Mathematics

Research article

Infinitesimal and tangent to polylogarithmic complexes for higher weight

Raziuddin Siddiqui*

Department of Mathematical Sciences, Institute of Business Administration, Karachi, Pakistan

* Correspondence: Email: rsiddiqui@iba.edu.pk; Tel: +92-213-810-4700

Abstract

Motivic and polylogarithmic complexes have deep connections with K-theory. This article gives morphisms (different from Goncharov's generalized maps) between \mathbb{k}-vector spaces of Cathelineau's infinitesimal complex for weight n. Our morphisms guarantee that the sequence of infinitesimal polylogs is a complex. We are also introducing a variant of Cathelineau's complex with the derivation map for higher weight n and suggesting the definition of tangent group $T \mathcal{B}_{n}(\mathbb{k})$. These tangent groups develop the tangent to Goncharov's complex for weight n.

Keywords: polylogarithm; infinitesimal complex; five term relation; tangent complex
Mathematics Subject Classification: 11G55, 19D, 18G

1. Introduction

The classical polylogarithms represented by $L i_{n}$ are one valued functions on a complex plane (see [11]). They are called generalization of natural logarithms, which can be represented by an infinite series (power series):

$$
\begin{aligned}
L i_{1}(z)= & \sum_{k=1}^{\infty} \frac{z^{k}}{k}=-\ln (1-z) \\
L i_{2}(z)= & \sum_{k=1}^{\infty} \frac{z^{k}}{k^{2}} \\
& \vdots \\
L i_{n}(z)= & \sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}} \quad \text { for } z \in \mathbb{C},|z|<1
\end{aligned}
$$

The other versions of polylogarithms are Infinitesimal (see [8]) and Tangential (see [9]). We will discuss group theoretic form of infinitesimal and tangential polylogarithms in § 2.3, 2.4 and 2.5 below.

Dupont and Sah describe the connection between scissors congruence group and classical dilogarithm (polylogarithm for $n=2$) (see [10]). Suslin (see [1]) defines the Bloch group that makes the famous Bloch-Suslin complex which is described in section 2.1 below. Zagier and Goncharov generalize the groups on which polylogarithmic functions are defined. This initiates a new era in the field of polylogarithms, arousing interest of algebraist and geometers. One of the milestones is the proof of Zagier's conjecture for weight $n=2,3$ (see [2,3]).

On the basis of this study Goncharov introduces a motivic complex (2.1) below, which is called Goncharov's complex (see [2]). On the other hand Cathelineau ([7, 8]) uses a differential process to introduce infinitesimal form of motivic (Bloch-Suslin's and Goncharov's) complexes that consists of \mathbb{k}-vector spaces. These \mathbb{k}-vector spaces are algebraic representation of infinitesimal versions of the Bloch-Suslin and Goncharov's complexes for higher weight n (see [8]), which satisfies functional equations of infinitesimal polylogarithms. Cathelineau also uses a tangent functor to get the tangential analogue of the Bloch-Suslin complex, that allowing a new approach to view additive dialogalithms (regulator on $T \mathcal{B}_{2}(F)$) (see [9]). The tangent group $T \mathcal{B}_{2}(F)$ has two parts; first part comes from $\mathcal{B}_{2}(F)$ and the second part is the derivative of first part. He also suggests a framework for defining the additive trilogarithms.

Our work proposes an improved map (morphism), with the alternate signs between the \mathbb{k}-vector spaces that converts the sequence (2.3) into a complex. Further, we introduce a variant of infinitesimal \mathbb{k}-vector spaces which is structurally infinitesimal but has functional equations similar to classical polylogarithmic groups.

In §3.1, we are also giving an inductive definition of group $T \mathcal{B}_{n}(\mathbb{k})$ for higher weight n and putting this in a complex with suitable maps that make a tangent complex (3.1) to Goncharov's (motivic) complex.

2. Materials and method

2.1. Bloch-Suslin complex

Let $\mathbb{Z}[\mathbb{k}]$ be a free abelian group generated by $[a]$ for $a \in F$. Suslin defines the following map

$$
\delta_{2}: \mathbb{Z}[\mathbb{k}] \rightarrow \wedge^{2} \mathbb{k}^{\times},[\theta] \mapsto \theta \wedge(1-\theta)
$$

where $\wedge^{2} \mathbb{k}^{\times}=\mathbb{k}^{\times} \otimes \mathbb{k}^{\times} /\left\langle\theta \otimes \theta, \theta \otimes \phi+\phi \otimes \theta \mid \quad \theta, \phi \in \mathbb{k}^{\times}\right\rangle$. The Bloch-Suslin complex is defined as

$$
\delta: \mathcal{B}_{2}(\mathbb{k}) \rightarrow \wedge^{2} \mathbb{k}^{\times} ;[\theta]_{2} \mapsto \theta \wedge(1-\theta)
$$

where $\mathcal{B}_{2}(\mathbb{k})$ is the quotient of $\mathbb{Z}[\mathbb{k}]$ by the subgroup generated by Abel's five term relation

