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1. Introduction

The classical polylogarithms represented by Lin are one valued functions on a complex plane
(see [11]). They are called generalization of natural logarithms, which can be represented by an
infinite series (power series):

Li1(z) =

∞∑
k=1

zk

k
= − ln(1 − z)

Li2(z) =

∞∑
k=1

zk

k2

...

Lin(z) =

∞∑
k=1

zk

kn for z ∈ �, |z| < 1

The other versions of polylogarithms are Infinitesimal (see [8]) and Tangential (see [9]). We will
discuss group theoretic form of infinitesimal and tangential polylogarithms in § 2.3, 2.4 and 2.5 below.

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2019.4.1248


1249

Dupont and Sah describe the connection between scissors congruence group and classical
dilogarithm (polylogarithm for n = 2) (see [10]). Suslin (see [1]) defines the Bloch group that makes
the famous Bloch-Suslin complex which is described in section 2.1 below. Zagier and Goncharov
generalize the groups on which polylogarithmic functions are defined. This initiates a new era in the
field of polylogarithms, arousing interest of algebraist and geometers. One of the milestones is the
proof of Zagier’s conjecture for weight n = 2, 3 (see [2, 3]).

On the basis of this study Goncharov introduces a motivic complex (2.1) below, which is called
Goncharov’s complex (see [2]). On the other hand Cathelineau ([7, 8]) uses a differential process
to introduce infinitesimal form of motivic (Bloch-Suslin’s and Goncharov’s) complexes that consists
of k-vector spaces. These k-vector spaces are algebraic representation of infinitesimal versions of
the Bloch-Suslin and Goncharov’s complexes for higher weight n (see [8]), which satisfies functional
equations of infinitesimal polylogarithms. Cathelineau also uses a tangent functor to get the tangential
analogue of the Bloch-Suslin complex, that allowing a new approach to view additive dialogalithms
(regulator on TB2(F)) (see [9]). The tangent group TB2(F) has two parts; first part comes from B2(F)
and the second part is the derivative of first part. He also suggests a framework for defining the additive
trilogarithms.

Our work proposes an improved map (morphism), with the alternate signs between the k-vector
spaces that converts the sequence (2.3) into a complex. Further, we introduce a variant of infinitesimal
k-vector spaces which is structurally infinitesimal but has functional equations similar to classical
polylogarithmic groups.

In §3.1, we are also giving an inductive definition of group TBn(k) for higher weight n and putting
this in a complex with suitable maps that make a tangent complex (3.1) to Goncharov’s (motivic)
complex.

2. Materials and method

2.1. Bloch-Suslin complex

Let �[k] be a free abelian group generated by [a] for a ∈ F. Suslin defines the following map

δ2 : �[k]→ ∧2k×, [θ] 7→ θ ∧ (1 − θ)

where ∧2k× = k× ⊗ k×/ 〈θ ⊗ θ, θ ⊗ φ + φ ⊗ θ| θ, φ ∈ k×〉. The Bloch-Suslin complex is defined as

δ : B2(k)→ ∧2k×; [θ]2 7→ θ ∧ (1 − θ)

where B2(k) is the quotient of �[k] by the subgroup generated by Abel’s five term relation

[θ] − [φ] +

[
φ

θ

]
−

[
1 − φ
1 − θ

]
+

[
1 − φ−1

1 − θ−1

]
and δ is induced by δ2. When k is algebraically closed with characteristic zero, the above complex can
be inserted into the algebraic K-theory variant of the Bloch-Wigner sequence [9]

0→ µ(k)→ Kind
3 (k)→ B2(k)→ ∧2k× → K2(k)→ 0
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if this sequence is tensored by � then

0→ K(2)
3 (k)→ B2(k) ⊗ �→ ∧2k× → K(2)

2 (k)→ 0

where K-groups K(i)
n are the pieces of the Adams decomposition of Kn(k)⊗� (see [6]). The homology

of Bloch-Suslin complex is the Kn-groups for n = 2, 3 i.e. ∧2k×/Imδ � k× ⊗ k×/〈θ ∧ (1 − θ)|θ ∈ k×)〉
and B(F) := ker δ is called Bloch group, which is isomorphic to K3 group (see [11]).

