence the
multiplicities of orbit numbers in orbit blocks, corresponding to point and block orbit of length 31,
will be ≡ 0, 1 (mod 3).

The 〈ρ〉−fixed block can be writen in the form:

L1 = ∞(1011 · · · 130)(2021 · · · 230)

or

L1 = ∞131231.

Let L2, L3, L4, L5, L6, L7, L8 be the representative blocks for the seven non–trivial block orbits. There
are exactly two non–fixed orbit blocks passing through the fixed point∞. Let them be L2, L3. We write

L2 = ∞1a12a23a34a45a56a67a7

L3 = ∞1b12b23b34b45b56b67b7

where ai, bi denote the multiplicities of the appearance of orbit numbers in the orbit blocks L2, L3,
respectively.

The multiplicities of the appearance of orbit numbers satisfy the following conditions:

a1 + a2 + a3 + a4 + a5 + a6 + a7 = 62,

b1 + b2 + b3 + b4 + b5 + b6 + b7 = 62.

Because |Li ∩ L1| = 14, i = 2, 3 and ∞ ∈ Li, i = 1, 2, 3 we have a1 + a2 = 13, b1 + b2 = 13 , and
consequently a3 + a4 + a5 + a6 + a7 = 49, b3 + b4 + b5 + b6 + b7 = 49. From (7) we have

[L2, L2] = 31/1 · 1 · 1 + 31/31 · a2
1 + 31/31 · a2

2 + 31/31 · a2
3 + 31/31 · a2

4 + 31/31 · a2
5
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+31/31 · a2
6 + 31/93 · a2

7 = 14 · 31 + 63 − 14 = 483

[L3, L3] = 31/1 · 1 · 1 + 31/31 · b2
1 + 31/31 · b2

2 + 31/31 · b2
3 + 31/31 · b2

4 + 31/31 · b2
5

+31/31 · b2
6 + 31/93 · b2

7 = 14 · 31 + 63 − 14 = 483

[L3, L2] = 31 · 1 · 1 + 31/31 · a1 · b1 + 31/31 · a2 · b2 + 31/31 · a3 · b3 + 31/31 · a4b4 + 31/31 · a5 · b5

+31/31 · a6b6 + 31/93 · a7b7 = 14 · 31 = 434

where 0 ≤ ai ≤ 13, i = 1, 2, 0 ≤ ai ≤ 21, i = 3, 4, 5, 6, 0 ≤ a7 ≤ 38.
In order to reduce isomorphic cases that may appear in the orbit structures at the last stage, without

loss of generality, for block L2, we can use the reduction a1 ≥ a2, a3 ≥ a4 ≥ a5 ≥ a6.

Using the computer we have proved that there exist only ten different orbit types for the block L2

satisfying the above mentioned conditions:

a1 a2 a3 a4 a5 a6 a7

1. 10 3 7 7 7 7 21
2. 9 4 10 7 7 7 18
3. 9 4 10 6 6 6 21
4. 9 4 9 9 7 6 18
5. 9 4 7 7 7 4 24
6. 7 6 9 9 9 7 15
7. 7 6 9 9 9 4 18
8. 7 6 9 9 7 3 21
9. 7 6 9 7 6 3 24

10. 7 6 6 6 6 4 27

Further on, acting with the Frobenius group G = F31·3, for orbit block L3 we have:

Table 5. Triples {L1, L2, L3}.

Block L2
Number of orbit
types for L3

Number of triples
{L1, L2, L3}

Type 1. 1 1
Type 2. 1 1
Type 3. 0 0
Type 4. 0 0
Type 5. 1 1
Type 6. 0 0
Type 7. 0 0
Type 8. 0 0
Type 9. 0 0
Type 10. 0 0

The fourth orbit block L4 has the form:

L4 = 1c12c23c34c45c56c67c7
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where ci, i = 1, 2, · · · , 7 are multiplicities of the appearance of orbit numbers 1,2,3, 4,5,6 and 7 in orbit
block L4.