$$
[\theta]-[\phi]+\left[\frac{\phi}{\theta}\right]-\left[\frac{1-\phi}{1-\theta}\right]+\left[\frac{1-\phi^{-1}}{1-\theta^{-1}}\right]
$$

and δ is induced by δ_{2}. When \mathbb{k} is algebraically closed with characteristic zero, the above complex can be inserted into the algebraic K-theory variant of the Bloch-Wigner sequence [9]

$$
0 \rightarrow \mu(\mathbb{k}) \rightarrow K_{3}^{\text {ind }}(\mathbb{k}) \rightarrow \mathcal{B}_{2}(\mathbb{k}) \rightarrow \wedge^{2} \mathbb{k}^{\times} \rightarrow K_{2}(\mathbb{k}) \rightarrow 0
$$

if this sequence is tensored by \mathbb{Q} then

$$
0 \rightarrow K_{3}^{(2)}(\mathbb{k}) \rightarrow \mathcal{B}_{2}(\mathbb{k}) \otimes \mathbb{Q} \rightarrow \wedge^{2} \mathbb{k}^{\times} \rightarrow K_{2}^{(2)}(\mathbb{k}) \rightarrow 0
$$

where K-groups $K_{n}^{(i)}$ are the pieces of the Adams decomposition of $K_{n}(\mathbb{k}) \otimes \mathbb{Q}$ (see [6]). The homology of Bloch-Suslin complex is the K_{n}-groups for $n=2,3$ i.e. $\left.\left.\wedge^{2} \mathbb{k}^{\times} / \operatorname{Im} \delta \cong \mathbb{k}^{\times} \otimes \mathbb{k}^{\times} /\langle\theta \wedge(1-\theta)| \theta \in \mathbb{k}^{\times}\right)\right\rangle$ and $B(F):=\operatorname{ker} \delta$ is called Bloch group, which is isomorphic to K_{3} group (see [11]).

2.2. Goncharov's (motivic) complexes

The free abelian group $\mathcal{B}_{n}(\mathbb{k})$ is defined by Goncharov (see[2]) as

$$
\mathcal{B}_{n}(\mathbb{k})=\frac{\mathbb{Z}[\mathbb{k}]}{\mathcal{R}_{n}(\mathbb{k})}
$$

with the morphisms for $n=2$

$$
\begin{aligned}
\delta_{2}: \mathbb{Z}[\mathbb{k}] & \rightarrow \frac{\bigwedge_{\mathbb{Z}}^{2} \mathbb{K}^{\times}}{(2-\text { torsion })} \\
{[x] } & \mapsto \begin{cases}0 & \text { where } x=0,1 \\
x \wedge(1-x) & \text { for all other } x,\end{cases}
\end{aligned}
$$

for $n \geq 3$

$$
\begin{aligned}
\delta_{n}: \mathbb{Z}[\mathbb{k}] & \rightarrow \mathcal{B}_{n-1}(\mathbb{k}) \otimes \mathbb{k}^{\times} \\
\quad[x] & \mapsto \begin{cases}0 & \text { if } x=0,1, \\
{[x]_{n-1} \otimes x} & \text { for all other } x,\end{cases}
\end{aligned}
$$

where $[x]_{n}$ is the class of x in $\mathcal{B}_{n}(\mathbb{k})$. The subgroup $\mathcal{R}_{1}(\mathbb{k})$ of $\mathbb{Z}[\mathbb{k}]$ is generated by $[x+y-x y]-[x]-[y]$ and $\mathbb{Z}[\mathbb{k}]$ is a free abelian group generated by the symbol $[x]$ for $0,1 \neq x \in \mathbb{K}$, where $x, y \in \mathbb{K} \backslash\{1\}$ then $\mathcal{B}_{1}(\mathbb{k}) \cong \mathbb{k}^{\times}$. For $n=2, \mathcal{R}_{2}(\mathbb{k})$ is defined

$$
\mathcal{R}_{2}(\mathbb{k})=\left\langle[\theta]-[\phi]+\left[\frac{\phi}{\theta}\right]-\left[\frac{1-\phi}{1-\theta}\right]+\left[\frac{1-\phi^{-1}}{1-\theta^{-1}}\right] ; 0,1 \neq \theta, \phi \in \mathbb{k}\right\rangle
$$

The above relation is the Suslin's form of Abel's relations([11]). For $n \geq 2, \mathcal{A}_{n}(\mathbb{k})$ is defined as the kernel of δ_{n} and $\mathcal{R}_{n}(\mathbb{k})$ is the subgroup of $\mathbb{Z}[\mathbb{k}]$ spanned by [0] and the elements $\sum n_{i}\left(\left[f_{i}(0)\right]-\left[f_{i}(1)\right]\right)$, where f_{i} are rational fractions for indeterminate T, such that $\sum n_{i}\left[f_{i}\right] \in \mathcal{A}_{n}(\mathbb{k}(T))$.