2.2. Goncharov’s (motivic) complexes

The free abelian group Bn(k) is defined by Goncharov (see[2]) as

Bn(k) =
�[k]
Rn(k)

with the morphisms for n = 2

δ2 :�[k]→
∧2
� k
×

(2 − torsion)

[x] 7→

0 where x = 0, 1
x ∧ (1 − x) for all other x,

for n ≥ 3

δn :�[k]→ Bn−1(k) ⊗ k×

[x] 7→

0 if x = 0, 1,
[x]n−1 ⊗ x for all other x,

where [x]n is the class of x in Bn(k). The subgroup R1(k) of �[k] is generated by [x + y− xy]− [x]− [y]
and �[k] is a free abelian group generated by the symbol [x] for 0, 1 , x ∈ k, where x, y ∈ k \ {1} then
B1(k) � k×. For n = 2, R2(k) is defined

R2(k) =

〈
[θ] − [φ] +

[
φ

θ

]
−

[
1 − φ
1 − θ

]
+

[
1 − φ−1

1 − θ−1

]
; 0, 1 , θ, φ ∈ k

〉
The above relation is the Suslin’s form of Abel’s relations([11]). For n ≥ 2,An(k) is defined as the

kernel of δn and Rn(k) is the subgroup of �[k] spanned by [0] and the elements
∑

ni ([ fi(0)] − [ fi(1)]),
where fi are rational fractions for indeterminate T , such that

∑
ni[ fi] ∈ An(k(T )).

Lemma 2.1. (Goncharov [2, 3]) The following is the (cochain) complex

Bn(k)
δ
−→ Bn−1 ⊗ k

× δ
−→ Bn−2 ⊗

∧
2k×

δ
−→ · · ·

δ
−→ B2(k)

∧
n−2k×

δ
−→

∧ nk×

2 − torsion
(2.1)

Proof. Proof requires direct calculation (we work here with modulo 2-torsion means a ∧ a = 0 and
a ∧ b = −b ∧ a). �
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Example 2.2. For weight n = 3 the following is a complex

B3(k)
δ
−→ B2(k) ⊗ k×

δ
−→ ∧3k×

δδ([θ]3) =δ ([θ]2 ⊗ θ)

=(1 − θ) ∧ θ ∧ θ︸︷︷︸
0

=0

2.3. Cathelineau’s infinitesimal complexes

Let k be a field with a zero characteristic and k•• = K − {0, 1}, subspace βn(k) is defined in [3, 9] as

βn(k) =
k[k••]
ρn(k)

where ρn(K) is the kernel of the following map

∂n : k[k••]→
(
βn−1 ⊗ k

×) ⊕ (k ⊗ Bn−1(k))

∂n : [θ] 7→ 〈θ〉n−1 ⊗ θ + (1 − θ) ⊗ [θ]n−1 (2.2)

where 〈θ〉n is the coset-class of θ in βn(k) and ρ2(k) generated by Cathelineau’s relation,

[θ] − [φ] + θ
[
φ

θ

]
+ (1 − θ)

[
1 − φ
1 − θ

]
For n = 1 we have β1(k) � k.

Vector space βn(k) has some non-trivial elements from the functional relations of Lin for n ≤ 7 while
one can find only inversion and distribution relations in βn(k) for n > 7(see [11]).