We have: c1 + c2 + c3 + c4 + c5 + c6 + c7 = 63,

[L4, L4] = c2
1 + c2

2 + c2
3 + c2

4 + c2
5 + c2

6 + 1/3c2
7 = 14 · 31 + 63 − 14 = 483,

[L4, Li] = 14 · 31 = 434, (i = 2, 3).

[L4 ∩ L1] = 14 implies c1 + c2 = 14, therefore c3 + c4 + c5 + c6 + c7 = 63 − 14 = 49.
[L4, L4] = 483 implies 0 ≤ ci ≤ 21, i = 3, 4, 5, 6, and 0 ≤ c7 ≤ 38, whereas c1 + c2 = 14 implies

0 ≤ ci ≤ 14, i = 1, 2.
Further on, acting with the Frobenius group G = F31·3, for the orbit block L4, for the number of

triples L1, L2, L3 given in Table 5, we have:

Table 6. Quadruples {L1, L2, L3, L4}.

Triple L1, L2, L3
Number of orbit
types for L4

Number of
quadruples
{L1, L2, L3, L4}

Case 1. (Type 1 for L2) 100 100
Case 2. (Type 2 for L2) 28 28
Case 3. (Type 5 for L2) 28 28

Note that in set of possible candidates for the orbit block L4 are also orbit blocks L5, L6, L7, because
they satisfy the same conditions. Therefore, we investigate quadruples of blocks {L4, L5, L6, L7} which
are pairwise compatible. In this way, by computer, for all three cases for the number of orbit types for
L4 given in Table 6, we find quadruples {L4, L5, L6, L7}, respectively septuples {L1, L2, L3, L4, L5, L6, L7}

and have:

Table 7. Septuples {L1, L2, L3, L4, L5, L6, L7}.

Triple L1, L2, L3
Number of septuples
{L1, L2, L3, L4, L5, L6, L7}

Case 1. 57
Case 2. 15
Case 3. 15

The eighth orbit block L8 has the form:

L8 = 1d12d23d34d45d56d67d7

where di, i = 1, 2, · · · , 7 are multiplicity of the appearance of orbit numbers 1,2,3, 4,5,6 and 7 in orbit
block L8.

We have: d1 + d2 + d3 + d4 + d5 + d6 + d7 = 63,

[L8, L8] = 3 · d2
1 + 3 · d2

2 + 3 · d2
3 + 3 · d2

4 + 3 · d2
5 + 3 · d2

6 + d2
7 = 14 · 93 + 63 − 14 = 1351,
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[L8, Li] = 14 · 93 = 1302, (i = 2, 3, 4, 5, 6, 7).

[L8 ∩ L1] = 14 implies d1 + d2 = 14, therefore d3 + d4 + d5 + d6 + d7 = 63 − 14 = 49.
[L8, L8] = 1351 implies 0 ≤ di ≤ 21, i = 3, 4, 5, 6, and 0 ≤ d7 ≤ 36, whereas d1 + d2 = 14 implies

0 ≤ di ≤ 14, i = 1, 2.
Further on, acting with the Frobenius group G = F31·3, for the number of septuples {L1, L2, L3, L4,

L5, L6, L7} given in Table 7. we find orbit block L8. By computer we found, up to isomorphism, exactly
eight orbit structure:

Table 8. Orbit structures.

OS3. 1 31 31 31 31 31 31 93
1 31 31 0 0 0 0 0
1 10 3 7 7 7 7 21
1 3 10 7 7 7 7 21
0 7 7 13 6 6 6 18
0 7 7 6 13 6 6 18
0 7 7 6 6 13 6 18
0 7 7 6 6 6 13 18
0 7 7 6 6 6 6 25

OS4. 1 31 31 31 31 31 31 93
1 31 31 0 0 0 0 0
1 10 3 7 7 7 7 21
1 3 10 7 7 7 7 21
0 7 7 13 6 6 6 18
0 7 7 6 12 9 7 15
0 7 7 6 9 4 3 27
0 7 7 6 7 3 12 21
0 7 7 6 5 9 7 22