Lemma 2.1. (Goncharov [2, 3]) The following is the (cochain) complex

$$
\begin{equation*}
\mathcal{B}_{n}(\mathbb{k}) \xrightarrow{\delta} \mathcal{B}_{n-1} \otimes \mathbb{k}^{\times} \xrightarrow{\delta} \mathcal{B}_{n-2} \otimes \bigwedge^{2} \mathbb{k}^{\times} \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{B}_{2}(\mathbb{k}) \bigwedge^{n-2} \mathbb{k}^{\times} \xrightarrow{\delta} \frac{\bigwedge^{n} \mathbb{k}^{\times}}{2-\text { torsion }} \tag{2.1}
\end{equation*}
$$

Proof. Proof requires direct calculation (we work here with modulo 2-torsion means $a \wedge a=0$ and $a \wedge b=-b \wedge a)$.

Example 2.2. For weight $n=3$ the following is a complex

$$
\begin{aligned}
\mathcal{B}_{3}(\mathbb{k}) \xrightarrow{\delta} & \mathcal{B}_{2}(\mathbb{k}) \otimes \mathbb{k}^{\times} \stackrel{\delta}{\rightarrow} \wedge^{3} \mathbb{k}^{\times} \\
\delta \delta\left([\theta]_{3}\right) & =\delta\left([\theta]_{2} \otimes \theta\right) \\
& =(1-\theta) \wedge \underbrace{\theta \wedge \theta}_{0} \\
& =0
\end{aligned}
$$

2.3. Cathelineau's infinitesimal complexes

Let \mathbb{k} be a field with a zero characteristic and $\mathbb{k}^{\bullet \bullet}=K-\{0,1\}$, subspace $\beta_{n}(\mathbb{k})$ is defined in $[3,9]$ as

$$
\beta_{n}(\mathbb{k})=\frac{\mathbb{k}\left[\mathbb{k}^{\bullet \bullet}\right]}{\rho_{n}(\mathbb{k})}
$$

where $\rho_{n}(K)$ is the kernel of the following map

$$
\begin{gather*}
\partial_{n}: \mathbb{k}\left[\mathbb{k}^{\bullet \bullet}\right] \rightarrow\left(\beta_{n-1} \otimes \mathbb{k}^{\times}\right) \oplus\left(\mathbb{k} \otimes \mathcal{B}_{n-1}(\mathbb{k})\right) \\
\partial_{n}:[\theta] \mapsto\langle\theta\rangle_{n-1} \otimes \theta+(1-\theta) \otimes[\theta]_{n-1} \tag{2.2}
\end{gather*}
$$

where $\langle\theta\rangle_{n}$ is the coset-class of θ in $\beta_{n}(\mathbb{k})$ and $\rho_{2}(\mathbb{k})$ generated by Cathelineau's relation,

$$
[\theta]-[\phi]+\theta\left[\frac{\phi}{\theta}\right]+(1-\theta)\left[\frac{1-\phi}{1-\theta}\right]
$$

For $n=1$ we have $\beta_{1}(\mathbb{k}) \cong \mathbb{k}$.
Vector space $\beta_{n}(\mathbb{k})$ has some non-trivial elements from the functional relations of Li_{n} for $n \leq 7$ while one can find only inversion and distribution relations in $\beta_{n}(\mathbb{k})$ for $n>7$ (see [11]).

The following is the Cathelineau's infinitesimal complex to the Goncharov's complex for weight n (see §2 of [4] and [9]):

Example 2.3. For weight $n=3$, the following infinitesimal version satisfying the definition of a complex:

$$
\begin{equation*}
\beta_{3}(\mathbb{k}) \xrightarrow{\partial} \beta_{2}(\mathbb{k}) \otimes \mathbb{K}^{\times} \bigoplus \mathbb{k} \otimes \mathcal{B}_{2}(\mathbb{k}) \xrightarrow{\partial} \mathbb{k} \otimes \wedge^{2} \mathbb{k}^{\times} \tag{2.4}
\end{equation*}
$$

$$
\begin{aligned}
\partial \partial\left(\langle\theta\rangle_{3}\right) & =\partial\left(\langle\theta\rangle_{2} \otimes \theta+(1-\theta) \otimes[\theta]_{2}\right) \\
& =-\theta \otimes \underbrace{\theta \wedge \theta}_{0}-(1-\theta) \otimes(1-\theta) \wedge \theta+(1-\theta) \otimes(1-\theta) \wedge \theta \\
& =0
\end{aligned}
$$