The following is the Cathelineau’s infinitesimal complex to the Goncharov’s complex for weight n
(see §2 of [4] and [9]):

βn(k)
∂
−→

βn−1(k)⊗k×
⊕

k⊗Bn−1(k)

∂
−→

βn−2(k)⊗∧2k×

⊕
k⊗Bn−2(k)⊗k×

∂
−→ · · ·

∂
−→

β2(k)⊗∧n−2k×

⊕

k⊗B2(k)⊗∧n−3k×

∂
−→ k ⊗ ∧n−1k× (2.3)

Example 2.3. For weight n = 3, the following infinitesimal version satisfying the definition of a
complex:

β3(k)
∂
−→ β2(k) ⊗ k×

⊕
k ⊗ B2(k)

∂
−→ k ⊗ ∧2k× (2.4)

∂∂(〈θ〉3) = ∂ (〈θ〉2 ⊗ θ + (1 − θ) ⊗ [θ]2)

= −θ ⊗ θ ∧ θ︸︷︷︸
0

−(1 − θ) ⊗ (1 − θ) ∧ θ + (1 − θ) ⊗ (1 − θ) ∧ θ

= 0
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2.4. Variant of Cathelineau’s complex

We put ~a�D =
D(a)

a(1−a) [a] where D(a) ∈ Der�(k, k) and is called general derivation, βD
n (k) is defined

as
βD

n (k) =
k[k••]
ρD

n (k)

where ρD
n (k) is a kernel of the following map

∂D
n : k[k••]→

(
βD

n−1(k) ⊗ k×
)
⊕ (k ⊗ Bn−1)

∂D
n : [θ]D 7→ ~θ�D

n−1 ⊗ θ + D log(θ) ⊗ [a]n−1

and ~θ�D
n is a class of θ in βD

n (k) which is equal to D(θ)
θ(1−θ)〈θ〉n. The following is a subspace of k[k••]:

ρD
2 (k) =

〈
~θ�D − ~ψ�D +

�
ψ

θ

�D

−

�
1 − ψ
1 − θ

�D

+

�
1 − ψ−1

1 − θ−1

�D

; 0, 1 , θ, φ ∈ k
〉

For n ≥ 4, one can write only inversion relations in βD
n (k) while for n ≤ 3 we have other non-trivial

relations as well. The following sequence is a complex. One can easily prove in a completely analogous
way as Lemma 3.1

βD
n (k)

∂D

−−→
βD

n−1(k)⊗k×
⊕

k⊗Bn−1(k)

∂D

−−→ · · ·
∂D

−−→
βD

2 (k)⊗∧n−2k×

⊕

k⊗B2(k)⊗∧n−3k×

∂D

−−→ k ⊗ ∧n−1k× (2.5)

Example 2.4. This D log version of Cathelineau’s complex is also satisfying the definition of a complex
when the above maps are used for weight n = 3.

βD
3 (k)

∂
−→ βD

2 (k) ⊗ k×
⊕
k ⊗ B2(k)

∂
−→ k ⊗ ∧2k× (2.6)

∂∂(〈θ〉D3 ) = ∂
(
〈θ〉D2 ⊗ θ + D log θ ⊗ [θ]2

)
= −D log(1 − θ) ⊗ θ ∧ θ︸︷︷︸

0

+D log θ ⊗ (1 − θ) ∧ θ + D log θ ⊗ θ ∧ (1 − θ)

= D log θ ⊗ (1 − θ) ∧ θ − D log θ ⊗ (1 − θ) ∧ θ
= 0

2.5. Tangent to Bloch-Suslin complex

We represent a ring of dual numbers by k[ε]2 = k[ε]/〈ε2〉 where k is algebraically closed field with
zero characteristic. There is a k?-action on k[ε]2 for λ ∈ k×

λ : k[ε]2 → k[ε]2

λ ? (θ + θ′ε) = θ + λθ′ε

For dual numbers k[ε]2, we define a free abelian group �[k[ε]2] generated by [θ + φε] for θ + φε ∈

k[ε]2. Define a morphism
∂ : �[k[ε]2]→ ∧2k[ε]×2 (2.7)
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∂ : [µ] 7→ µ ∧ (1 − µ)

for all µ ∈ k[ε]2. Similarly, if we replace k by k[ε]2 in the Bloch-Suslin complex, we get

∂ : B2(k[ε]2)→ ∧2k[ε]×2 (2.8)