OS5. 1 31 31 31 31 31 31 93
1 31 31 0 0 0 0 0
1 10 3 7 7 7 7 21
1 3 10 7 7 7 7 21
0 7 7 13 6 6 6 18
0 7 7 6 12 9 4 18
0 7 7 6 9 4 12 18
0 7 7 6 4 12 9 18
0 7 7 6 6 6 6 25

OS6. 1 31 31 31 31 31 31 93
1 31 31 0 0 0 0 0
1 10 3 7 7 7 7 21
1 3 10 7 7 7 7 21
0 7 7 12 9 7 6 15
0 7 7 9 3 6 4 27
0 7 7 7 6 3 12 21
0 7 7 6 4 12 9 18
0 7 7 5 9 7 6 22

OS7. 1 31 31 31 31 31 31 93
1 31 31 0 0 0 0 0
1 9 4 10 7 7 7 18
1 4 9 4 7 7 7 24
0 10 4 4 6 6 6 27
0 7 7 6 13 6 6 18
0 7 7 6 6 13 6 18
0 7 7 6 6 6 13 18
0 6 8 9 6 6 6 22

OS8. 1 31 31 31 31 31 31 93
1 31 31 0 0 0 0 0
1 9 4 10 7 7 7 18
1 4 9 4 7 7 7 24
0 10 4 4 6 6 6 27
0 7 7 6 12 9 4 18
0 7 7 6 9 4 12 18
0 7 7 6 4 12 9 18
0 6 8 9 6 6 6 22
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OS9. 1 31 31 31 31 31 31 93
1 31 31 0 0 0 0 0
1 9 4 10 7 7 7 18
1 4 9 4 7 7 7 24
0 10 4 3 9 7 6 24
0 7 7 9 4 3 6 27
0 7 7 7 3 12 6 21
0 7 7 6 6 6 13 18
0 6 8 8 9 7 6 19

OS10. 1 31 31 31 31 31 31 93
1 31 31 0 0 0 0 0
1 9 4 10 7 7 7 18
1 4 9 4 7 7 7 24
0 10 4 3 9 7 6 24
0 7 7 9 3 6 4 27
0 7 7 7 6 3 12 21
0 7 7 6 4 12 9 18
0 6 8 8 9 7 6 19

�

Lemma 3.6. Up to isomorphism there are exactly three orbit structures for symmetric (280,63,14)
designs and the automorphism group F31·3 acting with the orbit distribution
O4 = [1; 31; 31; 31; 31; 31; 31; 31, 31, 31].

Proof. We put PI = {I0, I1, · · · , I30}, I = 1, 2, 3, 4, 5, 6, 7, 8, 9, for the non–trivial orbits of the group
G. Thus, G acts on these point orbits as a permutation group in a unique way. Hence, for the two
generators of G we may put

ρ = (∞)(I0, I1, · · · , I30), I = 1, 2, · · · , 9,

where ∞ is the fixed point of collineation, whereas non–trivial 〈ρ〉−orbits are numbers
1, 2, 3, 4, 5, 6, 7, 8, 9 and ∞, 10, 11, · · · , 930 all points of the symmetric block design D, and the
collineation µ of order 3 acts in the symmetric block design as permutation (1)(2)(3)(4)(5)(6)(7)(8)(9)
on orbit numbers, whereas on indices acts µ : x→ 5x (mod 31) or

µ = (∞)(K0)(K1,K5,K25)(K2,K10,K19)(K3,K15,K13)(K4,K20,K7)

(K6,K30,K26)(K8,K9,K14)(K11,K24,K27)(K12,K29,K21)

(K16,K18,K28)(K17,K23,K22), K = 1, 2, 3, 4, 5, 6, 7, 8, 9.

We immediately obtain the following.

Corollary 3. The element µ of G of order 3 fixes precisely 10 points and 10 blocks of D. Each block
orbit contains a unique block stabilized by µ.

In what follows, we are going to construct a representative block for each block orbit. A
representative block for the block orbit of length 31 will be the block fixed by µ. Hence the
multiplicities of orbit numbers in orbit blocks, will be ≡ 0, 1 (mod 3).