2.4. Variant of Cathelineau's complex

We put $\llbracket a \rrbracket^{D}=\frac{D(a)}{a(1-a)}[a]$ where $D(a) \in \operatorname{Der}_{\mathbb{Z}}(\mathbb{k}, \mathbb{K})$ and is called general derivation, $\beta_{n}^{D}(\mathbb{k})$ is defined as

$$
\beta_{n}^{D}(\mathbb{k})=\frac{\mathbb{K}\left[\mathbb{k}^{\bullet \bullet}\right]}{\rho_{n}^{D}(\mathbb{k})}
$$

where $\rho_{n}^{D}(\mathbb{k})$ is a kernel of the following map

$$
\begin{aligned}
& \partial_{n}^{D}: \mathbb{k}\left[\mathbb{k}^{\bullet \bullet}\right] \rightarrow\left(\beta_{n-1}^{D}(\mathbb{k}) \otimes \mathbb{K}^{\times}\right) \oplus\left(\mathbb{k} \otimes \mathcal{B}_{n-1}\right) \\
& \partial_{n}^{D}:[\theta]^{D} \mapsto \llbracket \theta \rrbracket_{n-1}^{D} \otimes \theta+D \log (\theta) \otimes[a]_{n-1}
\end{aligned}
$$

and $\llbracket \theta \rrbracket_{n}^{D}$ is a class of θ in $\beta_{n}^{D}(\mathbb{k})$ which is equal to $\frac{D(\theta)}{\theta(1-\theta)}\langle\theta\rangle_{n}$. The following is a subspace of $\mathbb{k}\left[\mathbb{k}^{\bullet \bullet}\right]$:

$$
\rho_{2}^{D}(\mathbb{k})=\left\langle\llbracket \theta \rrbracket^{D}-\llbracket \psi \rrbracket^{D}+\llbracket \frac{\psi}{\theta} \rrbracket^{D}-\llbracket \frac{1-\psi}{1-\theta} \rrbracket^{D}+\llbracket \frac{1-\psi^{-1}}{1-\theta^{-1}} \rrbracket^{D} ; 0,1 \neq \theta, \phi \in \mathbb{k}\right\rangle
$$

For $n \geq 4$, one can write only inversion relations in $\beta_{n}^{D}(\mathbb{k})$ while for $n \leq 3$ we have other non-trivial relations as well. The following sequence is a complex. One can easily prove in a completely analogous way as Lemma 3.1

Example 2.4. This $D \log$ version of Cathelineau's complex is also satisfying the definition of a complex when the above maps are used for weight $n=3$.

$$
\begin{aligned}
& \beta_{3}^{D}(\mathbb{k}) \xrightarrow{\partial} \beta_{2}^{D}(\mathbb{k}) \otimes \mathbb{k}^{\times} \bigoplus \mathbb{k} \otimes \mathcal{B}_{2}(\mathbb{k}) \xrightarrow{\partial} \mathbb{k} \otimes \wedge^{2} \mathbb{k}^{\times} \\
\partial \partial\left(\langle\theta\rangle_{3}^{D}\right)= & \partial\left(\langle\theta\rangle_{2}^{D} \otimes \theta+D \log \theta \otimes[\theta]_{2}\right) \\
= & -D \log (1-\theta) \otimes \underbrace{\theta \wedge \theta}_{0}+D \log \theta \otimes(1-\theta) \wedge \theta+D \log \theta \otimes \theta \wedge(1-\theta) \\
= & D \log \theta \otimes(1-\theta) \wedge \theta-D \log \theta \otimes(1-\theta) \wedge \theta \\
= & 0
\end{aligned}
$$

2.5. Tangent to Bloch-Suslin complex

We represent a ring of dual numbers by $\mathbb{k}[\varepsilon]_{2}=\mathbb{K}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle$ where \mathbb{k} is algebraically closed field with zero characteristic. There is a \mathbb{k}^{\star}-action on $\mathbb{k}[\varepsilon]_{2}$ for $\lambda \in \mathbb{k}^{\times}$

$$
\begin{aligned}
\lambda: \mathbb{k}[\varepsilon]_{2} & \rightarrow \mathbb{k}[\varepsilon]_{2} \\
\lambda \star\left(\theta+\theta^{\prime} \varepsilon\right) & =\theta+\lambda \theta^{\prime} \varepsilon
\end{aligned}
$$

For dual numbers $\mathbb{k}[\varepsilon]_{2}$, we define a free abelian group $\mathbb{Z}\left[\mathbb{k}[\varepsilon]_{2}\right]$ generated by $[\theta+\phi \varepsilon]$ for $\theta+\phi \varepsilon \in$ $\mathbb{k}[\varepsilon]_{2}$. Define a morphism

$$
\begin{equation*}
\partial: \mathbb{Z}\left[\mathbb{k}[\varepsilon]_{2}\right] \rightarrow \wedge^{2} \mathbb{k}[\varepsilon]_{2}^{\times} \tag{2.7}
\end{equation*}
$$

$$
\partial:[\mu] \mapsto \mu \wedge(1-\mu)
$$

for all $\mu \in \mathbb{K}[\varepsilon]_{2}$. Similarly, if we replace \mathbb{k} by $\mathbb{k}[\varepsilon]_{2}$ in the Bloch-Suslin complex, we get

$$
\begin{equation*}
\partial: \mathcal{B}_{2}\left(\mathbb{K}[\varepsilon]_{2}\right) \rightarrow \wedge^{2} \mathbb{k}[\varepsilon]_{2}^{\times} \tag{2.8}
\end{equation*}
$$