The right hand side of (2.8) is canonically isomorphic to
∧2 k×

⊕
k ⊗ k×

⊕∧2 k with

(θ + φε) ∧ (θ′ + φ′ε) 7→ θ ∧ θ′ ⊕

(
θ ⊗

φ′

θ′
− θ′ ⊗

φ

θ

)
⊕
φ

θ
∧
φ′

θ′

while the left hand side is isomorphic to B2(k)
⊕

β2(k)
⊕∧2 k

⊕
k (see [9])

Define a �-module �′[k[ε]2] generated by 〈θ; φ] = [θ + φε] − [θ] for θ, φ ∈ k and define Rε2(k[ε]2)
as a submodule of �′[k[ε]2] generated by the five term relation (see [9] and [12])

〈θ; θ′
]
− 〈ψ;ψ′

]
+

〈
ψ

θ
;
(
ψ

θ

)′]
−

〈
1 − ψ
1 − θ

;
(
1 − ψ
1 − θ

)′]
+

〈
θ(1 − ψ)
ψ(1 − θ)

;
(
θ(1 − ψ)
ψ(1 − θ)

)′]
, θ, ψ , 0, 1, θ , ψ (2.9)

where (
ψ

θ

)′
=
θψ′ − θ′ψ

θ2 ,(
1 − ψ
1 − θ

)′
=

(1 − ψ)θ′ − (1 − θ)ψ′

(1 − θ)2

and (
θ(1 − ψ)
ψ(1 − θ)

)′
=
ψ(1 − ψ)θ′ − θ(1 − θ)ψ′

(ψ(1 − θ))2

Define
TB2(k) =

�′[k[ε]2]
Rε2(k[ε]2)

Remark 2.5. The tangent group TB2(k) is isomorphic to β2(k)
⊕∧2 k

⊕
k (Theorem 1.1 of [9]) and

�′[k[ε]2] is isomorphic to B2(k[ε]2)

3. Main results and discussion

Consider the sequence (2.3) above. Here we suggest a map (morphism) different from the one which
is defined in §2 of [3] and the relation (2.2) above between the abelian groups of sequence (2.3), since
the map without alternate sign does not follow the definition of a complex. Thus, the above sequence
becomes a complex if we put alternate signs for ∂:

when n = 2, we put

∂ : 〈θ〉2 7→ − (θ ⊗ θ + (1 − θ) ⊗ (1 − θ))

and for n ≥ 3, we suggest to use

∂ : 〈θ〉n 7→ 〈θ〉n−1 ⊗ θ + (−1)n−1(1 − θ) ⊗ [θ]n−1

AIMS Mathematics Volume 4, Issue 4, 1248–1257.
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Theorem 3.1. The sequence (2.3) is a complex for the ∂ defined above.

Proof. To prove that the sequence (2.3) is a complex we consider 2 ≤ k ≤ n − 2

· · ·
∂
−→

βn−k+1(k)⊗∧k−1k×

⊕

k⊗Bn−k+1(k)⊗∧k−2k×

∂
−→

βn−k(k)⊗∧kk×

⊕

k⊗Bn−k(k)⊗∧k−1k×

∂
−→

βn−k−1(k)⊗∧k+1k×

⊕

k⊗Bn−k−1(k)⊗∧kk×

∂
−→ · · ·

Let 〈u〉n−k+1 ⊗
∧k−1

i=1 vi + θ ⊗ [φ]n−k+1 ⊗
∧k−2

j=1 ψ j ∈
βn−k+1(k)⊗∧k−1k×

⊕

K⊗Bn−k+1(k)⊗∧k−2k×

Now compute ∂
(
∂
(
〈u〉n−k+1 ⊗

∧k−1
i=1 vi + θ ⊗ [φ]n−k+1 ⊗

∧k−2
j=1 ψ j

))
.