The 〈ρ〉−fixed block can be writen in the form:

L1 = ∞(1011 · · · 130)(2021 · · · 230)

or

L1 = ∞131231.
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Let L2, L3, L4, L5, L6, L7, L8, L9, L10 be the representative blocks for the nine non–trivial block orbits.
There are exactly two non–fixed orbit blocks passing through the fixed point ∞. Let them be L2, L3.
We write

L2 = ∞1a12a23a34a45a56a67a78a89a9

L3 = ∞1b12b23b34b45b56b67b78b89b9

where ai, bi denote the multiplicities of the appearance of orbit numbers in the orbit blocks L2, L3,
respectively.

The multiplicities of the appearances of orbit numbers satisfy the following conditions:

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 = 62.

b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 = 62.

Because |Li ∩ L1| = 14, i = 2, 3 and ∞ ∈ Li, i = 1, 2, 3 we have a1 + a2 = 13, b1 + b2 = 13 , and
consequently a3 + a4 + a5 + a6 + a7 + a8 + a9 = 49, b3 + b4 + b5 + b6 + b7 + b8 + b9 = 49. From (7) we
have

[L2, L2] = 31/1 · 1 · 1 + 31/31 · a2
1 + 31/31 · a2

2 + 31/31 · a2
3 + 31/31 · a2

4 + 31/31 · a2
5 + 31/31 · a2

6

+31/31 · a2
7 + 31/31 · a2

8 + 31/31 · a2
9 = 14 · 31 + 63 − 14 = 483

[L3, L3] = 31/1 · 1 · 1 + 31/31 · b2
1 + 31/31 · b2

2 + 31/31 · b2
3 + 31/31 · b2

4 + 31/31 · b2
5 + 31/31 · b2

6

+31/31 · b2
7 + 31/31 · b2

8 + 31/31 · b2
9 = 14 · 31 + 63 − 14 = 483

[L3, L2] = 31 · 1 · 1 + 31/31 · a1 · b1 + 31/31 · a2 · b2 + 31/31 · a3 · b3 + 31/31 · a4b4 + 31/31 · a5 · b5

+31/31 · a6b6 + 31/31 · a7b7 + 31/31 · a8b8 + 31/31 · a9b9 = 14 · 31 = 434

where 0 ≤ ai ≤ 13, i = 1, 2, 0 ≤ ai ≤ 21, i = 3, 4, · · · , 9.
In order to reduce isomorphic cases that may appear in the orbit structures at the last stage, without

loss of generality, for block L2, we can use the reduction a1 ≥ a2, a3 ≥ a4 ≥ a5 ≥ a6 ≥ a7 ≥ a8 ≥ a9.

Using the computer we have proved that there exist only six different orbit types for the block L2

satisfying the above mentioned conditions:

a1 a2 a3 a4 a5 a6 a7 a8 a9

1. 10 3 7 7 7 7 7 7 7
2. 9 4 10 7 7 7 6 6 6
3. 9 4 9 9 7 6 6 6 6
4. 7 6 10 9 7 7 6 6 4
5. 7 6 9 9 9 6 6 6 4
6. 7 6 9 9 7 7 7 7 3

Further on, acting with the Frobenius group G = F31·3, for orbit block L3 we have:
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Table 9. Triples {L1, L2, L3}.

Block L2
Number of orbit
types for L3

Number of triples
{L1, L2, L3}

Type 1. 1 1
Type 2. 0 0
Type 3. 0 0
Type 4. 0 0
Type 5. 0 0
Type 6. 0 0

Hence, we have only one double L2, L3, respectively only one triple L1, L2, L3:

1 31 31 31 31 31 31 31 31 31
L1 1 31 31 0 0 0 0 0 0 0
L2 1 10 3 7 7 7 7 7 7 7
L3 1 3 10 7 7 7 7 7 7 7

The fourth orbit block L4 has the form:

L4 = 1c12c23c34c45c56c67c78c89c9

where ci, i = 1, 2, · · · , 9 are multiplicities of the appearance of orbit numbers 1,2,3, 4,5,6,7,8 and 9 in
orbit block L4.