The right hand side of (2.8) is canonically isomorphic to $\bigwedge^{2} \mathbb{k}^{\times} \bigoplus \mathbb{k} \otimes \mathbb{k}^{\times} \bigoplus \Lambda^{2} \mathbb{k}$ with

$$
(\theta+\phi \varepsilon) \wedge\left(\theta^{\prime}+\phi^{\prime} \varepsilon\right) \mapsto \theta \wedge \theta^{\prime} \oplus\left(\theta \otimes \frac{\phi^{\prime}}{\theta^{\prime}}-\theta^{\prime} \otimes \frac{\phi}{\theta}\right) \oplus \frac{\phi}{\theta} \wedge \frac{\phi^{\prime}}{\theta^{\prime}}
$$

while the left hand side is isomorphic to $\mathcal{B}_{2}(\mathbb{k}) \bigoplus \beta_{2}(\mathbb{k}) \bigoplus \wedge^{2} \mathbb{k} \bigoplus \mathbb{k}$ (see [9])
Define a \mathbb{Z}-module $\mathbb{Z}^{\prime}\left[\mathbb{k}[\varepsilon]_{2}\right]$ generated by $\langle\theta ; \phi]=[\theta+\phi \varepsilon]-[\theta]$ for $\theta, \phi \in \mathbb{k}$ and define $\mathcal{R}_{2}^{\varepsilon}\left(\mathbb{k}[\varepsilon]_{2}\right)$ as a submodule of $\mathbb{Z}^{\prime}\left[\mathbb{K}[\varepsilon]_{2}\right]$ generated by the five term relation (see [9] and [12])

$$
\begin{align*}
\left\langle\theta ; \theta^{\prime}\right] & -\left\langle\psi ; \psi^{\prime}\right]+\left\langle\frac{\psi}{\theta} ;\left(\frac{\psi}{\theta}\right)^{\prime}\right]-\left\langle\frac{1-\psi}{1-\theta} ;\left(\frac{1-\psi}{1-\theta}\right)^{\prime}\right] \\
& +\left\langle\frac{\theta(1-\psi)}{\psi(1-\theta)} ;\left(\frac{\theta(1-\psi)}{\psi(1-\theta)}\right)^{\prime}\right], \quad \theta, \psi \neq 0,1, \theta \neq \psi \tag{2.9}
\end{align*}
$$

where

$$
\begin{gathered}
\left(\frac{\psi}{\theta}\right)^{\prime}=\frac{\theta \psi^{\prime}-\theta^{\prime} \psi}{\theta^{2}} \\
\left(\frac{1-\psi}{1-\theta}\right)^{\prime}=\frac{(1-\psi) \theta^{\prime}-(1-\theta) \psi^{\prime}}{(1-\theta)^{2}}
\end{gathered}
$$

and

$$
\left(\frac{\theta(1-\psi)}{\psi(1-\theta)}\right)^{\prime}=\frac{\psi(1-\psi) \theta^{\prime}-\theta(1-\theta) \psi^{\prime}}{(\psi(1-\theta))^{2}}
$$

Define

$$
T \mathcal{B}_{2}(\mathbb{K})=\frac{\mathbb{Z}^{\prime}\left[\mathbb{k}[\varepsilon]_{2}\right]}{\mathcal{R}_{2}^{\varepsilon}\left(\mathbb{K}[\varepsilon]_{2}\right)}
$$

Remark 2.5. The tangent group $T \mathcal{B}_{2}(\mathbb{k})$ is isomorphic to $\beta_{2}(\mathbb{k}) \bigoplus \bigwedge^{2} \mathbb{k} \bigoplus \mathbb{k}$ (Theorem 1.1 of [9]) and $\mathbb{Z}^{\prime}\left[\mathbb{k}[\varepsilon]_{2}\right]$ is isomorphic to $\mathcal{B}_{2}\left(\mathbb{k}[\varepsilon]_{2}\right)$

3. Main results and discussion

Consider the sequence (2.3) above. Here we suggest a map (morphism) different from the one which is defined in $\S 2$ of [3] and the relation (2.2) above between the abelian groups of sequence (2.3), since the map without alternate sign does not follow the definition of a complex. Thus, the above sequence becomes a complex if we put alternate signs for ∂ :
when $n=2$, we put

$$
\partial:\langle\theta\rangle_{2} \mapsto-(\theta \otimes \theta+(1-\theta) \otimes(1-\theta))
$$

and for $n \geq 3$, we suggest to use

$$
\partial:\langle\theta\rangle_{n} \mapsto\langle\theta\rangle_{n-1} \otimes \theta+(-1)^{n-1}(1-\theta) \otimes[\theta]_{n-1}
$$

Theorem 3.1. The sequence (2.3) is a complex for the ∂ defined above.
Proof. To prove that the sequence (2.3) is a complex we consider $2 \leq k \leq n-2$