To make calculation simple, first we compute

∂

∂ 〈u〉n−k+1 ⊗

k−1∧
i=1

vi


=∂

〈u〉n−k ⊗ u ∧
k−1∧
i=1

vi + (−1)n−k(1 − u) ⊗ [u]n−k ⊗

k−1∧
i=1

vi


=〈u〉n−k−1 ⊗ u ∧ u︸︷︷︸

0

∧

k−1∧
i=1

vi + (−1)n−k−1(1 − u) ⊗ [u]n−k−1 ⊗ u ∧
k−1∧
i=1

vi

+ (−1)n−k(1 − u) ⊗ [u]n−k−1 ⊗ u ∧
k−1∧
i=1

vi

=0

then find

∂

∂
θ ⊗ [φ]n−k+1 ⊗

k−2∧
j=1

ψ j


 =∂

θ ⊗ [φ]n−k ⊗ φ ∧

k−2∧
j=1

ψ j


=θ ⊗ [φ]n−k−1 ⊗ φ ∧ φ︸︷︷︸

0

∧

k−2∧
j=1

ψ j

=0

Now the last case is for k = 1 with
∧0

i=0 vi = 1 ∈ � and using R ⊗� � � R for any ring R. �

Similarly, for the variant of Cathelineau’s complex (2.5) and tangential version of Goncharv’s
complex (3.1), we have similar results.

Theorem 3.2. The above sequence (2.5) is a complex.

Proof. There is not much effort required to prove the above sequence is a complex except to use D log
maps. We just follow the steps of Theorem 3.1 and use D log. �
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3.1. Tangent to Goncharov’s complex

Here, we suggest that how to define a tangent group TBn(k) for any n in the same spirit as βn(k) is
defined in [3] and give its appropriateness by relating them in a suitable complex.

Inductively, for any n,we define a tangent group TBn(k) by defining the map

∂ : �′[k[ε]2]→ TBn−1(k) ⊗ k× ⊕ k ⊗ Bn−1(k)

thus TBn(k) is

TBn(k) =
�′[k[ε]2]
Rεn(k[ε]2)

where Rεn(k[ε]2) is a kernel of the following map

∂ε,n : �′[k[ε]2]→ TBn−1(k) ⊗ k× ⊕ k ⊗ Bn−1(k)

∂ε,n : 〈θ;ψ] 7→ 〈θ;ψ]n−1 ⊗ θ + (−1)n−1ψ

θ
⊗ [θ]n−1

where 〈θ;ψ] = [θ + ψε] − [θ] and 〈θ;ψ]n is the class of 〈θ, ψ] in TBn(k), by using the above definition,
the following becomes a complex

TBn(k)
∂ε
−→

TBn−1(k)⊗k×
⊕

k⊗Bn−1(k)

∂ε
−→ · · ·

∂ε
−→

TB2(k)⊗∧n−2k×

⊕

k⊗B2(k)⊗∧n−3k×

∂ε
−→

(
k ⊗

∧
n−1k×

)
⊕

(∧
2k ⊗

∧
n−2k×

)
(3.1)

where ∂ε is induced by ∂ε,n and when ∂ε is applied to the group Bn(k) then it agrees with δn defined
above and in [11].

Theorem 3.3. For weight n = 3, the tangent to Goncharov’s complex is also a complex.

TB3(k)
∂ε
−→ TB2(k) ⊗ k×

⊕
k ⊗ B2(k)

∂ε
−→ k ⊗ ∧2k×

⊕
∧2k ⊗ k×

where ∂ε(〈θ; φ]3) = 〈θ; φ]2 ⊗ θ +
φ

θ
⊗ [θ]2 and

∂ε (〈θ; φ]2 ⊗ ψ + x ⊗ [y]2) = −
φ

1−θ ⊗ θ∧ψ−
φ

θ
⊗ (1− θ)∧ψ+ x⊗ (1− y)∧ y +

φ

1−θ ∧
φ

θ
⊗ψ+

φ

θ
∧

φ

1−θ ⊗ y

Proof. Here we will prove that how the above sequence is a complex for weight n = 3.