We have: c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 = 63,

[L4, L4] = c2
1 + c2

2 + c2
3 + c2

4 + c2
5 + c2

6 + c2
7 + c2

8 + c2
9 = 14 · 31 + 63 − 14 = 483,

[L4, Li] = 14 · 31 = 434, (i = 2, 3).

[L4 ∩ L1] = 14 implies c1 + c2 = 14, therefore c3 + c4 + c5 + c6 + c7 + c8 + c9 = 63 − 14 = 49.
[L4, L4] = 483 implies 0 ≤ ci ≤ 21, i = 3, 4, 5, 6, 7, 8, 9, whereas c1 + c2 = 14 implies 0 ≤ ci ≤

14, i = 1, 2.
Using the computer we have proved that for the number of triples L1, L2, L3 given in Table 9., there

exist exactly 2527 dfferent orbit types for the block L4 satisfying the above mentioned conditions:

c1 c2 c3 c4 c5 c6 c7 c8 c9

1. 7 7 13 6 6 6 6 6 6
2. 7 7 12 9 6 6 6 6 4
3. 7 7 12 9 6 6 6 4 6
· · ·

2525. 7 7 3 4 7 7 9 10 9
2526. 7 7 3 4 7 7 9 9 10
2527. 7 7 3 4 6 9 9 9 9

Note that in set of possible candidates for the orbit block L4 are also orbit blocks L5, L6, L7, L8 and
L9, because they satisfy the same conditions. Therefore, we investigate sextuples of blocks
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{L4, L5, L6, L7, L8, L9} which are pairwise compatible. In this way, by computer, we find sextuples
{L4, L5, L6, L7, L8, L9}, respectively all orbit structures. Thus, up to isomorphism, we have exactly
three orbit structure:

Table 10. Orbit structures.

OS11. 1 31 31 31 31 31 31 31 31 31
1 31 31 0 0 0 0 0 0 0
1 10 3 7 7 7 7 7 7 7
1 3 10 7 7 7 7 7 7 7
0 7 7 13 6 6 6 6 6 6
0 7 7 6 13 6 6 6 6 6
0 7 7 6 6 13 6 6 6 6
0 7 7 6 6 6 13 6 6 6
0 7 7 6 6 6 6 13 6 6
0 7 7 6 6 6 6 6 13 6
0 7 7 6 6 6 6 6 6 13

OS12. 1 31 31 31 31 31 31 31 31 31
1 31 31 0 0 0 0 0 0 0
1 10 3 7 7 7 7 7 7 7
1 3 10 7 7 7 7 7 7 7
0 7 7 13 6 6 6 6 6 6
0 7 7 6 13 6 6 6 6 6
0 7 7 6 6 13 6 6 6 6
0 7 7 6 6 6 13 6 6 6
0 7 7 6 6 6 6 12 9 4
0 7 7 6 6 6 6 9 4 12
0 7 7 6 6 6 6 4 12 9

OS13. 1 31 31 31 31 31 31 31 31 31
1 31 31 0 0 0 0 0 0 0
1 10 3 7 7 7 7 7 7 7
1 3 10 7 7 7 7 7 7 7
0 7 7 13 6 6 6 6 6 6
0 7 7 6 12 9 6 6 6 4
0 7 7 6 9 4 6 6 6 12
0 7 7 6 6 6 12 9 4 6
0 7 7 6 6 6 9 4 12 6
0 7 7 6 6 6 4 12 9 6
0 7 7 6 4 12 6 6 6 9

�

Thus we have

Theorem 3.7. Up to isomorphism, there are exactly thirteen orbit structures for a symmetric block
design with parameters (280, 63, 14) admitting the Frobenius Group G = 〈ρ, µ|ρ31 = µ3 = 1, ρµ = ρ5〉

of order 93; two with the orbit distribution [1; 31; 31; 31; 93; 93] (Table 4.), eight with the orbit
distribution [1; 31; 31; 31; 31; 31; 31; 93] (Table 8.) and three with the orbit distribution
[1; 31; 31; 31; 31; 31; 31; 31; 31; 31] (Table 10.).

Remark 1. The actual indexing of these thirteen orbit structures in order to produce an example is still
an open problem.
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