Let $\langle u\rangle_{n-k+1} \otimes \bigwedge_{i=1}^{k-1} v_{i}+\theta \otimes[\phi]_{n-k+1} \otimes \bigwedge_{j=1}^{k-2} \psi_{j} \in \underset{\substack{ \\K \otimes \mathcal{B}_{n-k+1}(\mathbb{k}) \otimes \wedge^{k-2} \\ \mathbb{K}^{\times}}}{\stackrel{\beta_{n-k+1}(\mathbb{k}) \otimes \Lambda^{k-1}}{\mathbb{K}^{\times}}}$
Now compute $\partial\left(\partial\left(\langle u\rangle_{n-k+1} \otimes \bigwedge_{i=1}^{k-1} v_{i}+\theta \otimes[\phi]_{n-k+1} \otimes \bigwedge_{j=1}^{k-2} \psi_{j}\right)\right)$.
To make calculation simple, first we compute

$$
\begin{aligned}
& \partial\left(\partial\left(\langle u\rangle_{n-k+1} \otimes \bigwedge_{i=1}^{k-1} v_{i}\right)\right) \\
= & \partial\left(\langle u\rangle_{n-k} \otimes u \wedge \bigwedge_{i=1}^{k-1} v_{i}+(-1)^{n-k}(1-u) \otimes[u]_{n-k} \otimes \bigwedge_{i=1}^{k-1} v_{i}\right) \\
= & \langle u\rangle_{n-k-1} \otimes \underbrace{u \wedge u}_{0} \wedge \bigwedge_{i=1}^{k-1} v_{i}+(-1)^{n-k-1}(1-u) \otimes[u]_{n-k-1} \otimes u \wedge \bigwedge_{i=1}^{k-1} v_{i} \\
& +(-1)^{n-k}(1-u) \otimes[u]_{n-k-1} \otimes u \wedge \bigwedge_{i=1}^{k-1} v_{i} \\
= & 0
\end{aligned}
$$

then find

$$
\begin{aligned}
\partial\left(\partial\left(\theta \otimes[\phi]_{n-k+1} \otimes \bigwedge_{j=1}^{k-2} \psi_{j}\right)\right) & =\partial\left(\theta \otimes[\phi]_{n-k} \otimes \phi \wedge \bigwedge_{j=1}^{k-2} \psi_{j}\right) \\
& =\theta \otimes[\phi]_{n-k-1} \otimes \underbrace{\phi \wedge \phi}_{0} \wedge \bigwedge_{j=1}^{k-2} \psi_{j} \\
& =0
\end{aligned}
$$

Now the last case is for $k=1$ with $\bigwedge_{i=0}^{0} v_{i}=1 \in \mathbb{Z}$ and using $R \otimes_{\mathbb{Z}} \mathbb{Z} \cong R$ for any ring R.
Similarly, for the variant of Cathelineau's complex (2.5) and tangential version of Goncharv's complex (3.1), we have similar results.

Theorem 3.2. The above sequence (2.5) is a complex.
Proof. There is not much effort required to prove the above sequence is a complex except to use $D \log$ maps. We just follow the steps of Theorem 3.1 and use $D \log$.

3.1. Tangent to Goncharov's complex

Here, we suggest that how to define a tangent group $T \mathcal{B}_{n}(\mathbb{k})$ for any n in the same spirit as $\beta_{n}(\mathbb{k})$ is defined in [3] and give its appropriateness by relating them in a suitable complex.

Inductively, for any n, we define a tangent group $T \mathcal{B}_{n}(\mathbb{k})$ by defining the map

$$
\partial: \mathbb{Z}^{\prime}\left[\mathbb{k}[\varepsilon]_{2}\right] \rightarrow T \mathcal{B}_{n-1}(\mathbb{k}) \otimes \mathbb{k}^{\times} \oplus \mathbb{k} \otimes \mathcal{B}_{n-1}(\mathbb{k})
$$

thus $T \mathcal{B}_{n}(\mathbb{k})$ is

$$
T \mathcal{B}_{n}(\mathbb{K})=\frac{\mathbb{Z}^{\prime}\left[\mathbb{k}[\varepsilon]_{2}\right]}{\mathcal{R}_{n}^{\varepsilon}\left(\mathbb{k}[\varepsilon]_{2}\right)}
$$

where $\mathcal{R}_{n}^{\varepsilon}\left(\mathbb{k}[\varepsilon]_{2}\right)$ is a kernel of the following map

$$
\begin{aligned}
& \partial_{\varepsilon, n}: \mathbb{Z}^{\prime}\left[\mathbb{k}[\varepsilon]_{2}\right] \rightarrow T \mathcal{B}_{n-1}(\mathbb{K}) \otimes \mathbb{k}^{\times} \oplus \mathbb{k} \otimes \mathcal{B}_{n-1}(\mathbb{k}) \\
& \partial_{\varepsilon, n}:\langle\theta ; \psi] \mapsto\langle\theta ; \psi]_{n-1} \otimes \theta+(-1)^{n-1} \frac{\psi}{\theta} \otimes[\theta]_{n-1}
\end{aligned}
$$

where $\langle\theta ; \psi]=[\theta+\psi \varepsilon]-[\theta]$ and $\langle\theta ; \psi]_{n}$ is the class of $\langle\theta, \psi]$ in $T \mathcal{B}_{n}(\mathbb{k})$, by using the above definition, the following becomes a complex
where ∂_{ε} is induced by $\partial_{\varepsilon, n}$ and when ∂_{ε} is applied to the group $\mathcal{B}_{n}(\mathbb{k})$ then it agrees with δ_{n} defined above and in [11].