∂ε∂ε (〈θ; φ]3) = ∂ε

(
〈θ; φ]2 ⊗ θ +

φ

θ
⊗ [θ]2

)
= −

φ

1 − θ
⊗ θ ∧ θ︸︷︷︸

0

−
φ

θ
⊗ (1 − θ) ∧ θ +

φ

θ
⊗ (1 − θ) ∧ θ +

φ

1 − θ
∧
φ

θ
⊗ θ +

φ

θ
∧

φ

1 − θ
⊗ θ

= 0 (by invoking the antisymmetric relation in the last two terms)

�

Theorem 3.4. The above sequence (3.1) is a complex.
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Proof. We can show that (3.1) is a complex, by considering two cases:

Case 1: Consider

TBn(k)
∂ε
−−→

TBn−1(k)⊗k×
⊕

k⊗Bn−1(k)

∂ε
−−→

TBn−2(k)⊗∧2k×

⊕
k⊗Bn−2(k)⊗k×

∂ε
−−→ · · ·

∂ε (∂ε (〈θ; φ]n)) = ∂ε

(
〈θ; φ]n−1 ⊗ θ + (−1)n−1φ

θ
⊗ [θ]n−1

)
= 〈θ; φ]n−2 θ ∧ θ︸︷︷︸

0

+(−1)n−2φ

θ
⊗ [θ]n−2 ⊗ θ + (−1)n−1φ

θ
⊗ [θ]n−2 ⊗ θ

= −(−1)n−1φ

θ
⊗ [θ]n−2 ⊗ θ + (−1)n−1φ

θ
⊗ [θ]n−2 ⊗ θ

= 0

Case 2: We consider

· · ·
∂
−→

TBn−k+1(k)⊗∧k−1k×

⊕

k⊗Bn−k+1(k)⊗∧k−2k×

∂
−→

TBn−k(k)⊗∧kk×

⊕

k⊗Bn−k(k)⊗∧k−1k×

∂
−→

TBn−k−1(k)⊗∧k+1k×

⊕

k⊗Bn−k−1(k)⊗∧kk×

∂
−→ · · ·

Let 〈θ; φ]n−k+1 ⊗ ∧
k−1
i=1φi + x ⊗ [y] ⊗ ∧k−2

j=1z j ∈
TBn−k+1(k)⊗∧k−1k×

⊕

k⊗Bn−k+1(k)⊗∧k−2k×

Now applying maps

∂ε
(
∂ε

(
〈θ; φ]n−k+1 ⊗ ∧

k−1
i=1φi + x ⊗ [y] ⊗ ∧k−2

j=1z j

))
= ∂ε

〈θ; φ]n−k ⊗ θ ⊗

k−1∧
i=1

φi + (−1)n−kφ

θ
⊗ [θ]n−k ⊗

k−1∧
i=1

φi + x ⊗ [y]n−k ⊗ y ⊗
k−2∧
j=1

z j


= 〈θ; φ]n−k−1 ⊗ θ ∧ θ︸︷︷︸

0

⊗

k−1∧
i=1

φi + (−1)n−k−1φ

θ
⊗ [θ]n−k−1 ⊗ θ ⊗

k−1∧
i=1

φi

+ (−1)n−kφ

θ
⊗ [θ]n−k−1 ⊗ θ ⊗

k−1∧
i=1

φi + x ⊗ [y]n−k−1 ⊗ y ∧ y︸︷︷︸
0

∧

k−2∧
j=1

z j

= 0 ( two middle terms are opposite in sign)

�
4. Conclusion

We have shown that the sequences (2.3), (2.5) and (3.1) are complexes. Complexes (2.3) and (2.5)
have only inversion and distribution relations (functional equations) for n > 3. However, there are some
non-trivial but non-defining relations known for n ≤ 7 (see [5, 11]). There is insufficient information
for the complex (3.1) (kernels of ∂ε and defining relations are unknown) to compute the homologies
for n ≥ 3, but it is expected to come out in a similar way as the homology of the complex (2.1).
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The original construction of the tangent to Bloch-Suslin complex (see [9]) is described by the
application of a tangent functor on the Bloch-Suslin, resulting in the first derivative on B2(F) and
∧2F×. One can find the higher order derivatives (tangent order) on Goncharov’s complex or precisely
on TBn(F) in a similar way as done in [13] for Bloch-Suslin complex.
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