Theorem 3.3. For weight $n=3$, the tangent to Goncharov's complex is also a complex.

$$
T \mathcal{B}_{3}(\mathbb{k}) \xrightarrow{\partial_{\varepsilon}} T \mathcal{B}_{2}(\mathbb{k}) \otimes \mathbb{k}^{\times} \bigoplus \mathbb{k} \otimes \mathcal{B}_{2}(\mathbb{k}) \xrightarrow{\partial_{\varepsilon}} \mathbb{k} \otimes \wedge^{2} \mathbb{k}^{\times} \bigoplus \wedge^{2} \mathbb{k} \otimes \mathbb{k}^{\times}
$$

where $\partial_{\varepsilon}\left(\langle\theta ; \phi]_{3}\right)=\langle\theta ; \phi]_{2} \otimes \theta+\frac{\phi}{\theta} \otimes[\theta]_{2}$ and

$$
\partial_{\varepsilon}\left(\langle\theta ; \phi]_{2} \otimes \psi+x \otimes[y]_{2}\right)=-\frac{\phi}{1-\theta} \otimes \theta \wedge \psi-\frac{\phi}{\theta} \otimes(1-\theta) \wedge \psi+x \otimes(1-y) \wedge y+\frac{\phi}{1-\theta} \wedge \frac{\phi}{\theta} \otimes \psi+\frac{\phi}{\theta} \wedge \frac{\phi}{1-\theta} \otimes y
$$

Proof. Here we will prove that how the above sequence is a complex for weight $n=3$.

$$
\begin{aligned}
\partial_{\varepsilon} \partial_{\varepsilon}\left(\langle\theta ; \phi]_{3}\right) & =\partial_{\varepsilon}\left(\langle\theta ; \phi]_{2} \otimes \theta+\frac{\phi}{\theta} \otimes[\theta]_{2}\right) \\
& =-\frac{\phi}{1-\theta} \otimes \underbrace{\theta \wedge \theta}_{0}-\frac{\phi}{\theta} \otimes(1-\theta) \wedge \theta+\frac{\phi}{\theta} \otimes(1-\theta) \wedge \theta+\frac{\phi}{1-\theta} \wedge \frac{\phi}{\theta} \otimes \theta+\frac{\phi}{\theta} \wedge \frac{\phi}{1-\theta} \otimes \theta
\end{aligned}
$$

$$
=0 \quad \text { (by invoking the antisymmetric relation in the last two terms) }
$$

Theorem 3.4. The above sequence (3.1) is a complex.

Proof. We can show that (3.1) is a complex, by considering two cases:

Case 1: Consider

$$
\begin{aligned}
& T \mathcal{B}_{n}(\mathbb{k}) \xrightarrow{\partial_{\varepsilon}} \underset{\substack{\mathbb{k} \otimes \mathcal{B}_{n-1}(\mathbb{k})}}{T \mathcal{B}_{n-1}(\mathbb{k}) \otimes \mathbb{k}^{\times}} \xrightarrow{\boldsymbol{\partial}_{\varepsilon} \otimes \mathcal{B}_{n-2}(\mathbb{k}) \otimes \mathbb{k}^{\times}} \stackrel{T \mathcal{B}_{n-2}(\mathbb{k}) \otimes \wedge^{2} \mathbb{k}^{\times}}{\oplus} \xrightarrow{\partial_{\varepsilon}} \cdots \\
& \begin{aligned}
\partial_{\varepsilon}\left(\partial_{\varepsilon}\left(\langle\theta ; \phi]_{n}\right)\right) & =\partial_{\varepsilon}\left(\langle\theta ; \phi]_{n-1} \otimes \theta+(-1)^{n-1} \frac{\phi}{\theta} \otimes[\theta]_{n-1}\right) \\
& =\langle\theta ; \phi]_{n-2} \underbrace{\theta \wedge \theta}_{0}+(-1)^{n-2} \frac{\phi}{\theta} \otimes[\theta]_{n-2} \otimes \theta+(-1)^{n-1} \frac{\phi}{\theta} \otimes[\theta]_{n-2} \otimes \theta \\
& =-(-1)^{n-1} \frac{\phi}{\theta} \otimes[\theta]_{n-2} \otimes \theta+(-1)^{n-1} \frac{\phi}{\theta} \otimes[\theta]_{n-2} \otimes \theta \\
& =0
\end{aligned}
\end{aligned}
$$

Case 2: We consider

Let $\langle\theta ; \phi]_{n-k+1} \otimes \wedge_{i=1}^{k-1} \phi_{i}+x \otimes[y] \otimes \wedge_{j=1}^{k-2} z_{j} \in \underset{\underline{k} \otimes \mathcal{B}_{n-k+1}(\mathbb{k}) \otimes \wedge^{k-2} \mathfrak{k}^{x}}{T \mathcal{B}_{n-k+1}(k) \otimes \wedge^{k-1} \underline{k}^{\times}}$
Now applying maps

$$
\begin{aligned}
& \partial_{\varepsilon}\left(\partial_{\varepsilon}\left(\langle\theta ; \phi]_{n-k+1} \otimes \wedge_{i=1}^{k-1} \phi_{i}+x \otimes[y] \otimes \wedge_{j=1}^{k-2} z_{j}\right)\right) \\
& =\partial_{\varepsilon}\left(\langle\theta ; \phi]_{n-k} \otimes \theta \otimes \bigwedge_{i=1}^{k-1} \phi_{i}+(-1)^{n-k} \frac{\phi}{\theta} \otimes[\theta]_{n-k} \otimes \bigwedge_{i=1}^{k-1} \phi_{i}+x \otimes[y]_{n-k} \otimes y \otimes \bigwedge_{j=1}^{k-2} z_{j}\right) \\
& =\langle\theta ; \phi]_{n-k-1} \otimes \underbrace{\theta \wedge \theta}_{0} \otimes \bigwedge_{i=1}^{k-1} \phi_{i}+(-1)^{n-k-1} \frac{\phi}{\theta} \otimes[\theta]_{n-k-1} \otimes \theta \otimes \bigwedge_{i=1}^{k-1} \phi_{i} \\
& +(-1)^{n-k} \frac{\phi}{\theta} \otimes[\theta]_{n-k-1} \otimes \theta \otimes \bigwedge_{i=1}^{k-1} \phi_{i}+x \otimes[y]_{n-k-1} \otimes \underbrace{y \wedge}_{0} \wedge \bigwedge_{j=1}^{k-2} z_{j} \\
& =0 \quad \text { (two middle terms are opposite in sign) }
\end{aligned}
$$

4. Conclusion

We have shown that the sequences (2.3), (2.5) and (3.1) are complexes. Complexes (2.3) and (2.5) have only inversion and distribution relations (functional equations) for $n>3$. However, there are some non-trivial but non-defining relations known for $n \leq 7$ (see [5, 11]). There is insufficient information for the complex (3.1) (kernels of ∂_{ε} and defining relations are unknown) to compute the homologies for $n \geq 3$, but it is expected to come out in a similar way as the homology of the complex (2.1).

The original construction of the tangent to Bloch-Suslin complex (see [9]) is described by the application of a tangent functor on the Bloch-Suslin, resulting in the first derivative on $\mathcal{B}_{2}(F)$ and $\wedge^{2} F^{\times}$. One can find the higher order derivatives (tangent order) on Goncharov's complex or precisely on $T \mathcal{B}_{n}(F)$ in a similar way as done in [13] for Bloch-Suslin complex.

Conflict of interest

The author declares there is no conflicts of interest in this paper.

References

1. A. A. Suslin, K_{3} of a field and the Bloch group, Proc. Steklov Inst. Math., 4 (1991), 217-239.
2. A. B. Goncharov, Geometry of Configurations, Polylogarithms and Motivic Cohomology, Adv. Math., 114 (1995), 197-318.
3. A. B. Goncharov, Explicit construction of characteristic classes, Adv. Soviet Math., 16 (1993), 169-210.
4. A. B. Goncharov, Euclidean Scissor congruence groups and mixed Tate motives over dual numbers, Math. Res. Lett., 11 (2004), 771-784.
5. H. Gangl, Funktionalgleichungen von Polylogarithmen, Mathematisches Institut der Universität Bonn., 278 (1995).
6. J.-L. Cathelineau, λ-structures in algebraic K-theory and cyclic homology, K-Theory, 4 (1990), 591-606
7. J.-L. Cathelineau, Infinitesimal Polylogarithms, multiplicative Presentations of Kähler Differentials and Goncharov complexes, talk at the workshop on polylogarthms, Essen, (1997), 1-4.
8. J.-L. Cathelineau, Remarques sur les Différentielles des Polylogarithmes Uniformes, Ann. Inst. Fourier, 46 (1996), 1327-1347.
9. J.-L. Cathelineau, The tangent complex to the Bloch-Suslin complex, B. Soc. Math. Fr., 135 (2007), 565-597.
10. J.-L. Dupont and C.-H. Sah, Scissors congruences II, J. Pure Appl. Algebra, 25 (1982), 159-195.
11. P. Elbaz-Vincent and H. Gangl, On Poly(ana)logs I, Compos. Math., 130 (2002), 161-214.
12. S. Hussain and R. Siddiqui, Grassmannian Complex and Second Order Tangent Complex, Journal of Mathematics, 48 (2016), 91-111.
13. S. Hussain and R. Siddiqui, Morphisms Between Grassmannian Complex and Higher Order Tangent Complex, Communications in Mathematics and Applications, 10 (2019), in press.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
